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connected real semisimple Lie group with finite
G = KAN be an Iwasawa decomposition for 6. If

centre and let
A€ a; {the complexified dual of the Lie algebra g« of A), ¢}
denotes the elementary spherical function defined by the well

known integral formula

[
-

RIS e LA HGO) 5y (x € 6). (1

Let ¢ be the Lie algebra of G, and let W be the Weyl group of
the pair (g,a). Moreover, let At pe the set of positive voots

of (g,a) associated with the above Iwasawa decomposition and let
L = N.AY . The following formula of Harish-Chandra ([2]) de-
scribes the asymptotics of ¢A(a) as log a - » in the positive

+
Weyl chamber a of a.

(iwki-p)(log a)

¢A(a) = T clwd)e 8" (wh,a), (2)
weEW
e"(h,a) = T T (aye Wilog @) (5)
peL

One of the basic results of this thesis is that the summands
of (2) can be expressed as integrals similar to (1) but taken over
compact cycles of real dimension dim(X) in a complexification KC
of the group K. The functions $¢"(wA,a) can be written as integrals
over compact cycles as well; since the integrands are holomorphic

e—u(log ajl

in the variables (a €& A+), we obtain (3) from a con-

vergent power series. The cycles are constructed by means of a
holomorphic extension of the procedure used by Gindikin-Karpelevid
([1]D) to derive the product formula for the c-function.

Similar integral formulas enable us to obtain the asymptotic
expansions of Trombi-Varadarajan ([1]1) as converging series. Qur
research in this direction has not yet been completed; for instance
we have not obtained the global uniformity of the estimates of
Trombi~Varadarajan although in other respects our asymptotics are
more precise.

In a future publication we hope to extend the techniques

developed in this thesis to the case of Eisenstein integrals
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0.1 A review of basic facts

In this thesis we study the asymptotic behaviour of elemertary
spherical functions and related eigenfunctions on a connected real
semisimple Lie group 6 with finite centre (we let SL(n,IR) serve
as an example of such a group).

Let K be a maximal compact subgroup of G (in our example we
may take K = 30(n,IR) ), and let ID(G)K denote the algebra of left
G~ and bi-K-invariant differential operators on G. In R the
exponential functions can be characterized as the eigenfunctions
¢ R" = € of all translation invariant (or, equivalently, constant
coefficient) differential operators, normalized by ¢(0) = 1. In
the harmonic analysis of bi-K-invariant (or spherical) functions
on G, the analogon of this set of special functions is the set of

c” functions $: G = € satisfying the following conditions:
(i) $ is spherical,
(i1) ¢ is a simultaneous eigenfunction offE(G)K,

(ii1) ¢(e) = 1.

These functions are called the elementary spherical functions of
the pair (G,K).

Let ¢, be the Lie algebras of G, K and let a be a maximal
abelian subalgebra of the orthocomplement s of | with respect to
the Killing form. In the example g consists of the matrices

with trace 0, ¥ of the anti-symmetric and s of the symmetric

ones among them; for a we may take the diagonal matrices with




trace 0. It is known that all such a are

0

by elements of K. Their common dimension

o

f g. Now consider again condition (ii)
elementary spherical functions. An equivalent formulation is:
. - . L K 5

there exists an algebra homomorphism A: I{(G)" — € such that

D¢ = A(D).¢ for all D € D(E)" . It is known that th

D
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a’ of the veal linear space a. If A € a; then the corresponding
eigenvalue is denoted by D = v(D,i)x). Moreover, it can be

% . .
proved that for every X € a there exists a unique elementary

spherical function which satisfies the system
D = y(D,ir).d (e me). 0

We denote this function by ¢y Thus the collection of elementary
spherical functions is equal to {¢A3 A€ aZ}.

The exponential map exp: ¢ > G is injective on a and
A = exp a4 is a closed abelian subgroup of 6. We let log denote

the inverse of expla : a > A. Because of the Cartan decomposition

each spherical function is determined by its restriction to A.
In order to give a more detailed description of the above Cartan
decomposition, we recall that the linear operators ad X: g 7 g

(X € a) given by
ad X: v -~ [X,Y]

have a simultaneous diagonalization with eigenvalues a(X)
g <3

depending linearly on X € a. The non-zero o € «* such that
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hyperplanes.

complement

o (X)

is equivalent t

K-orbit KaK thr

0 - 3
are called the roots of the pair {(g,s). Togethe
s N e s ~
a finite subset A of a” ., The {a € A) are
spaces, and one has the direct sum of vector
q T Z .
0 8
o e A
anes ker o (o € A) in e ave called the root
r X € a the condition of being in their common
# 0 for all a € A

@]

ough a

the geometric condition that

the two-sided

exp X has at a a tangent space comple-

mentary to A. The set a' of these X is called the regular set

in a, A' =

is an open dens
the same two-si

k of the normal

up

G

e subset of

ded K-orbit iff

. k3
izer M of «a

r
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. Two elements a,,a
e

2

exp{a') is called the regular set in A. The set

in A' are

in

they are conjugate by an element

K.

4
L

i

vely on the

The element k is determined

-

n

central-




o
o]
O
o]
fd
s
o
o
o~
O
o)
0]
ool
St

connected components of a¢f, the

Select such a chamber. From now on it will be called the posi-
4 ¥, + b4 Ealie by 1 + - +
tive Weyl chamber ¢ in ¢. Similarly we call A = expfla ) the

positive Weyl chamber in A. By what we said above we have
Gt = KA K (23

[l

and now the A+—part mi{x) of an element x € G’ is uniquely
determined. The corrvesponding map 7: G' ~ A% is a smooth fibration
of G'. Tts fibres are the two-sided K-orbits and At is a global
cross-section. We view (2) as a polar decomposition for G!

with radial component AY. The situation is analogous to the
classical polar decomposition of Rn\{O}, where an open half
line emanating from the origin serves as a global cross-section
for the fibration of R™M {0} into spheres (the orbits of the
orthogonal group). In analogy with this classical situation we
define for every differential operator D on G' a differential
operator A(D) on A+, called the "radial part" of D. Its action
on a smooth function Y: At = ¢ is described as follows. First
extend § to a bi-K-invariant function ™y on 6' (so w*y is
constant along the fibres of 7). Then apply D and finally re-

strict the result again to A, In formula:
_ *
A(DIY = D(nTY)| %

In particular the differential equations (1) lead to the system

ADYY = y(D,ir) .y (v e D) (3)




_

. . . + . . +
of differential equations on A for the restriction @XQA 5
7

called the radial differential equations. Recall that at a point
a of the boundary 387 of &Y the tangent space of KaK is not
complementary to A anymore. As a consequence certain coefficients of
the radial differential equations become singular at this bound-
ary. Note that 3a" is built up from parts of the root hyperplanes
(called the walls of a') and that 8% = exp(38+).

The radial differential equations are linear differential
equations, they are partial if the real rank of & is > 1. In
[2] Harish-Chandra proved the remarkable fact that the solution
space of (3) is of finite dimension < |[Wl over €. We will describe
how he used this to obtain a series expansion for ¢11A+° Define

the set A" of positive roots with respect to the choice of ot

by

At s 0 € Ay a(X) >0 for all X € a+},

and write L = W.A" for the lattice generated by the positive

roots. Harish-Chandra constructed series of the form

cliwh-pllog a) 3 1 (yueHlog @) =g )
eL

as solutions of the radial differential equations corresponding
to the Casimir operator (a special second order differential

operator in KKG)K). Here
p =3 Z dim(ga).a

and we have written w) for )xow"1 (w € W). More precisely, he

showed that for every w € W there exists exactly one formal




igfying the radial Casimir equation. Here the

I  are rational functions ai -~ €, determined by certalin vecur-
rence relations. Next, he showed that the series (4) converges
for a € At and in fact defines a solution for the entire system
(3) (here X has to be suitably restricted, it must lie outside
a certain locally finite union of hyperplanes in az}, From the
principal terms exp [ (iwi-p)(log a3l of (4) one reads off that
the functions (4) are linearly independent and therefore consti-
tute a basis for the solution space of (3). Hence ¢A!A+ can be

written as a linear combination of the functions (4), and since

it is known that ¢wk = ¢A (w € W) it follows that

(iwr-p)(log al

¢A(a) = Z cwi)de " (wh,a), (5)
wEW
o"(r,a) = T 1 (e Hiiog a)
pen ¥

From (5) one reads off the asymptotic behaviour of ¢%(a) as
log a tends radially to infinity in a*. The coefficient c(}A) is
called the Harish-Chandra c-function. It is a meromorphic function

F— C, and plays a basic role in Harish-Chandra's Plancherel

c

theorem for the symmetric space G/K (for an elementary exposition
we refer the reader to Helgason's survey article [ u 1). It has
been explicitly computed by Gindikin and Karpelevié, who ex-
pressed it as a product of c~functions corresponding to certain
real rank 1 subgroups of G (cf. GK [1]).

The elementary spherical function ¢, can be given by an
y St by g y

integral formula whic¢h wes shall describe now. The space

n = z
€




e

8]

= exp n ig

is a nilpotent Lie subalgebra of g. Moreover )
closed nilpotent subgroup of G. In our example n can be taken
as the set of upper triangular matrices with zeros on the
diagonal, and then N consists of the upper ftriangular matrices
with diagonal entries equal to 1. Now G admits the so called

Iwasawa decomposition
G = KAN.

Here the map KxAxN = G, (k,a,n) = kan is a real analytic
diffeomorphism. We let h denote the corresponding projection

G = A and put H = log h. Thus H is determined by

x € K exp H(x)N (x € G).
As has been proved by Harish-Chandra ([1]) we have
(ik—p)H(xk)dk- 6)

9, (x) = [ e
A K

Here dk is the Haar measure of K normalized by IK dk = 1.

0.2 Introduction to the thesis

The basic idea of our work is that solutions of the system
(3) of radial differential equations can be given by integrals
like (6) but then over compact cycles of dimension dim(X) in the
natural complexification K, of the group XK. The Haar measure

dk has to be replaced by an invariant holomorphic differential

form w of dimension dim(K), and one has to use a holomorphic




extension of the map

we should expect that H does not have a giobal holomorphic ex-
tension, but a multi-valued analytic extension with branching
locus. As a conseguence the integrals over cycles will only
locally define functions. In Chapter 1 we study the analytic
extensions we need in the remainder of the thesis. A main result
is that the map H: G = a has a multi-valued analytic extension
with branching locus & = GC\KCACNC {(here the subscript c denotes
the natural complexification of a group).

In Chapter 2 we discuss basic properties of integrals over
compact smooth cycles and of the radial differential equations.
Tn the last section we introduce the principle we already referr-
ed to above. If T is a compact smooth dim(K)-cycle in KC, if

a. € A" and if the map k H(aok) has a branch HF over I', then

0

(ik-p)Hr(ak)
¢F,A<a) = ? e wk)

defines a solution of (3) when a is sufficiently close to aj.
The next idea is to obtain the basis (4) of the solution
space of (3) as integrals over cycles. In Chapters 3 and 4
cycles T (w € W) are constructed so that the corresponding
functions ¢w,l are defined in a suitable 'neighbourhood of
infinity" in A+, and are equal to (4) up to certain non-zero

calars. This leads to the formula

4 (il—p)HG w(ak)
¢4 (2) = T odwA) T S e > w(k), (7)
wEW r
W
where H denotes a certain branch of H, and where d is the
0,w

simple holomorphic function a_ > € given by




_1}

adad = 1 lexp {270 ,a) (a,a) - 43

aeptt
(here oA"Y denoctes the set of indivisible positive roots).

The construction of the cycles Fw is carried ocut as follows.
First, in Chapter 3, they are constructed in the real rank 1
case {i.e. dim a = 1) by making use of explicit computations.

In this case the flag manifold K/M is a sphere. This geometric
simplicity allowed us to prove (7) directly, without making any
use of the radial differential equations. Here the cycles are
defined in a complexification of K/M. Originally we tried to
treat the general case in a similar way but we did not succeed
in understanding the geometric structure well encugh. We even
gave up our original plan to define all cycles in a complex-
ification of K/M since this caused difficulties in the construc-
tions of Chapter 5. The main problem in the general case is to
get control over the branching locus S of the map H. This is
solved by using a complex analytic extension of the procedure
Gindikin and Karpelevi¥ used to derive the product formula for
the c-function (ef. [1]). The cycles I, are obtained as products
of rank 1 cycles.

The construction of the cycles itself leads to a formula

. o (iwk-p)(log al),, ~a{log a)
¢w,k(a) = e @w(A,(e )
Here the function @& is also given as an integral over a
compact cycle. The integrand is holomorphic in the variable A

and holomorphic in a neighbourhood of 0 in the variables

e-a(log al

, and therefore the same holds for @%. Using the power




series i £ n the -ond variable we obtain a con-
verging is asymptotic
if a tends to infinity. Thus Harish-Chandra's expansion (4) is

obtained as a converging series.
In Chapter 5 we derive formulas similar to (7), but valid
for a varying in certain neighbourhoods of the boundary of

A, Again this leads to converging series for ¢y describing
the asymptotics along the walls of XI. For more information
about the contents of Chapters 4 and 5 we refer the reader to
the introductions of these chapters.

Observe that formula (7) breaks down at the zeros of the
functions A = d(wi) (w € W). Nevertheless for such X, ¢X can
be written as a sum of integrals too. This is the subject of
the last chapter. In particular, asymptotic expansions for
= ¢, are obtained in this way.

When we wrote this thesis we had generalizations to
Fisenstein integrals associated with a minimal parabolic subgroup
in mind. Therefore we have not used the symmetry @3 = & 5
(w € W) as long as we could. For instance in Chapter 4 it would
have sufficed to construct merely the cycle FI and to use the

A
now we prove that ¢I,wk

functions b1 instead of the functions ¢w 3 (w € W). In fact
3 3

¢w 3 Also it seemed more natural to
>

construct different cycles T . As the reader will see each cycle

., . — . *
Tw ig "based" at a representative w of w in M ; as a consequence

the factors exp [ (iwi-p)(log 2)] in front of the right hand side

of (8) appear in a natural way.
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Chapter 1

Analytic extensions

1.1 Preliminaries

In this thesis G is a connected real semisimple Lie group with
finite centre (actually from p. 3 on it will be assumed that the
centre is trivial) and K is a maximal compact subgroup of G. We
denote their Lie algebras by g and I respectively. The ortho-
complement of ¥ with respect to the Killing form < > of g is
dencted by s, and the Cartan involution corresponding to the Cartan
decomposition ¢ = ¥ + s is denoted by 8.

Let a be a maximal abelian subspace of s, A the set of rcots
of the pair (g,a), W the corresponding Weyl group. Fix a choice
A+ of positive roots, and let « be the corresponding positive Weyl
chamber in a.

Roots o € A with Za & A are called indivisible; let 2™ denote

* (a* denotes the

the set of indivisible positive roots. If u € a

dual of the real linear space a) we write 8, for the space

nHEa ker (ad H - p(H)I) (ad denotes the adjoint representation of ga).
++ . = =

If a0 € A we write n for 8, * 85, and . for 8ot 8.5y and

finally we write:

The sets A = exp a, N = exp n, N = exp n are closed subgroups
of G with Lie algebras a, n, n respectively. Let M,m be the

centralizers of a in K,¥ respectively; m is the Lie algebra of M.

G admits the Iwasawa decomposition G = KAN. Here the map
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The

H{x) = log h(x) (x &€ G).

Let E&G)K be the algebraof left ¢~ right x-invariant differantial
operators on G, A ¢” function $: G = € which is bi-K-invariant,
a simultaneous eigenfunction for IKG)K, and satisfies ¢(e) = 1,
is called an elementary spherical function of the pair (G,K).
As Harish-Chandra proved in his‘paper [ 1], the elementary spherical
functions of (G,K) are the functions qbK (A € az, the complexified

dual of a) defined by:

(i%-p)H(xk)dk

¢A(X) = [ e (x € G). (1)
K

Here p = 3 Ea m(a)o (summation over A+), m(a) = dim 845 and dk is
the Haar measure of K normalized by dek = 1.
One has ¢A = ¢U iff A,u are conjugate under W (cf. Harish-Chandra
[11 >.

We write Aut(I) for thegroup of automorphisms of a Lie algebra
. If L is a Lie group, its component of the identity is denoted
by LO. Let Ad be the adjoint representation of G in g . Since G is
a connected semisimple Lie group, Ad is a Lie group homomorphism
of G onto (Aut g)O; its kernel is Z(G8), the centre of G. Now
7(G) € K, so by the bi-K-invariance of the ¢,, we may pass to
Ad G = (Aut q)C and study the elementary spherical functions of

the pair (Ad G, Ad K). The Lie algebra adg of Ad G is isomerphic

to 8 under ad and so there is no loss of generality if we assume




Remark. In the vemainder of this thesis it will be assumed

that the centre of G is trivial.

This case has the advantage that G is isomorphic to {(Aut g)a under
Ad. Denote the complexification of the Lie algebra g by 8-

(Aut Q)S embeds in (Aut QC)G under the map L - LC, L{g,8) — L(Qc,@c
(If L € L(g,8), L, denotes its complexification 8. ~ 8. ). (Aut GC)O
is a connected complex semisimple Lie group with trivial centre and
with Lie algebra (ad G)C, and (Aut Q)O is the connected analytic
subgroup of (Aut gc)o with Lie algebra ad g. This shows that
without loss of generality we may assume that we work already in

a connected complex semisimple Lie group GC with trivial centre

and with Lie algebra 8., and that 6 is the analytic subgroup of GC

generated by exp(g).

1.2 Analytic extensions of G, K, A, M, N, N

If E is a real linear subspace of g, we denote its complexifi-

cation in 8, by EC. With this notation let KC, A _, Nc’ Nc be the

C

s> N, 1

connected subgroups of Gc with Lie algebras > @ o -

C
respectively. In this section we shall study the images of these
groups under the isomorphism Ad: GC - (Aut gC)O (the adjoint

representation of GC in gc).

We define the inner product ( , ) on g by
(4,Y) = - < X,0¢¥ > (X,Y € g¢). (2)

We denote its extension to a complex bilinear form 6, X 6, 7 C by

* . - = . -
( 5 ) as well. Provide « with a lexicographic ordering with respect

)




o

e
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to some choice of linear cocrdinates, and let Gysneenly be the
. . L . . _
induced ordering of A . Select a ( , J-orthonormal basis
(ey>k~4 . (n = dim g) for g, subordinate to the direct sum
S e
decomposition
= + oL F +om o+ o + oL F (3
8 Q&d %&1 L 9 g

S -
1 i

ordering of the spaces at the right hand side of (3). We identify

any map L € L(gc,gh} with its matrix with respect to the basis

(ek), and we write Li% for the entry of that matrix in the i-th
. - ; ~ 0 5 1 1 .
row and j-th column. Let G = (GL{(g)) , and let K be the subgroup

of ( , )Y-orthogonal maps in G. Denote the group of diagonal matrices
with positive diagonmal entries by A, and the group of upper (lower)
triangular matrices with diagonal entries equal to 1 by N ().

We write g, f, a, n, n for the Lie algebras of G, XK, A, N, N

respectively.

Proposition 1.1 If Q is any of thegvoups K, A, N, N and if q

denotes its Lie algebra then:
ad(q) = g N adla), Ad(Q) = Q N Ad(G).

For a proof and a more detailed discussion of the above con-
struction we refer the reader to Wallach fl, Ch. 7.
Observe that I consists of the real anti-symmetric matrices in

L(g,q), a consists of the real diagonal matrices, and (E) consists

of the real upper (lower) triangular matrices with diagonal entries
equal to 0.

We denote the complexificationsof f, a, n, n in L(gc,q ) by
ie’ 8.5 Mo EC respectively. Thus ic consists of all complex anti-

consists of the complex diagonal matrices and

symmetric matrices, “.




n, {ic) consists of the complex upper {(lower) triangular matrices

with zeros on the diagonal. Let Ec’ gc’ Ec’ ﬁc be the connected

subgroups of GL{QC} with Lie algebras i Gy B B respectively.

el
Thenﬁc consists of the complex matrices M with M'M = M M' = I and

det(M) = 1 (where M' denotes the matrix defined by (M')ij = Y,

M..
ji
A consists of the complex diagonal matrices with non-zero diagonal
entries, and Eciﬁc) consists of the complex upper {(lower) triangular
matrices with diagonal entries equal to 1.
Since K_ N Ad(G ) has ¥_ M ad(g ) = ad(f ) as its Lie algebra,
=c ¢ —c c c

it follows that Ad(K)) = (K N Ad 67,

Furthermore exp: L(gc,gc) *’GL(gc) maps a_ onto éc’ and it maps
n, and EC diffeomorphically onto N_ and EC respectively . Thus we

obtain the following proposition.

Proposition 1.2. We have

N 0
Ad(K ) = (K, N Ad(e, )7,
and if Q is any of the groups A, N, N we have:
= N
Ad(QC) QC Ad(@c).
Moreover the maps exp: n_ ~ N_ and exp: ;c - ﬁc are diffeomorphisms,

and exp maps . onto Ac.

1.3 Analytic extensions of «, h, v

The map KxAxN = G, (k,a,n) = kan is a real analytic diffeomorphism.

Let x: 6 > K, h: G ~ A, v: 6 > N be the maps defined by:

x = K O)h(xIV(x) (x € G).

Then k, h, v are real analytic maps and in view of Proposition 1.1
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the following diagrams comn

A A
c Ad 6 o Ad S G Ad G
Kl lg hl lﬁ vi lx (4
K Ad X A Ad A N Ad N

In this section we will study analytic extensions of kK, h, V.

Restriction of the obtained extensions to Ad(GC) will lead to ex~-
tensions of k, h, v.
If K € K, a € A, n € N, x = kan, we have that

'x = n'a'k'kan = nta’n € N A N. We shall first study the set

>

=

0 » L - T - -~
cécﬁc in L(g 8 ). A matrix y € (gc,gc) belongs to Ncécﬁc iff

c
there exists a matrix u € Ec such that yu is lower triangular with
non zero diagonal elements. Translating the latter statement into
equations for the matrix coefficients ujk and applying Cramer's

rule to the obtained equations we obtain that y belongs to Ecécgc

iff all minors

Dk(y) = det ( (y..)? ) (1 €k <n)

13714,k

are different from zero, and then there exists a unique

u = ul(y) € ﬁc such that yuly) € Ecéc‘ Its entries are given by
b (y) = ded (1 <35 <k <mn) (5)
ik D ’

where Dk j(y) is the minor of Dk(y) obtained by omitting the k-th
Ed

row and j-th column. Moreover, if 1 <k < n, then the minor con-

sisting of the first k rows and columns of yu(y) is equal to

Dk(y). Writing vi(y) for the i~-th diagonal entry of yul(y) we

thus have:




e

1 -

"

D, {y)
s
vy o= “ < b (7
VK{j, §ETET§§ (1 <k € n7J. 73

We have proved:

Lemma 1.3. Let D: u{gh,gcj = € be the polynomial function
T — £

given by:
D{y) = Dl(y} e e Dn(y).

Then the polynomial map ECX§hX§C = B> {(n,a,n) = nan is a
diffeomorphism onto L(gu,gC)\le(G), Its inverse is the rational

map

-1 -
y o= (yulylv(y) 7, v(y), uly) 1),

where v(y) denotes the diagonal matrix with entries v,(y)
(i = 1,...,n), and where u(y), vi(y) are given by the formulas

(5, (6) and (7).

Remark. The above computations can be found in more detail in

Gelfand-Neumark [1, Ch. I, §3]

Now consider the map g: L(ﬁc,ﬁc} - L(GC,GC), defined by

1

g(x) = x'x. Observe that g(x) is equal to the Gram matrix

gl(x) = ( (x(ei), x(ej)) )1 <i,; <n’

Obviously, g maps G onto the set of positive definite symmetric
matrices in L(g,g). Hence, if x € G, then all minors Dk(g(x))

(1 €k <n) are strictly positive, and by the above lemma there

exists a unique (n,b,n) € §X§X§ such that y = nbn. By symmetry of




gix) we must have n = n'. Let a be the unique elementof A such

) = 2 {:i 1 - —1 —1 1.2 ”1 -1 1
that b = a~, and write k = xn "a 7. Then k' = a “{n') "x' =

4 P

= aalin’)‘lg(x}x"l = anx © = kﬁi, and det k > 0, showing that

k € K. This proves that the map KxAxN = 8, (k,a,n) - kan is a
diffeomorphism (as was said before), and the corresponding maps

s h, v are determined by:

vi{x) = u(g(x))_ia
nGO? = vig(x)), (8)
k{x)h(x) = x ul(g(x)).

Let the polynomial function F on L(gc,gc) be defined by
F(x) = D(g(x)) (x € L(gc,gc),

then by the above discussion we have:

Theorem 1.4. The maps F.x.h, E.Qz and F.v are polynomials in

the entries (x(ei), x(ej)) of the Gram matrix g(x). Consequently,

2 1

K.h, 32, h” and v extend holomorphically to gC\E— (0). Moreover,

writing b, for the i-th diagonal entry of Qz, we have:

bl(X) = Dl(g(x)), ) (9)
Dk(g(x)) <
bk(X) = W (1 <k S€n). (10)

Remark. By the same type of computations, formulas similar
to (9), (10) are obtained in Gelfand-Neumark [1, Ch. II, §8,
(8.15)] . The above computation of h has also been used by

T.S.Bhanu Murti to determine the Harish-Chandra c~-function

explicitly for the groups SL(n,R) and Sp(n,R) (cf. Bhanu Murti

[11, L2,
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The following theorem is about multi-valued analytic extensions

of the maps «: G =+ X, h: 6 > A to G \?“1

GNE T(0). The discrete group

=~

defined by
M= X N exp ig

plays a main role in it. For the terminology of multi-valued

analytic maps we refer the reader to the appendix to this chapter.

Theorem 1.5. The maps k: G > K, h: 8 = A have extensions to
1

) ) ) -1
multi-valued analytic maps k_ : G\E 7(0) = K , h : G\E “(0) = Al

(with respect to the base point I). Moreover, if Kq and K, are two

branches of g at a point x; € QC\E-l(O), and if h,, h, are the

corresponding branches of hc at x then Kq = Ezd and h, = ﬁzd =

0’ 1

= dh, for some d € M,

2
Remark. In particular the monodromy groups associated with the
multi-valued maps Ec’ K, are isomorphic to subgroups of ﬂ. Observe
that the group M consists of the diagonal matrices with diagonal

entries equal to t 1, with an even number of - signs.

Proof of Theorem 1.5. Let v be the extension of the map

% .
x = x2,<R+ - RY to a multi-valued map €\{0} = ¢ with base point

1. Writing bk o for the holomorphic extensions of the functions
b4

b, (1 < k < n) given in Theorem 1.4 we define the multi-valued

k
: . -1 .
analytic map hc‘ QC\E (0) = éc by:

h (x) = . (11)




Obviously éc is the multi-valued analytic extension of h. Writing

S . . - , -1 g
Vo for the holomorphic extension of v to GNP "(0), we define the

- 5 - i -1 ;
multi~-valued analytic map .+ & \NE T(0) = u(gc>g ) by

<

o -1 -1 ,
ko (x) = x v (x) "h () 7. (125

-}
It is the multi-valued analytic extension of g to G AT “(0).

3
T —=c
4 ). Thevefore, 1f I is the

c
ideal of polynomial functions vanishing on K.» we have K = 1-1(0).

is a Zariski closed subset of L(gc

If £ € I, then (fog)(x) = 0 for all x € G. Now G_ is connected,
hence the complement 90\5'1(0) of the analytic null set 5—1(0)
is (this local property is an easy consequence of the Welerstrass
preparation thecrem, cf. Griffiths-Harris [1, p. 8]). By analytic
continuation it follows that foEC = 0 on gc\g'l(O). Consequently
K, maps gC\E_l(O) into Ec‘

Now let Xg € QC\Eﬁl(O), and let CqisCy be two continuous curves
(0,11 > G\E"1(0) with ¢ (0) = I, c;(1) = x, (i = 1,2). Write
& e for the multi-valued analytic function /E;j; (1 €k <n), and

let a, ., k., h. denote the branches of a
k,1’ =i’ =1

continuation of a

> Koo Ec obtained by

k4

k,c
Kk, h along = (1 <k <n, 1 = 1,2). We have

k)
that ak’1 = dkak,Z with dk

d for the diagonal matrix with k-th diagonal entry dk we obtain that

=t 1 (1 <k €n), hence, writing

h, =dh, = ﬁzd- Obviously d € exp (ig). On the other hand, since
. . -1 . .
Echc is single valued, we have Ky F Ezd = Ezd' In particular it

follows that det(d) = 1. Consequently 4 € M,

-1

We now turn our attention to the maps k, h, v. Let M = Ad “(M).

Then obviously

M= KNexp ia = KN AC.




The following properties of M will be of use later. Tirst we

A
M = MM (cf. Warner [ 1, pp. 28,291 ). HNext we have the following

i

characterization of the set {H € a ; exp H € M} (ef. for instance

++ .

Warner [ 1, p. 213}y, If o € &, let ﬁa 0 be the element of a,
3
<, >-orthogonal to ker a, with all O> = 1. Then:
ksl

the lattice {H & 4,3 exp H & M} is generated over %Z by the vectors

21iH (wenr ™.
o,0

Theorem 1.6. Let $ be the null set of F = FeAd in GC. Then:

(i) The maps k: G = X, h: G =~ A, v: G = N have extensions to

multi-valued analytic maps « GC\S - Kc’ h GC\S - AC and

c’ c’

v.: GC\S - NC regpectively (all with respect to the base point e).

(ii) The maps Kchc’ hg and v, are single valued. Moreover, if

Ky and K, are two branches of Ko at a point Xq € GC\S, and if n,,n,
are the corresponding branches of hc at Xg» then Ky = sz,

h1 = dh, = h2d for some d € M.

Proof. We may pass to Ad(Gc) = (Aut gc)o and it suffices to

h_, v, map AA(G\E1(0) into (Ad(G,) N k)% =

prove that Koo I

= Ad(KC), Ad(GC) N éc = Ad(AC) and Ad(Gc) N Ec respectively. Now
Ad(GC)\Efl(O) is connected, and k, h, v map Ad(G) into the
Zariski closed subset Aut{(g) of GL(g ). It follows that

Koo Dgs v, map Ad(GC)\E_l(O) into Aut(g J). In view of Theorem 1.5

and the connectedness of Ad(@c)\g-l(O) we obtain that Keo Ec’ Yo
0

-1 . ) . ) )
map Ad(GC)\E (0) into (Ad(GC) M gc), Ad(uc) n éc’ AQ(GC) N QC

respectively. We complete the proof by the observation that

AGH) = Ad(B) N M.




show in Chapter 4, the monodromy groups

b

Remark. As we wil

associated with x_ and h_ are isomorphic to the full group M.

The map exp: a_ ~ A is a covering. Therefore the inverse

log: A~ a of exp: o > A has a multi-valued analytic extension

AL a, (with respect to the base point I); we denote it by ;ggc.
Obvicusly expolog. = id(gc). It follows that the map

exp: ad(ac} ﬁ’Ad(AC) is a covering, and since ad and Ad are
diffeomorphisms such that expoad = Adoexp, it follows that

exp: a, = AC is a covering. The inverse log: A ™ a of exp: a > A
therefore has an extension to a multi-valued analytic map

Ac -> e, (with respect to the base point e); it is denoted by logc.
We obviously have expologc = id(AC) and adologc = ;ggcoAd. Writing
H, for the map ;ggcogc and Hc for the map lOgc°hc we obtain the

following theorem.

Theorem 1.,7. The map EC: gc\g'l(O) > oa. is a multi-valued

analytic extension of H: G - g (with respect to the base point I),
HC: GC\S - g is a multi-valued analytic extension of H: G - g

(with base point e).

1.4 Some properties of the set S

Lemma 1.8.

GLGg NE1(0) = K AN, (13)

GC\S = KA N . (1u)

Proof. If (k,a,n) € K xA xN_, then
S =g =c e

2 o 2
' = 1
Dk(n an) K1 (all"‘akk) #* 0.

n
F(kan) = kg

1




This shows that K A N
!

C(ngc)\g'iiﬁ)‘ On the other hand the

existence of the multi-valued analytic extenxions Ko Ec’ v
implies that GL(QC)\z'i{O) C gcécﬁck This proves (13). Formula
{(14) now follows from Proposition 1.2 and from Ad(S) =

1

= Ad(G) N ETT(0).

The following two lemmas will be useful in Chapter 3, where
we will have to determine the set S explicitly in the real rank 1
case, and in Chapter 4, where it will be necessary to compare S

with the analogous subsets of lower dimensional subgroups with

compatible Iwasawa decompositions.

Lemma 1.9. The map hé is a rational map G, = Ac' It is
regular on GC\S. If (xn) is any sequence in GC\S converging to
a point x € S then {hi(xn); n € N} is not relatively compact

in A .
ol

Proof. The first statements follow readily from Theorem 1.4.
As for the last statement we pass to QC by Ad. So let (Xn) be a
sequence in ga\g‘l(D) converging to x € 2—1(0). Let k be the
smallest element of {1,...,n} such that Dk(g(x)) = 0. By (9),
(10) it follows that (Qz(xn))k - 0, hence {gi(xn); ne W} is not

relatively compact in éc' It is now easy to complete the proof.

Lemma 1.10. Let L be a connected complex analytic submanifold
of GC, containing e. Then the set L\S is a connected dense open
subset of L. Moreover, it can be characterized as follows. Fix a

simply connected open neighbourhood 0 of e in Ge» disjoint from S,

and let ho denote the holomorphic extension of hl (9 NG) to ¢. Then




INS is the biggest open subset U of L such that:

(i) U is connected and contains ¢ N L.
(ii) The restriction hGI(O N L) of hy to 0N L has a multi-

valued analytiec extension to U (with respect to the base point e).

Proof. The holomorphic function [ = IoAd is not identically
zero on L. Therefore IAS = L\F ~(0) is a connected dense open
subset of L.

If U1 and U2

satisfied, then the same holds for U1 U U2. Therefore there

exists a biggest open subset U of L such that (i) and (ii). Since

are open subsets of L such that (i) and (ii) are

hC|(L\S) extends hO!(U N L), INS is contained in U. Assume that
INS # U. Then S NU #* ¢§. Now S N U is the null set of F in U,

and F is not identically 0 on U. So S N U is an analytic variety
of positive codimension in U. Let x be a smooth point of S N U
(for the existence of such a point cf. Griffiths-Harris [1, pp. 20,
211). From the local structure of S N U at x it follows that there
exists a point x' € WS and a continuous curve c': {0,1] = U

such that ¢'(0) = x',e'(1) = x and c¢'(t) ¢ 8 for 0 <t < 1.

Hence, since I\S is connected and open in L, there exists a
continuous curve c: [0,1] = L, such that c¢(0) = e, ¢(1) = x and
c(t) ¢ S for 0 <t < 1. Now ¢([0,1]) € U and by definition of U
hOl(O N L) has a continuation h; along c. It follows that

{hi (e(t)); t € {0,111} is a compact subset of A On the other
hand h2 must be the restriction of hi over cl{0,1), hence

1

hé(c[O,l)) is relatively compact, contradictory to the assertion

of Lemma 1.9. We conclude that L\S = U.




15

o
i

~

Corollary 1.11. G A8 is the biggest open subset U of G_

such that
(i) U is connected and contains G;

(ii) h: 6 = A has a multi-valued analytic extension to U.

1.5 The manifold GC/PC

Consider the subalgebra p = m + a + n of g; its normalizer

P in G is equal to MAN. The normalizer PC of v in GC is a

parabolic subgroup of Gc’ hence connected (cf. Humphreys [1,

p.1431).

Proposition 1.12. Let MC denote the centralizer of ¢ in Kc.

Then P. = M A N .
c cc e

. . . 5 .
Proof. Pc is the normalizer of pcln Gc’ hence Po McAch

PC has Lie algebra b= mg +oa, +ong and this is the Lie algebra

of the closed subgroup McAch as well; hence McAch is an open

subgroup of P_. Since P is connected this completes the proof.

By the Iwasawa decomposition we have K M P = M, and there-

~

fore the map K/M = G/P induced by the inclusion K = G is injective.

Again by the Iwasawa decomposition it follows that the map

M/K = G/P is a diffeomorphism.

Consider the inclusion KC > GC. If (m,a,n) € M %A XNC, man € K,

C C

. N -
then an € K_, showing that Ad(an) € (K, N AN_) C A, whence n
It follows that KC N PC = Mc and therefore the induced map

. R . . A .
KC/MC i GC/PC is injective. We have K N M, M and G Py P, so

C

we may identify K/M and G/P with submanifolds of KC/Mc and GC/P

€.




via the maps induced by the inclusions K — K and G = G

respectively.

commutes.,

|

.
e

G/
i (159
o/

From now on we shall identify via these maps.
Let 7w denote the canonical projection G, ™ Gc/Pc’ and let
P = 7(S). In view of the right Pc—invariance of S (ef. Lemma 1.8.)

it follows that S = n-l(P).

Proposition 1.13. (Gc/Pc)\P = Kc/Mc’ P is a closed left K -
invariant subset of Gc/Pc’ and Kc/Mc is a dense open subset of

G /P .
e e

Proof. Since S = W—l(P) the identity follows from the fact
that K A N is the complement of S in G_. Moreover, since K A N
cce o cee
15 a dense open subset of Gc’ Kc/Mc = W(KCACNC) is a dense open
subset of GC/PC. Hence P is closed; its left Kc-invariance follows

immediately from the left Kc—invariance of S.

The complex analytic manifold Gc/Pc is compact (it is even
projective, cf. Humphreys [1, p. 135]). We define the map

x: N, = GC/PC by
x{n) = nPb_ .

As is well known, ¥ i1s a complex analytic diffeomorphism onto a

dense open subset of G_/P .

C




If x € G, let ) denote the left multiplication by x in G /P and

define y_ = AXoX. Thus Xy is a complex analytic diffeomorphism of
Ee onto a dense open subset of G_/P_.

We write M* for the normalizer of e in K. The Weyl group
W = M%/M embeds naturally as a finite subset in X/M C GC/PC. Let
from now on for each w € W a representative w € M* be fixed. The
sets Xg(ﬁ> (w € W) are dense open subsets of G/P; they are inde-
pendent of the particular choice of representatives and by the
Bruhat decomposition of G/P they cover G/P. We call the maps

Xlli w N P = N_ Bruhat charts of G /P .
W e e c e’ e

Lemma 1.14. There exists a polynomial function p: Ré - C

such that for any k € KC we have;
-1 = -1
pod m =
Xy (P) S N, exp(p ~(0)).

Proof. In view of the left Kc—invariance of P we have

X1y =x 1Py =n7HPY N N = 50 W_. The function

it

P = EOAdo(exp1; ) Foexpo(ad|+ )
c c

is polynomial and we have S N ﬁc = exp(p_l(D)).
At this stage we shall rewrite the integral in formula (1)
as an oriented integral of a differential form over K/M. TFirst

we recall a lemma.

Lemma 1.15. Let G be a real (complex) analytic Lie group and
let H be a closed real (complex) analytic subgroup. Let m be the
dimension of the real (complex) analytic manifold G/H. Then the

following conditions are equivalent.

(i) G/H has a non-zero G-invariant real analytic (holomorphic)
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differential m-form w.

(ii) det(AdG(h))

If these conditiocons

real (complex) non-zerc

For a proof of the real analytic part of

the reader to Helgason [1,

proved analogously.

AdH(h) =

Lemma 1.16. The

differential m-form

Proof. To begin
This shows that for
det (AdM(m)) = 1. K
det(AdK(k)) = 1 for

Corollary 1.17.

From now on let

= det(Adq(h)) for any h € H.

satisfied, then w 1is unique up to a

[

are

factor.

thig lemma, we refer
p. 3861. The complex analytic part is

Recall that for h € H we have

AdG(h)lb, where 3 denotes the Lie algebra of H.

manifold K/M has a non-zero K-invariant

w (here m = dim n = dim (K/M)).

with, M = MMD (cf. Warner [1, pp. 28,291).
each m € M we have det (Ad(m)lm) = 1 and hence
is a connected compact group and therefore

k € K. By Lemma 1.15 this completes the proof.

K/M has a K-invariant orientation.

us fix an orientation of K/M, and an orientation

of N such that XIN is orientation preserving. Let w denote the

K-invariant differential m-form on K/M such that:

-,
o

(throughout this thesis we assume all integrals over forms to be

oriented).

Now consider the map GxK - a,
centralizes A and normalizes N this map is

its second variable.

(x,k) = H(xk). Since M

right M-invariant in

map GxK/M = a by

We denote the induced




H(.,.). It is given by H{x,kM) = H{xk). We may rewrite formula (1)

as:

(ir=p)H(x,v)

0, (x) = [ e wiy) (x € G).

Tn the remainder of this section we shall study complex

analytic extensions of w and H(.,.).

Lemma 1.18. The form ®» has a unique extension to a holomorphic

m-form w on K /M . w_ is left X -invariant.
c /et Ye c

Proof. PC = MCACNC = MCACXNC is connected, and therefore McAc
is a connected subgroup of G_.

If m € M, then det(Ad(m)lmC) = det(AdM(m)) = 1 (here the
fipst determinant is the (complex multilinear) determinant of the
complex linear map Ad(m)!mC whereas the second is the determinant
of the real linear map AdM(m): m = m; cf. also the proof of
Lemma 1.16). Hence 1if 1 € MA, then det(Ad(l)lmC) = 1. Since McAc
is connected it follows by analytic continuation that
det(Ad(l)!mb) =1 for 1 € MA_; in particular this holds for
1€ M-

If k € K, then det(Ad(k)‘fc) = det(AdK(k)) = 1. By analytic
continuation we have det(Ad(k)!fc) = 1 for k € K, so in particular
this holds for k € Mc.

By Lemma 1.15 there exists a non-zero left Kc-invariant
holomorphic m-form Eé on Kc/Mc' Tts pull back to K/M under the
natural embedding is a non-zero K-invariant complex valued m-form
on K/M hence equal to C.w for some C & €, C # 0. The form

=1 . . .
C wé satisfies all requirements.

it

Ww
C




.

y the same argument as in Harish-Chandra [ 2, p. 287] there

exists a unique invariant differential m-form I on N such that

* ~2pH{T) , — .
) @i = e p Q) (16)

{here {Xlﬁ)*<a) denotes the pull-back of w under y T
Since y(H) is a dense open subset in K/M, its complement is
of measure zero and hence
STHMg o p =,
N K/M
the integrals being absolutely convergent. Let QC denote the
extension of @ to a holomorphic differential m~-form on ﬁc. We

have the following holomorphic version of (16).

Lemma 1.19. The function n = exp(-2pH, (n)), N\S = € is single
valued. Moreover if k € Kc, then

x _ =2pH_ () )
(XK}NC\S) () = e 2, 173

Proof. In view of the left Kc~invapiance of W, it suffices to
prove (17) for k = e. But then (17) follows from (16) by analytic
continuation. By abuse of language we write (xk)*(ac) for the
left hand side of (17). Since x*(EC) and @, are nowhere vanishing
holomorphic m~forms on NC\S we obtain that the map

n - exp(-?QHC(H)) 1s single valued.

Remark 1. The first assertion of Lemma 1.19 can also be proved

by the following direct argument. If H € a. is such that exp H € K,

then¢=expad H normalizes ¢, ¥, a, n and we have 1 = det(¢lg) =
= det(¢l ) = det(¢lal). So, by the direct sum decompostion
g = 1t + a + n, we obtain that det(¢la) = 1. On the other hand

det((exp ad(H))In) = exp(2p(H)). It follows that




eZQ(H}

1 for H € “. with exp H € M.

in view of Theorem 1.6 this implies that n ﬁ'@X@{«EpHC(E)) is

single valued.

Remark 2. If ¢ is a real rank 1 algebra (i.e. dim a = 1) and
if we use the notations of Chapter 3, the function exp(-2pH) is

given by:

e—QQ(H)(E) (im(a)+m(2a))

{1+ e(X,%0)% + ue(Y, 1)}

(where m = exp(X + Y), X € ¢_ , ¥ € g_, ). Hence it follows
from Lemma 1.19 that we must have m(2a) = 0 or else m(a) even.

This is in agreement with Proposition 2.3 of Araki [1].

We now turn our attention to the map H(.,.): Gx(K/M) ™ «a.
In view of the identification of K/M with G/P we may consider it

as a map Gx(G/P) = a. As such it is given by

H{x,yP) = H(xx(y)) (x,y € G). (18)

Theorem 1.20. Let

P, = {(x,y) € GCX(GC/PC); y € P or Ax(y) € P},

then (GCX(GC/PC))\P2 is a connected dense open subset of GCX(GC/PC).
The map H(.,.): Gx(G/P) - a has an extension to a multi-valued
analytic map HC(.,.): (GCX(GC/PC))\P2 ~ a (with respect to the

base point (e,P )).

Proof. Starting point of our proof is formula (18). We first

consider the map GxC = a, (x,y) = H(xx(y)). Writing ¢ for the map

GxG = 6, (x,y) = xx(y), this map is equal to Hed. Let
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Then ¢ has the multi-valued extension ¢_: (G _x L G
c ¢ T 2 c
we have xy & 5,
and since xx _(y) = xy mod PC it follows that XKC{y> & S,
Therefore the image of ¢_ 1s contalned in G AS and H o4 _ is
. c [ <
it

a well defined multi-valued analytic map (GCXGC)\SZ 5

“e
is the extension of Hoeg. 82 is the null set of the analytic
function G”XGC - €, (x%,y) = F(y).F{xy), hence its complement
is a connected dense open subset of GCXGC' Let T, denote the
map G xG_ = ch(GC/PC), (x,y) ~ (x,yPc). The set S, is right
Pc—invariant in the second coordinate and hence the complement
of P2 = WZ(SZ) is a connected dense open subset of GCX(GC/PC).
The map HCQ¢C: (GCXGO)\S2 >oa, is right Pc—lnvaplant in

its second variable and therefore there exists a unique multi-

valued analytic map HC(.,.): (GCX(GC/PC))\P2 ~oa, such that:

HC(.,.)OWZ = HCD¢C'

In view of formula (18), Hc("') is the multi~valued analytic

extengion of H(.,.).

We write hc(.,.) for the multi-valued analytic map
expoHc(.,.): (GCX(GC/PC))\P2 - Ac' It is the multi-valued

analytic extension of h(.,.) = expoH(.,.).

Remark. In this chapter we have used the subscript ¢ to
distinguish between a real analytic functon (or differential
form) and its holomorphic or multi-valued analytic extension.

In order to keep our notations simple we shall omit the sub-

gcript ¢ in the remainder of this thesis.
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Appendix to Chapter 1

Multi-valued analytic maps

Let X be a connected complex analytic manifold. A covering
p: E = X together with points e € E, a € X such that ple) = a is
called a covering with base points of X. We write p: (E,e) = (X;a)
for such a covering. Let a point a € X be fixed from now on.

Fix a universal covering 7v: (X,2) = (¥,a) with base points
of X. An analytic map f of X into a complex analytic manifold 7
is called a multi-valued analytic map of ¥ into Z. Let us denote
the germ of an analytic map F at a point z by FZ. Then
£y = fa°(ﬂa)-1 is the germ of an analytic map at a, and the
multi-valued analytic map f 1is said to be the multi-valued
analytic extension of fO' If we work with multi-valued maps
defined on a complex analytic manifold this will always be
done with respect to a fixed point, called the base point of the
function. Thus we may speak of multi-valued analytic extensions.

We prefer to use the terminology of multi-valued analytic
maps rather than to introduce universal covering spaces with base
points. On the one hand the notations remain simple this way, on
the other hand it is not sufficient to work merely with universal
covering spaces if one wishes to integrate a -branch of a multi-
valued analytic function over a smooth cycle; for such purposes
the so called covering space associated with the multi-valued analytic
function (the analogon of the Riemann surface) must be introduced.

In the remainder of this appendix we fix some more terminology.

Branch at a point. If x € X, £ € n-l(x) then the germ

f1 = fg°(“g)~1 is called a branch of f at x. Let y € X and let

k: [0,1] - X be a continuous curve with k(0) = x, k(1) = y. Then




k has a unique 1lifting to a curve k: [0,1] = X wit

Q{a) = £, Let n = g(l), then fﬁo(ﬁp>-1 is called the branch of

f at y obtained by continuation of fl along k.

Composition. If Z,Z' are connected complex analytic manifolds,
g: 72 > 7' an analytic map and f: X 2> Z a multi-valued analytic
map, gof is a well defnied multi-valued analytic map X - Z'. If
g is also a multi-valued analytic map (with base point ¢ = f(ua))
we define gof as follows. f is actually an analytic map X - 7.
Let p: (E,Y) - (Z,c) be a universal covering with base points.
Since ; is simply connected, there exists a unique analytic map

~ e

£ X =7 such that f = po? and E(a) = Yy, called the lifting of f.
The map go?: % = 7' is a multi-valued analytic map on X, it is
called the composition of g and f and denoted by gef. In particular,
if F: X = Z is an analytic map, then we identify F with the multi-
valued analytic map Fem: X = Z on X. Thus if g: Z > Z' is a multi-
valued analytic map with base point ¢ = F(a), the composition goF

is defined in the above sense. It is a multi-valued analytic map

X = Z' with base point a.

Restriction. Let f: X ™ Z be a multi-valued analytic map with
base point a. If Y is a connected complex analytic submanifold
of X containing a, then the inclusion 4: Y = X is an analytic
map with {(a) = a., The multi-valued analytic map fod (with base

point a) is called the restriction of f to Y. Tt is denoted by flY,

Single valued maps. If F: X - Z is an analytic map, then the

analytic map G = Foy: X — Z satisfies Ggu('ﬁg)“1 =F = Gno(“ﬂn)”1
1

(x). Conversely if G: X - Z is an analytic
1

for all x € X, &, ne 7

for all &, n € X with

map such that Gpo(m )" s g e )T
I noton




w{£) = w{n), then There exists ananalyticmap F: X - Z such that

G = Fow. Such a map 6 will be called single valued on X.

o~

Definition of £ (analogon of the Riemann surface). Let

f: ¥ » Z be an analytic map. The relation ~ in X defined by:

“

£ o~ iff w(E) = m(n) and fgc(wgf“

-
= F of{mw ) =
n n

is an equivalence relation. Let ?} be the set of equivalence

~

classes, Pt X - Xf the canonical projection, and let Te be the

N
map Xf - X that makes the diagram

B
X Xf

commutative. Xf has a unique structure of complex analytic manifold

that makes Mgt Xf - X an analytic covering. With this structure

~ ~

Pg: X > X is an analytic covering as well. The covering

£

LFE (%}, pf(a)) - (X,a) with base points is called the covering

associated with the multi-valued analytic map f. The analytic

~

map X > Z, pe(E) =~ £(8) is denoted by £.

Branch over a continuous map. With the notations of the

preceding alinea let T be a topological space and let t: T = X

be a continuous map. The multi-valued analytic map f: X - 7 is said
to have a branch over 1 iff there exists a continuous map 1: T = X,
such that nfo? = 7. The germ fT of f at im(7) is called a branch

of f over t. Now let T' be a subspace of T and let fr' be a branch

of f over ' = TIT'. So fT, is the germ of T at T'(T') where

o~ 1 T
T': T' — Xf

is a continuous map with Wfo?’ = 1!, If T is a lifting
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Chapter 2

Integral representations of

solutions of the radial differential equations

2.1 Smooth Cycles

For our purposes it is convenient to work with the following
notion of smooth cycle. Let Xbe aC’ manifoldof dimensionn =0 and
let 0SS g<n.We denote the spaceof c” differential q-forms (with
values in €) on X by alxy. a c” map y of a connected com-
pact oriented manifold Y of dimension q into X will be called a smooth

q-cycle in X. vy determines the linear*fornlfycnlﬂq(X), defined by
*
J o= f vy () (e € 2%00).
Y Y

In fact fy is a current on X, and in the homological sense it
is a cycle (cf. de Rham [1]).

Two smooth g-cycles Yor Yq° Y = X are called (smoothly)
homotopic if there exists a C map y: [0,1]xY - X such that
Yi(y) = y(i,y) for 1=z0,1, y € Y. The map Yy is called a
homotopy, we write Yi (t € [0,1]) for the cycle Y - X,

y > y(t,y).

Lemma 2.1. Let X be a C manifold of dimension n > 0 and
let 0 € ¢ < n. Let Yoo Yq: Y 7 X be homotopic smooth g-cycles

in X. Then for any closed form a € 2%(xX) we have

For a proof of this lemma we refer the reader to Guillemin-

Pollack [1, p.186] (and for a more general lemma to de Rham

(1,5 v .




Lemma 7.1 will be one of the main tools in our study of

the spherical functions. We need it in the following setting.
Let X be a complex analytic manifold of complex dimension m 2 0
and let o be a holomorphic differential m~form on X. In local

coordinates ZyseeoZy the form o can be written as
i

a = a.dz, A..Adz
1 m’

where a is a holomorphic function. In view of the Cauchy=-Riemann

equations for a we have

T 3a -
dao = £ — dz.adz A..AdZn = 0,

. - 1
=1 .
3 823
hence ¢ is closed as an element of Q™). Conseguently, if
Ygr Yq°© Y - X are homotopic smooth m-cycles (so Y has real
dimension m) in X, we have

f a=/) a.

Yo Y1
We conclude this section with a discussion of integrals of
multi-valued analytic functions. Let f be a multi-valued
analytic function on X with respect to a fixed base peint Xg
and let y: Y = X be a smooth m-cycle in X such that f has a
branch fY over y (for this terminology see the appendix to
Chapter 1). Thus, if we write m.: (X.,¢ ) > (X,x,) for the

f f’=0,f 0

covering associated with f and T for the corresponding analytic
function gf - ¢, then y has a lifting Yi v - %f such that fY is
the germ of ¥ at ?(Y). Now Y is a smooth m-cycle in if and

~ % « ~
fnf(a) is a holomorphic m-form on X.. We define

~

v ¥
ﬂf(u). (1

J f.a =
Y

I
Ty




Observe that if p: (Z,7,) = (XesEy £) 1s a covering with base

[

points such that y has a lifting Y: Y = Z, then the diagram

commutes, and writing p = Teo Dy T = fop we have that:

ISy T (a).
Y Y

Lemma 2.2. Let X be a complex analytic manifold of complex
dimension m, let o be a holomorphic m-form and let f be a
multi-valued analytic function on X. Let y: [0,1]1xY = X be a

homotopy of smooth m-cycles such that f has a branch fO over

Yo+ Then fO extends to a branch fY over y and we have
£ = f o. 2
S “
0 1

Proof. Using the same notations as above, Yy has a lifting
to a cycle ;6: Y - gf such that fO is the germ of f at §O(Y)’
Now y has a lifting to a C map Y: [0,11xY *’%f such that
?(O,y) =?O(y) for v € Y. Hence fO extends to a branch fY of T
over Y. Moreover, by the preceding discussion it follows that

~ ¥ ~ %
J frela) = f frela).
Yo Y1

By definition (1) and the remark following that definition,

this implies (2).




m

The group 6 admits the decomposition

=
G = KA K
. ) . R o P S \ . S
{here A denotes the closureof A = exp{a ) in A). If x € G,
1 B id 3 1 '-+ 3 1 1
then there exist kl’ K2 € K, a € A’ such that x = kiaxz; here

a is uniquely determined by the property x € KaK. The set

katx is open and dense in G, we denote it by G'. Let the map
m: 6" > A% be defined by x € Kn(:)K (x € 6). Then 7y is a real
analytic fibration with fibre diffeomorphic to (K/M)xK.Writing

{ for the inclusion AT - G we have w04 = id(A+).

Now let D € Diff(G) (if X is a C” manifold, we write
Diff(X) for the algebra of linear differential operators with
o .. o + ,o0 +
C” coefficients on X). The operator A(D): C (A) = C (A)

defined by
* *
A(D) = £ oDom

is linear, continuous and support preserving, hence an element
of Diff(A*). It is called the radial part of D.

If 1 is any Lie algebra over C, we 'write U(l) for its
universal enveloping algebra. Now consider U(gc), and let
3 be the C-algebra homomorphism of U(g ) into D(G) , the
algebra of left invariant differential operators on G,

determined by

d
(3 (X)E£)(x) = 3T f(x exp tX)It:O

for X € g, £ € Cw(G), x € G. As is well known, 93 is an iso-




-
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morphism, and we shall identify U(gc) with D(G) wvia this

isomorphism. Thus, we shall also write u for 3(u) {(u € U(gc>),
X . B

Let U(g )" be the set of Ad(K)-invariant elements of U(g_).

s . P
Proposition 2.3. The map A: U(QC)K - Diff(A is a

homomorphism of algebras.

. * K, . .
Proof. This follows from the fact that n { is the identity
on bi~K-invariant functions, whereas the elements of U(QC>K

are bi-K-invariant as differential operators.

For a more detailed discussion of the radial part of a
differential operator, we refer the reader to Harish~Chandra
[2], or to Helgason [3].

Consider again the algebra U(gc). In view of the

Iwasawa decomposition 8, = f, *ta, * n, we have a direct sum
decomposition
U(gc) = (ECU(gC) + U(gc)nc) @ U(ac). (3)

Let y' be the corresponding projection U(gc) - U(ac). Since
ag is abelian, U(ac) is canonically isomorphic to the symmetric
algebra S(ac) of a,. On the other hand S(ac) is canonically

. * . .
isomorphic to the algebra P(ac) of polynomial functions

*

a, » €. Under this isomorphism X € a, corresponds to the

. . * .
linear function v = vw(X), a, > €. Let T_, be the automorphism

P
of P(a)) defined by (T_£)(v) = £(v-p). Writing

Yy = (Tupoy')lU(gc)K we have the following lemma, due to Harish-

Chandra.




>K

c

it

Lemma 2.4. The map v ig an algebra homomorphism of Ulg

Wi

onto I(a ), the algebra of

(Haprish-Chandra). The elementary spherical

Theorem 2.5.
; ( a )
& e
A c’?

functions of the pair (G,XK) are the functions ¢
. - N ~ P * N
given by formula (1), Ch. 1. Moreover, if i € 4. Then

D¢, = v(D,in) 9, (D & U(QC)K}.

For proofs of the lemmas 2.4% and 2.5 we referthe reader to

Harish-Chandra [ 1], or to Helgason [1, Ch. X].

I

Corollary 2.6. If ) € “Z’ then the restriction ¢k‘A+ o

¢X to AY satisfies the system of radial differential equations

MDY = y(D,in)e (D € U(g ). ()

We end this section with a result of Harish-Chandra (cf. [2])

concerning the system (4) of radial differential equations. The

following lemma (cf. Harish-Chandra [2, p. 251]) plays a

crucial role in it.

Lemma 2.7. There exist homogeneous elements Pw (w € W) in

1 and such that S(ac) is a free I(uc)~

S(ac) such that PI
module of rank #W, with free basis (PW)WEW'

Theorem 2.8. (Harish-Chandra). Let X € ags let U C At be a

connected open set, and let ag € U. Then the space EK(U) of ¥
funetions ¢: U — € satisfying (4) consists of real analytic

functions. Moreover the linear map

LW
Plag): L, () ~> ¢, v~ (P ) ag)) oy

(5)

is injective. consequently dim E, (U) < fW.




2.3 Integral representations of solutions

In this section we introduce the method to obtain local
solutions of the system (4) of radial differential equations.

Our principal result is the following theorem.

Theorem 2.9. Let T': ¥ = K_ be a smooth dim(K)-cycle and let
ineorem 4.2 o

a. € A" be such that im(%(aﬁ)of} N8 =z ¢, and such that the multi-

0
valued map H: GC\S e, has a branch HO over A(ao)of. Then there
exists an open neighbourhood A of a, in AY such that
im(x(aleT) NS = § for a € A, and such that HO extends to a branch
HF over the map (a,y) = al(y), AxY = GC\S. Moreover, the function
$: A - € defined by

(ix-p)HF(ak)
pla) = é e w(k)

satisfies the radial differential equations (4) on A.

We shall prove Theorem 2.9 by adapting Harish-Chandra's
method of proof for the cycle K = K_, k > k (cf. [2, Lemma 3])
to our situation. The key idea is that instead of the bi-K-
invariance of the Haar measure dk onK we may use the bi-K-invariance
of the form w together with the invariance of the homotopy class of a
smooth cycle underrightcu“lefttranslationbyl<.Thefbllowinglemma

is based on this idea.

Lemma 2.10. Let V be some connected open subset of Gc, and
let f: V = € be a multi-valued analytic function with base point
Xy € V. Suppose that %g €V, and let T': Y - KC be a smooth
dim(K)~-cycle such that im(p(xo)oF) C V, and such that f has a

branch fO over Q(XO>0F- Then there exists an open neighbourhood

U of Xq in V, such that im(p(x)eT) C V for all x € U, and such




that f. extends to a branch fF over the map UxY =+ V,

%) (T(y)). Moreover, the function ¢: U = € defined by

-~
®
M
4
St
4
©
e

1

&2

H(x) = [ £ 00w (63
T

is holomorphic and locally left K-invariant.

Remark 1. By saying that y: U = € is locally left K-invariant
we mean that for every x' € U there exists an open neighbourhood
U' of x' in U and an open neighbourhocod W of e in K, such that
WU' € U, and such that y(kx) = y(x) for all k € W, x € U'. The
qualifications locally left K-invariant or locally bi-K-invariant

are to be interpreted analogously.

Remark 2. If, in the above lemma, the symbol p for right
multiplication is replaced by A everywhere, then the function
Y': U= ¢ defined by

P = R Gde o
T

is holomorphic and locally right K-invariant.

Proof of Lemma 2.10. By compactness of im(TI') there exists a

simply connected open neighbourhood U of Xg>s such that
im(p(x)eT) C V for x € U. Now, since U is simply connected, £,
extends to a branch fF over the map UxY = V, (x,y) = T'(y)x.
Consequently ¢ is a well defined holomorphic function U - €. To
establish its local left K-invariance, fix x' € U. There exist
connected open neighbourhoods U' and W of x' and e in V and K

-1k
respectively, such that WU' C U. Now if k € K, then p(k ") w = w,

and therefore if x € U', k € W, we have




-

s e
W(@W @%&;‘%@@é

2 - 8
plkx) = f fF(k‘kx}w(k’}
T
= I fokTx)elk). (75
p(k}o?

Select a{fbcurve c: [0,1] = W such that ¢(0) = e, (1) = k. The
map [0,11%Y *’Kc, (t,y) = I'{ylc(t) is a smooth homotopy of
dim(¥X)=~cycles in K- The branch fp is defined over this homotopy,
and therefore by Lemma 2.2, the last integral in {(7) equals the
integral in (6). This shows that $(kx) = Y(x) for x € U', kK € W,

hence completes the proof.

If u € U(ac), then the left invariant differential operator
3{u) naturally induces a left Gc—invariant holomorphic differential
operator on Gc' Let us describe how a holomorphic linear
differential operator D acts on a multi-valued analytic function
f defined on a complex analytic manifold X. Let a be the base
point of f, and let m: (¥,a) = (X,a) be the universal covering with
base points. There exists a unique holomorphic differential

operator D on ¥ such that
~ ¥ *
Dom = T oD

o«
on C functions X = €. Considering f as a holomorphic function
on %, we write Df for the holomorphic function Tf on %, viewed
as a multi-valued analytic function on X. We now come to a lemma

that has Theorem 2.9 as an easy corollary.

Lemma 2.11. Let T: Y = KC be a smooth dim(K)-cycle and let
xy € G, such that im(A(xO)oF) NS = ¢, and such that H: GC\S > ag

has a branch H. over A(xo)oT. Then there exists an open neighbour-

8]
hood U of Xg in GC such that im(A(x)eT) N S = ¢ for x € U, and




such that HG extends to a branch H? ovey the map

(x,y) = xI'(y), UxY — GC\S. Moreover, the function y: U = €
defined by
(ik-p)ﬁr(xk)
Y(x) = [ e w (k) (8)
T
is holomorphic, locally bi-K-invariant, and it satisfies the

system of differential equations
. . K
Dy = y(D,iA)¥ (D € U(gc) ) (9)

on U.

Proof. By Remark 2 following Lemma 2.10 the function y is
holomorphic and locally right K-invariant. On the other hand, by
analytic continuation we see that each branch of the multi-valued
analytic map H: GC\S - ag is locally left K-invariant. Consequently
y is locally left K-invariant.

To prove the last statement, fix D € U(gC)K, Writing fF for
the branch exp( (iA-p)HF(.)) over the map (x,y) = xI'(y),

UxY = GC\S, we have:

1

Dy (x) = f D(p;erx).w(k)
T

i

f (Dfr)(xk).w(k).
T

By (3) we may write D = u + v + Dy with u € f U(g ), v € U(gc)nc,

DO & U(ac). We claim that

i) (ufr)(xk).m(k) = 0. (10)
T

To see this, let X € I, w € U(gc). Then




4
dat

(wap)(xk) = (wff}{xk exp tX} t=

q°

By Lemma 2.10 the function t — jF {wfr)(xk exp tX).wlk) is
defined for t in some interval containing 0, and there it is
constant. Consequently

! (waf}(xk).w(k) = 0
r

and this proves (10). On the other hand, the multi-valued
analytic map H: Gc\S = oa, is right N-invariant, whence

VfF = (. Therefore
DY{x) = f (Dofr)(xk).m(k),
T

Finally, applying the proposition below, by analytic continuation

we obtain that DOfF = Y(D,ik)fr, and so, (9) follows.

Proposition 2.12.Let f, be the function x = exp((iix-p)H(x)),

*
G~ ¢. If p € P(ac) = S(ac) E U(ac), then
8(p)fx = p(ix-p).f, (11

Proof. It suffices to prove (11) for p = X € a, but then

the assertion follows straightforwardly from H(x exp tX) =

= H(x) + tX (x € G, t € R).
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Chapter 3

The rank 1 case

3.1 Preliminaries

In this chapter we assume that dime = 1; we then have
#A++ = 1. We denote the element of A++ by a. The Weyl group
W consists of two elements, I and w. The action of the latter
on g is given by w(H) = -H (H € «).

G/P is a compact manifold of dimension m = m(a) + m(2a).
It has a Bruhat decomposition: G/P is the disjoint union of
the two Bruhat cells NP = y(N) and wP (recall that w is a fixed
representative of w in M*, the normalizer of a in K). Moreover,
NP U wP = G/P implies w NP U P = G/P, and so, xg (for
simplicity we shall write Xog from now on) maps N diffeo-
morpically onto the complement of eP in G/P. From these facts
it follows that G/P is an m-sphere.

Let R be a positive real number (in the next section we

shall impose a condition on its magnitude). Define the compact

ball BI in g_ X8_5q by

By = {(X,Y) € g_ xg_,,5 (X)) + (YY) <R}

(here ( , ) denotes the inner product defined in section 1.2).
The map E: 8., %804 ~ N, (X,Y) = exp(X+Y) is a diffeomorphism,
hence XE(BI) is a compact m-dimensional submanifold of G/P
with boundary XE(BBI). Its complement CXE(BI) is an open sub-
set of G/P that does not contain eP hence is contained in

% (N . Similarly CXE(B§nt) is a compact subset of Xw(ﬁ). We

obviously have




e
=
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int

T

CXE(BI> = CyE(B

and therefore fo(Bint} is a compact m-dimensional submanifold
of Xw(ﬁd with boundary XE(SBI). Let Bw be the unique compact

submanifold with boundary of g_ *8_ oy such that XwE(Bw> =

¢

= CxE(BT"). The disjoint union xE(B}"T int

T PR XwE{Bw } has the
set xE{BBI) of measure zero as its complement in G/P. Providing
xE(BI) and XWE(BW) with the orientations induced by the

orientation of G/P we thus have:

QA(X) - s e(ik~p)H(x,y)G(y) + I e(ix—p)H(x,y)a(y>.
XE(BI) XwE(Bw)

(1)

In the next section we shall extend the manifolds XE(BI)
and XWE(BW) to cycles Iy and T, in the complex flag manifold

GC/PC. Writing HO for the element of ¢ with a(HO) = 1, and

writing a(t) (r € €) for exp(tH,), the cycles T 5([O,ﬂ}xBI) -

1
%~GC/PC and L a([O,w}wa) -> GC/Pc will be defined by the

following formulas:

Pt (YD) = ate T YE(X, V),

a(e"lt).wa(X,Y)

T (t,(X,Y))
W

(we use both notations Ay and x. for the left multiplication by

an element x € G in GC/PC). Observe that the cycles T';,T  are

I)
not smooth. We will show that the real branches of H(a,.) over

xE(BI) and wa(Bw) extend to branches HI(a,.) and Hw(a,.) over

the continuous maps Ty and Ty respectively. Consider the integrals

of exp[(ik~p)HS(a,.)} over T (s = I,w). The contributions of

these integrals over T I([O,ﬂ]xBBI) and Twl([O,w]xan) cancel

I

each other. On the other hand the contributions of the integrals

over Tsl({n}XBS} (s = I,w) are equal to a factor exp{QﬂA(HO)]




timeg the integrals over xE(BI) and KWE(BW) in (1) respectively.

This finally leads to the formula:

( “Dg,a) = T e (IA-eIHg a5 oy (2)
I

3.2 Construction of the cycles PI,TW
Let HD be the element of a such that @(HO) = 1. The
following formula for the map H: N = a has been found in-

dependently by Helgason [ 2, p. 59] and Schiffmann [ 1, p. 24].

Lemma 3.1. Let 1 = exp(X+Y), X € a_,o ¥ € 8_,,- Then:
HGD = 3 Logl (1+e(X,X0)% + uo(Y,¥)1H, (3)

where c—1 = 4(m(a) + m(20)).

. . . -
We denote the holomorphic diffeomorphism g—a,ch—Za,c o
(X,¥Y) = exp(X+Y) by E too. Let q be the polynomial function

g - ¢ defined by:

X
-0, C g~—2a,c

Q(X,¥) = (1 + c(X,X))% + be(Y,¥) ()

From (3) it follows that KC\E(q-l(O)) is the biggest open sub-
set of Nc with the property that H: N = a« has a multi-valued
analytic extension to it. Hence by Lemma 1.8 we see that

N, ns = E@ ).

Example. Let 6 = SL(2,R) , K = S0(2,R) . Define




and let a = }RHD. Let o be the root of the pair (g,a) with
a(HO} = 1. Writing
.0 1 . ., 0 0
X o= 0 0 Yo, vo= 0y 0 3,

we have n = RX, n = RY. We identify ﬁc with € (with the

addition) via the group isomorphism

- .10
c - NC, z > expl(zY) = ( 2 1 ).

The manifold GC/PC is diffeomorphic to the Riemann sphere, the
charts x_l and x;l formfulatlasfoch/Pc,andthe transition map

X;loxl eA\N{0} = &\ {0} is given by

X;loX(Z) = - % (z € O\N{O]).
Moreover, H: N = a is given by
H(x) = log(1l + x2).HO (x € R),
and so § N NC = {-i,+i}. Finally, we have
* - 1 dz
X(.w):'ﬁ'"‘*#—'?o
1 + z

In the picture on p. 3-5 we have indicated some concepts that
will be introduced in the remainder of this chapter, specialized
to the case of SL(2,IR). We hope it will help the reader to

find his (her) way through this chapter.

Let us return to the general case. Fix (X,Y) € g_ Xa_, >
(X,Y) # (0,0), and consider the polynomial function r: € = C

defined by:

r(z) = q(zX,ZzY). (5
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Writing a = c{¥X,X) and b = Lc(¥Y,Y) we have a =2 0, b > 0 and

r{z) = (1 + a22)2 + bzq.

Let v/ a + i/B denote the square root of a + iyb that has its

avgument in the interval [D,g], and let
C=i/va+iy"53

then we obtain

1

r(z) = (14z Y2y (1i-c ty (et o (-t (6)

(here T denotes the complex conjugate of z). It follows that r

has roots g, -z, ¢ and -f. Set Ry = (X,X) + (Y,Y). Observe that:

Pt = G2 = P 0? + ney,yn Tt

Since (X,X) > iR. or (Y,Y) > iR, we obtain that:

0 0

)
ICIL‘ < max (—7‘“’7,—‘—%"). (7)
RO C HRUC

Furthermore arg(g) = - arg(a + 1vD), showing that:

N

o=

< arg(g)

AN
B

r
L

Moreover, arg(g) = g iff (X,X) = 0 and arg(r) g iff (Y,Y) = 0.
Now fix R (ef. Section 3.1) such that |¢l < 1 for all

(X,Y) € g_GXQ_Qa with (X,X) + (Y,Y) = R. This is possible in

view of (7). Recall that BI denotes the compact ball

(X,X) + (Y,¥Y) <R in 8 X8 5, (cf. Section 3.1), and that N

and G/P are oriented such that y: N = G/P is orientation

preserving (cf. Section 1.5). Give 8_,%8_ 7, the orientation that

turns F into an orientation preserving map and provide B with

the induced orientation. Give [0,7]xB, the product orientation

I

and orient 8([O,W}XBI) according to the outward normal. We




define the map Y. : 8({@,HJXBI> ﬁ'ﬁc by:

-1

-it

Yo, LY = ale ™ MyE(x,vraa™th

(here al(T1) = exp(tHO) for 1 € €). It easily follows that:

Y, (X,¥)) = E(ettx, e tyy, (8)

If (X,Y) € 3B, is fixed we have q(eltx,egltY) = vty %0
whence yI(t,(X,Y)) ¢ s for (X,Y) € BBI, t € | 0,n]. Since Yq

maps {0}xB; and {w}xB into N it follows that im(y) € ﬁC\S.

Lemma 3.2. The multi-valued analytic map H: ﬁC\S - ey has a
branch HI over YI that equals the real branch Hr over YI%({G}XBI).

Moreover

H . (.) = HP(.) + 2miH

1 over YI’({H}XBI).

0
Proof. As we observed above, im(YI) C Nc\s. Fix (X,Y) € BBI
and consider the curve c: [0,7m] - ﬁc’ t - YI(t,(X,Y)). From

(8), (5), (4) and (3) it follows that:

s

H(e(t)) = 3 log(r(e™™)H,.

From (6) it follows that the argument of r(eit) increases
with 47 if t increases from 0 to w. This shows that the branch
of H at (-X,Y) = YI(ﬂ,(X,Y)) obtained by continuation of the
real branch H along c is equal to H, o+ 2niH0. From this it

follows that H has a branch H. ocver Y1 that restricts to the

I
branch Hr over YII({O}XBI). Over YI({W}XBI) this branch is
equal to Hr + QWiHO, and at a point YI(tG,(X,Y)) (tO € lo,n],

(X,Y) € SBI) it is equal to the branch of H obtained by con-

tinuation of H along the curve t = Yo (5 (Y00, [o,ty] ~ ﬁC\S.




Define the map I',: S{IB,ﬂ}XBI) - an?h by T

-
o e 4 ES

= XQN{T. if

. . » . . -1 4

x € 6, we write Ad(x) for the conjugation g = xgx =, 6, 7 Gc;
-

xgx ©. With this notation we

i

we write Ad(x,g) for Ad(x){(g)
have Aaox = yoAd(a) for a € &C, and hence indeed we have:
B

T, (OGY)) = ale” ) xECLY).

*
If a € A, u € a let us write a" for exp{u{log aj).

Lemma 3.3. There exists a constant CI > 0 sguch that for
all a € A with a* > CI we have:

(1) im(rp N (Pua”toP) = By

(ii) the multi-valued analytic map y — H(a,y) (cf. Theorem
1.20) has a branch HI(a,-) over FI that restricts to the real
branch H_(a,-) over FI[({O}XBI) and to the branch H_(a,-) - 2miH,

over FII({H}XBI).

Proof. If a € A, n € N we have H(ak(n)) = H(an) - H(M),

hence:

1

H(a,x(n)) = H(ana ~) - H(W) + log a.

Select an open neighbourhood V of e in NC such that the real
branch Hr of H: NC\S - oa, extends holomorphically to V. In view
of the compactness of im(yI) there exists a constant CI > 0
such that aﬁan1 €V for all a € A with a® > CI and for all

ne im(yI). This shows that for a € A with a% > C; we have
im(y ) N a"lsa = @. By Lemma 3.2 we have im(YI) N S = ¢ Hence
(i). Moreover if a € A, a% > Cr then the multi-valued analytic

map H{a,+) has a branch HI(a,-) over Ty, defined by:

Ho(a,T (y) = Hr<ay1<y>a'1> - H Gy (y) + loga  (9)




(*) denotes the branch given by Lemma 3.2). Conseguently

{here HI

i) follows straightforwardly from the assertions of Lemma 3.2.

(

[N

We end this section with a proof of (2). First we have to
discuss briefly integrals of the type occcurring in (2). So

—~

let B be an oriented m-dimensional €° manifold with boundary,
- . ) . o T .
diffeomorphic to a compact ball in R™. Let a,b € B, a < b,
and set I = [a,b]l. Give C = IxB the product orientation and

orient

3C = ({alxB) U ({b}xB) U (Ix3B)

o0

according to the outward normal vector. How let X be a C
manifold. A ¢~ map y: 9C = X will be called a cylinder cycle
of dimension m in X. As in Chapter 2 we define the linear

form fy: QM) - ¢ by

*
fY o = gc vy (a)

S A I Y AN TS NS A D
{a}xB {b}xB Ix3B
We define integrals of type (2.1) in a similar way.
Recall the definition of the compact submanifold Bw of
8_,%9_ 2, with boundary (cf. Section 3.1), and provide Bw with
the orientation of the ambient space. Give [O,ﬂ}wa the product
orientation and orient 3([O,H]XBW) according to the outward

normal. Let T Dbe the cylinder cycle 3([O,W]XBW) > G /P,

defined by
-1t
I, (X)) = ale )X ECKLYD (10)

Lemma 3.4. Let CI be as in Lemma 3.3. Then for all a € A with

a®* > CI we have:




1

( 1) im(T. ) n (P U a ~.P) = g
W
(ii) the multi-valued analytic map H(a,.) has a branch Hp(a,,)

(a,.) over

-
i

over Fw that restricts to the real branch "

FWI({D}XBV) and to the branch Hr(a,.) - 2miH, over Twl({ﬂ}XBw).

Proof. Let B = yE(B,). B is a compact m-dimensional submanifold

of G/P with boundary 3B = yxE{(3B,) = XWE(BBW} {cf. Section 3.1).
Fix a point y € 3B and write y = XE(XI,YI) = XWE(XW,YW) with

(XI,YI) = BBI, (XW,YW) e an. Then we have:
-it
FI(t,(XI,YI)) = a(e ).y = Fw(t,(Xw,Yw)). (113

This shows that Fw([O,ﬂ]xan) = FI(IO,H]XBBI) C 1m(FI). Since
both Fw({O}wa) and Fw({n}wa) are contained in G/P whereas }\(a)~1
leaves G/P invariant, (i) follows.

Consider the curve c: [0,n] = Gc/Pc’ t = Fw(t,(Xw,Yw)). By

(11) we have
c(t) = FI(t,(XI,YI)),

hence, by Lemma 3.3, the branch of H(a,.) obtained by continuation
of the real branch H (a,.) along c is equal to Hr(a,.) - 2miHg.
This proves (ii). Observe that at a point Fw(t,(Xw,Yw)) (t €l0,7},
(XW,YW) € an) the branch Hw(a,.) equals the branch HI(a,.) given

by Lemma 3.3.

Theorem 3.5. Let CI’HI("’) and Hw(.,.) be as in the Lemmas 3.3

*
and 3.4. If XA € a. and 1f a € A is such that a® > CI’ then:

@I 1y (@) = 3 e (FA-0dHg(asyIT oy - (12)
=T

=

i)
2 W FS




Procf. We prove formula (12) by decomposing the integrals at

its right hand side in integrals over ?Si({S}XBS}, Tsi{ﬂ}xﬁﬁ)
=l
and fsiiiﬁ,ﬁEXSBS} (s = T,w).
First observe that the integrals over rsi<10,n]xassi (s = I,w)

cancel each other. This is seen as follows. As is easily verified,
the maps TSi({U,w}XEBS) are embeddings into G_/P_. Their images
are the same m-dimensional C  submanifold I of GC/?C. Ag we saw

in the proof of Lemma 3.4 the branches HI(a,.) and Hw(ag.)
coincide over L. However, the orientation of I induced by FI is
the opposite of the one induced by Fw’ and so indeed the integrals

cancel.

Next consider 3({D,W}XBI} = ({O}XBI} U ({ﬂ}xBI) U ([U;W]XBBI>

with the orientation corresponding to the outward normal. Since

{0}xB,. - B (0,y) =y is orientation reversing whereas Yok
I X

I)
is orientation preserving, it follows that FII({O}XBI) is an

orientation reversing diffeomorphism of {O}XBI onto B = XE(BI)-

Consequently:

(ix-p)H,(a,y)_ (iA—p)Hr(agy)_
i) e - w(y) = - f e w(y). (13)
FII({O}XBI) XE(BI)

On the other hand if (X,Y) € BI then FI(H,(X,Y)) = XE(-X,Y). The

map {ﬂ}XBI - B (r,y) >y is orientation preserving whereas

I)
m(a)

B, = B (X,Y) = (-X,Y) changes the orientation by (-1) .

I I
Hence TI!({N}XBI) is a diffeomorphism onto XE(BI)’ changing the

m(a)

orientation by (-1) . Since HI(a,.) equals Hr(a,.) - 2WiH0

over FI!({W}XBI) whereas (iA—p)(-ZﬁiHO) = ZnX(HO) +
+ mi(m(a) + 2m(2a)) we obtain:
(ik—p)HI(a,y)“ ZﬂA(HD) (ik—p)Hr(a,y)“

e wl(y) = e J e wly).

I
rol (Um3xB ) XE(B)

(18)




o

Similar

v {13) and (1%) hold with I replaced by w. Combining

these results with (1) we obtain (12).

Al
!,AJ
}...J

3.3 Asymptotic behaviour of the integrals over

In this section we shall study the asymptotic behaviour of
the integrals in (11) when a% - +x. We will obtain two theorems
(3.6 and 3.140) that will enable us to compare formula (11) with
Harish-Chandra's asymptotic expansion for ¢X(a).

Let us first consider the integral

(ix—p)HI(a,y)“
e wly) (15)

(we assume that a € A, a% > CI’ CI as in Lemma 3.3). Consider
formula (9) for HI(a,.). Since
. ~2pH(.)

x (w) = e Q
(cf. (21), Section 1.5), it follows that the integral (15) is
equal to

TSI (ix-p)H_(afia ") =(ix+p)H (A)

e e a(n). (186>
Y1

If z€ €, n = exp(X + Y), X € 8.y, c0 Y € 8_04,c° we write

z.n = exp(zX + ZQY). With this notation we have

ana ~ = a *.n (a €A, ne€ ﬁc).

Recall that the real branch Hr(‘) of H extends holomorphically
to the neighbourhood V of e in ﬁo (cf. the proof of Lemma 3.3).

Select an open neighbourhood UI of 9 in € such that z.n € V for

n € im(yl), and such that a% > CI for a € A with a

o

z € U [= UI'

I’




oo w%@&%%@%%%%w

Then:

(ix-p)H, (z.7) ~(iA+Q}HI{5} B
¥.(h,z) = [ e e ain? 177
T

. * .
7> and the map yl: “CXUI - € is

holomorphic in both variables. We have proved the following

is well defined for z € U
theorem.

Theorem 3.6. There exists an open neighbourhood UI of 0 in €

such that the map V¥ “ZXUI - € defined by (17) is holomorphic,

i
and if a € A is such that a * € UI’ then a® > CI and:
(iA—p)HI(a,y)_ (ix=p) _
[ e wly) = a ?I(A,a &y, (18)
I

Next we turn our attention to the integral

(ix-p)H (a,y)_
[ e wly). (19)
Ty

If a € A, 1 € N then H(awc(n)) = H(a Ye (@) = H(aniﬁ) - H(m),
whence

H(a,x, (M) = H(a Ha) - H() - log a. (20)
Define the cylinder cycle vy : 8([0,m]xB_) ~ NC by
-2it
e

Ky (T2 (K5¥)) = exple X 4 V). (21)

We obviously have Fw = Ko Veg It follows that the multi-valued

analytic map ¢(a): ﬁé\(S U aSa_l) > ag defined by
— . _
pla,n) = H(a "na) - H(n)

has a branch ¢w(a) over y. such that the integral (19) is equal

to:




If a ¢ A then the map Ad(a): N - N _, 0 - Ad(a,n) = ana =~ is a
p c c

holomorphic diffeomorphism, and we have

* 0
Ad(a) g = a zp .

85 ad

Taking formula (21), Section 1.5 into account it follows that the
*
the multi-valued analytic map y(a) = Ad(a) (¢(a)) has a branch
ww(a) over Ad(a—i)uyw such that the integral (22) is equal to
: = — -1
~ix-p s (1A—p)¢w(a,n)e—2pH(ana )

Q(m)  (23)
Ad(a“l)o Yw

a e
Since y(a,n) = H(n) - H(ana ') we can treat the integral (23)

as in the proof of Theorem 3.6, if we manage to replace the cycle
Ad(a~1)uyw by a fixed cycle without changing the value of the
integral. We will do this by means of a homotopy Ad(a(t)_l)oyw-
The singular set of the integrand of (23) is equal to

(s U Ad(a sy n NC, so the image of our homotopy has to be

disjoint from this set.

Proposition 3.7. If b € A then the following statements are

equivalent.

(1) im(y, ) N Ad(b)sS
1

¢

)S é.

(ii) im(yp) N Ad (b~

Proof. Since A(b_l)ox = y oAd(b) it follows that (i) is
e W W

equivalent to im(r ) n A(bvl)P = ¢. Now A(bcl) leaves G/P

i1

invariant, and since (G/P) N P = 4§ whereas im(rw)\(G/P) =
= im(TI)\(G/P) it follows that (i) is equivalent to

. -1 .
lm(TI) N 2(b )P = 4. The assertion now follows from the fact

that A(b ey = xpAd ™.




e P
S = 10

Proposition 3.8. If b € A is such that b™ < 1 or b* > o

é.

#

then im(y ) N Ad(D)S

Proof. By the preceding proposition it suffices to show that

1

in both cases im(y;) N Ad(b™")s = 4.

First let b € A, b* < 1, Fix (X,Y) € 381 and let t € {0,7].

Then

- 2it, ~2a
e

Ad(b)y (t,(X,¥)) = exp (e Tb7% 4 b~ 2%)

20

and since (b~ %%,b7%) + (b7 2% ,b72%) > (X,X) + (Y,¥) = R it

follows that Ad(b)yI(t,(X,Y)) € S (cf. Section 3.2). We now

1

easily obtain that im(y ) n Ad(b ")s = 4.

Next let b € A, p* > C;. By Lemma 3.2 we have that

1

im(y;) N Ad(p"*)s = 4.

Corollary 3.9. Let a,b € A be such that C. <p* < a%. 1f

o4

x € A is such that b* < x% < 2%, then:

im(Ad(x" Moy ) N (S U Ad(a™D)s) = 4.

Proof. Observe that x > C;» that (xa™H® < 1 and apply

Proposition 3.8.

Let us return to the integral (23). Select a b € A such that
b > CI. From now on we assume that a € A, a” > b%. Consider the

homotopy Ad(a(t)™!

oY (a(log b) St < aflog a)). In view of
Corollary 3.9 its image is disjoint from S V Ad(aﬁl)S and so the

branch ww(a) extends to a branch over this homotopy; we denote

it by ww(a) too. The integral




(ik~g>$w{a,5} -2;H{a§a_1> B
I, e e qin)

does not depend on t (this might be proved by approximating

Vi by a sequence of homotopic smooth cycles; ¢f. also de Rham
[1, siul). It follows that the integral (19) is equal to (233
. ! -4
with Ad(a "oy, replaced by Ad(b “Jey, .
Now select a constant C_ > b% guch that ana ~ € V if a € A,
o - . -1 o
a> > €, and n € im(Ad(b )oyw). If a € A, a% > Cw then y(a) has

1

the branch (a) over Ad(b ) and so H has the branch H
ww Yw W

defined by

H, = ww(a) + HPaAd(a)

over Ad(p ™!

)cyw. Select an open neighbourhood Uw of ¢ in € such
that z.n € V if z € Uye n € im(Ad(bmi)oyw) and such that

—a o> * .
a U, = a Cw. Then for ) € 4> Z € Uw the integral

(ix-p)H, (D) -(ir+p)H (z.n)

¥, (h,z) = i) e e (1)

Ad(p™1

)oyw
(24)
*
is well defined, and the function Ww: aCXUw - ¢ is heolomorphic.

Moreover, if a * € U, then the integral (19) is equal to

o3

a‘l*"ﬂvw(x,a‘ ).

We have proved the following theorem.

Theorem 3.10. There exists an open neilghbourhood Uw of 0 in
*
€ and a holomeorphic function Ww: a ¥y, > (cf. formula (24)),
such that for a € A with a™~ € U, we have a® > C;» and:

A~ ;
(iA-P)H (a,y)_ —ih-p

Ff e Wyl LO0na™. (25)

"

&
S
—~
>




3.4 Harish-Chandra's formula

We define the holomorphic function d: g - € by

O %

2HX{HO)
d(x) = e - 1.

With this notation we have the following easy conseguence of

Theorems 3.5, 3.6, 3.10.

Corollary 3.11. Let A € “Z’ a € A, a e UI N Uw' Then

A, (a) =z a APy (a™h .
g=1,w

: ¢ s s 5 . * .
Since ¥y {s=1,w) is holomorphic on achS it has a power
series expansion

- - n
WS(A,Z) = Z bs,n(A)Z .
n=0

valid for z is some neighbourhood of zero. The functions

b (y) = Kd/dz)nw (x,z)]__, depend holomorphically on Xx. It
S,N s z=0

follows that

1

_ isi-p o - -ng
¢X(a) = :§ a T 4 bs’n(x)a

s=1,w n=0
for X € “Z’ A(HO) ¢ Zi. Obviously this series is an asymptotic
expansion for ¢X(a) (a®* - «), and it necessarily corresponds to
Harish~-Chandra's asymptotic expansion for N (cf. | 2], see also
Section 4.4 for a more detailed discussion of this expansion).
Following Harish-Chandra, we define the c-function to be the

coefficient of the principal power a**7P. Thus

1

c(x) = A7 ¥ (A,0),

and we obtain the following theorem.
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Theorem 3.12. For all j & ar with A(HG) & Zi we have

- (ix+p)H ()

e a(m) (26)
1

ely)y = a4’
.

It is now possible to derive the usual integral formula
for the c-function (cf. Harish~Chandra [2, Theorem 4, p. 29171).

This is the subject of the following lemma.

Lemma 3.13. Let ) € a;, Im(x(H)) < 0. Then:
SGarH (D ~(in+p)H(T)
e pln) = d(x) [ e dn 27)
Y1 N
where dn denotes the Haar measure of N normalized by

Iq exp(-2pH(n))dn = 1. The integral on the right hand side of

(27) is absolutely convergent and by (26) it equals c()).

Proof. The argument follows the familiar pattern of estimation
of contour integrals in the elementary theory of functions of one
complex variable.

Define the C” map ¢: [O,W]XNC *'NC by

3(t,n) = Ad(a(~t),n).

Consider the homotopy S0y (here @t(.) = ¢(t,.)). First observe
that the image of Py is disjoint from S for t 2 0 (this
follows from the proof of Proposition 3.8). It follows that the
branch HI extends to a branch over dpoyps We denote it by HI as
well. As in the proof of Theorem 3.10 the value of the integral
—(ix+p)HI(H) _
I e () (28)
®ie Yy

is independent of t.
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Now consider the integral

-(iA+p)H (W)
I(t) = f e T oadlny.
@toyTz<{@,ﬁLBBT>

*
Since Ad(a(-t)) @ = exp(?Q(HO)t>Q, the m~dimensional Euclidean
measure of @toyl(lﬁ,ﬁlxaﬁT) is O(exp EQ(HB)t) for t = +w. On
the other hand, writing n = n(t,7,X,Y) (1 € [0,7], (X,Y) € 3B,),

we have

~(ik+p)HI(E) cReA)<1mHI<E>> (1mA-p>(ReHI<H)>

= e e

2rl Red (H)| (Imx—p)(ReHI(E>)
<
= e e

e

Moreover, writing a = ¢(¥X,X), b = #c(¥Y,¥Y), we have

2t=-2i1.2

u(ReHI(H)) = 1 logl (1 + ae )2 4 pettHIT

2t + 0(1) (t > =),

i

uniformly in (1,(X,Y)) € [O,W]XBBI. Hence
2D(H0)t 2(Imx—p)(H0)t
F1¢t) = 0Ce e )

showing that:

lim I(t) = 0. (29)
T 4o

By the above estimates it also follows that the integral on
the right hand side of (27) converges absolutely if Im A(HO) <0,
and therefore, by dominated convergence,

- (ix+p)H() _ ~(ix+p)H(M)

1im I e an = e dn. (30)
t= 4w & (B

Moreover by an argument similar to the one in the proof of

Theorem 3.5 it follows that:




(ix-p)H (m) = (ix+p)H(n) _
J e oo = do. S e dn (31)
Fto“(l—i B @t{BI>
where B = ({0}xB ) U ({m}xB,). Hence using that the integral

(28) 1z independent of t and decomposing it in a sum of I(t)
and the integral on the left hand side of (31), we obtain

(27) by application of (29) and (31).

By formula (26) it follows that the c-function is mero-

* .
morphic; its poles are contained in the set {} € a3 A(HO) € Zi}
and are all at most of first order. This agrees with the
formula (cf. Harish-Chandra [ 2], p.303)

S F(lAO)

e = Im@) ¥ 1 ¥ DTG Gnla) ¥ mZa) ¥ 1g))

where we have written A, = A(HO), where ' denotes the classical

0

Gamma function having no zeros and having poles at 0, -1, -2, ..,

and where c, is some non-zero constant.

0

Remark. By an explicit computation formula (32) can be de~

duced from (3) and the integral on the right hand side of (27).

This has been done by Helgason (cf. [2]) and Schiffmann (cf. [1]).




Chapter &

The general case

4.1 Introduction

In this chapter we shall study the asymptotic behaviour
of ¢A(a), when a% - +w for all g € A++ (recall that a* -
= exploalog a)). We shall express the latter condition more
briefly as: "a - « in atr,

Fix CO > 0, and put

+

@ for all ¢ € A+ }. (1)

A(CO) = {a €Ay a >C

0

As we will show, if Co is big enough, then there exist smooth

dim(K)-cycles Fw(a) (w € W), depending smoothly on a € A(CO),

such that the following holds. The map H has a branch HO W over
b

the map (a,y) - arw(a)(y), A(CO)xY(w) - GC\S, and the functions

L A(CO) - € defined by

j (ir-p)H,  (ak)
e b

w (k) (2)

® ,A(a) =

W
Tw(a)

form a basis of the space EA(A(CO)) (cf. Theorem 2.8), whenever
A lies in the complement “Z,O of a certain locally finite union
of hyperplanes. For this result, see Theorems 4.21 and 4.23.

Moreover, as we will show in Section 4.4, the function ¢W,A
has an asymptotic expansion for a - « in A% (see Theorem 4.20).

In Section 4.5, the principal term of this expansion will

appear to be given by

iwi-0 .
¢%A(aj ~ d{wi)clwr)a . (3)




£
Here d is the holomorphic function ¢ — € given by

“

1
i-11}

d(a) = il {exp(2n(2,a){a )
(wheve ( , ) denotes the dual of the bilinear form ( , ) on
ac}, and ¢ denctes the c~function of Harish-Chandra. Let us
N - o - -~ » * = *
recall that ¢ is a meromorphic function e — L. For a € g
S e
4

with Im{i,a) < 0 (o € A ) it is given by the absolutely

convergent integral

c(A) = o (A OIH() 42 (4)

7
N
Here dn is the Haar measure of N normalized by
—_— = *
fﬁ exp(-2pH(n))dn = 1. Since for A € @_ ., the functions
k-
¢ (w € W) span E.(A(C.)), ¢, must be a linear combination of

*
the ¢w A with coefficients depending holomorphically on i € “. g

3 b
By (2) and a result of Harish-Chandra concerning the behaviour
of ¢A(a) when a - » in A' (see the proof of Lemma 4.25) these

coefficients must be equal to d(wk)—l, and we obtain:

d(wx)‘1¢w (s)

¢ = A

z
wEeW
For this result, see Section 4.5, where also a detailed com-
parison with Harish-Chandra's asymptotic expansion for ¢X will
be made.

The construction of the cycles Fw(a) will be carried out in
Section H.4. It is based on the following idea. Fix w € W, and
consider the real analytic map M x N = K, (m,n) = wmk(n) (recall
that w is a fixed representative for w). The pull back of

k = H(ak) under this map is equal to

(m,F) > H(Ad G Y(a),m)) - H(D + w t(log a),  (8)




L R

4
S

o P | - — P — -
where w 1(&} = w “aw, and where Ad(b,n) = Ad(b)(n) = bnb

"

- = ] - el = 4
(b€EA, TET. If s € W, we setNS:}Jﬁsli\Is,é+(s)

. O - .
{o € A*+; s(a) € -4 }. Writing ng for the Lie algebra of

it

— ++ \ .
NS, and n for a_, 8 o, (o € A ), we have:
n = z T
fs it Ty
a€ s (33

WO

and so Ad(w—l))lgw diagonalizes with eigenvalues a (o € 2" )

. . . + .
tending to 4o if a - «» in A . Let w' be the unique element of W

with (w')—l(a+) = —w«l(a+). Then 477 is the disjoint union of

A++(w) and A++(w'), and so Ad(w-l(a))lﬁw, diagonalizes with

eigenvalues a '* (o € INAECAD)) tending to 0 if a = = in at.

Moreover, the map N xN _, = N, (n,n') » n n' is a real analytic

wow'
diffeomorphism. To get (6) under control, we apply the transform

1

Ad(wﬁl(a))_ to Nw' More precisely, let £ be the real analytic

map M x Nw x Nw' - K, (m,n,n') = wmnk(n n') and let for a € A(Cy)
the map n_: M x Nw x ﬁw' - M x ﬁw x Nw' be given by na(m,ﬁ,ﬁ') =
1

= (m,Ad(w (a_l),ﬁ),ﬁ'). The pull back of k = H(ak) -wal(log aj

under gona is equal to:

(m,7,5") > H(FAd (v 2(a), 7)) - H(Ad(w Ta™hH,mnn. 7

Now if (h,n') varies in a compact subset of N xN then

w,c Tw',c
- -1 o - -1, =1, — = - . +
nAd(w “(a),n') - n and Ad(w “(a 7),n)n'—~ n' when a > = in A ,
uniformly with respect to (n,n'). So the multi-valued analytic
extension of (7) can be seen as a perturbation of the multi-

valued analytic map

{(m,n,n') = H(n) - H(n").

We have now come to the fundamental idea behind the construction




-

s
%@§§%%%/mﬂ

b

of T (a). If v (s = w,w') are smooth dim(N J-cycles in H \s
W 's s s,C

such that H has a branch H_ over each y_ (s = w,w'), then the

s
following is true. If C, is chosen blg enough, and 1f a varies
0

in A(CO), then the branch

-
4

Hwiagd<w“1<a>,ﬁ*>> - Hw,<Ad<w'1<a ), R

of (7) is well defined over id(M)xywxyw,. Moreover, the multi-
valued analytic extension of Eong has a corresponding branch
(guna)o over ld(M)xywxyw, and H has a corresponding branch HO,w
over the map A(CO)XY(W) »-GC\S, (a,y) = arw(a)(y), where

Y(w) = Mwawa,, and where rw(a) = (gona)o o (id(M)xywxyw,).

Also, the function by defined by (2) satisfies
b

A

_ _iwi-p ., -a
¢w,x(a) = a o5 (X, (a )a€A++)’

where @& is a complex valued function, holomorphic in the first
variable, and holomorphic at O in the second variable. This
provides us with an asymptotic expansion for by x(a), the

>

principal term being given by

o (a) ~ alw*'p®&(x,o>,

Wi A
with
(ir-p)H(n) =(ix+p)H(n")
] -
o) (1,00 = K, J e e Sg,080 0"
Y XVpt
Here QS 0 (s = w,w') are certain invariant differential
3

dim(ﬁs)-forms on ﬁs o> and K., is some non-zero constant depending
2
on their normalizations. For the above result, see Theorem 4.20.
As we saw above, the cycles Yy and Yo should be constructed

so that @&(A,O) = dlwi)elwd ). The gsecond idea upon which our
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o
H
feal

construction hinges is to adapt the procedure of Gindikin and
Karpelevi& to achieve this. Originally Gindikin and Karpelevil
used this procedure to obtain a product formula for the
c~funcetion (ef. [1]). We have extended this procedure to a
multi-valued analytic situation, and use it to construct Yo
{and yw,) recurrently as a product of cycles corresponding to
real rank 1 subgroups. Let us now briefly discuss the idea that
is worked out in detail in Section 4.3. If s € W, we set

nis) = #A++(s). We construct vy by induction on n(w). Let

a € A" (w) be such that -w(a) is a simple root, and put

Vo= Wes (here 54 denotes the orthogonal reflection in the root
plane kero in a). Now we have that A++(w) =z A++(v) U {a}
(disjoint union) and n{w) = n(v) + 1. Write Na = exp(na). Then

there exists a real analytic diffeomorphism vy : N xN_ =N
W,V o Vv W

such that:

H(‘Pw V(nu,nv)) = H(na) + H(nv)’

k4

n €N, n €N. ToLn) i i
for n, Na’ n, IS NV Moreover, ww,v(na’nv) is a holomorphic

expression in ;u’Hv’ V(Ha), h(ga) and therefore has a multi-
valued analytic extension to (N_ A\S)xN_ . Also, if

a,C v,C
ya: Ya - NQ’C\S and Yol Yv - NV’C\S are smooth cycles such that

H has branches Hu’ Hv over vy, and Yy regpectively, then Ww,v
has a branch Ww,v,O over y xy, and H has a branch Hw over

Yy F Ww’vaoo(yaxyv) such that

HwUYw(ya,yv) = Hqua(ya) + Hv°Yv(yv)'

However, from Chapter 3 it follows readily that for each g€ A++

we may select a smooth dim(N_ )-cycle y,: ¥, - N, NS and a
B B c

B 8




.

branch H, of H over vy,, such that
B 8
"(l}\'?p JH (5} _
S e BYB o (m) = a (e, (). (8)
g 8 878
Tg
Here p= (%‘(g) + m(28))8, dg(k) = exp{2ﬁ<xsa><5,s>’i} -1,

N ¢ is the

‘8 “g,c” 7B

c-function assoclated with a certain real rank 1 group GB, and

e

is a certain invariant dim(ﬁ6)~form on

finally »_, denotes the restriction of ) to the g-part as of

8
gB, the Lie algebra of ch (see also Section 4.3). Constructing
Yy recurrently as outlined above, and computing Jaccbians in the
usual way (the computations do not go beyond holomorphic ex-
tensions of the standard computations) we end up with a formula
expressing the integral
—(ix+p)Hw(E)

i‘w(x) = J e ;.0
YW

(n)
up to a non-zero factor as a product of the integrals in (8),

. +4 . . .
the product being taken over A (w). With this construction we

indeed find that
o)/ (X,0) = KWTW(—A)TW,(A) = k"d(wadelwr),

for some K" € €\ {0}. In fact, as one would expect from formal
computations, the constant K" turns out to be 1. We had to keep
track of the various multiplicative factors coming from the
different normalizations of forms in the course of the con-
struction to establish this.

Resuming, we have organized Chapter 4 as follows. In
Section 4.2 we give an exposition of some techniqual prere-

quisites. In the next section we describe the Gindikin-Karpelevil

procedure and the construction of the cycles Yo and in




o3

sction 4.4 we present the construction of the cycles ?w{a},

r

Finally, in Section k.5 we derive formula (5) for N and we

compare it with Harish~Chandra's formula.

4.2, Preparations

In this section we discuss some preliminaries on the
structure of the algebra n - We start with the following well

known lemma.

Lemma 4.1. Let L be a (real or complex) Lie group with a
nilpotent Lie algebra 1, such that exp: i -+ L 1s a diffeo-

morphism, and suppose that [ = Iy g . E I, = 0 is a strictly

descending chain of subspaces with [I,Ii] = S (0 <1 <m.
Moreover, let b and ¢ be subalgebras of I such that

= (Ii Ne) ® (Ii N ¢) (direct sum of linear subspaces,

0 i <m) and set B = exp b, C = exp ¢.Then B,C are closed sub-

groups of L and the map BxC - L, (b,c) - bc is a diffeomorphism.

Proof. If b is any subalgebra of T, then exp b exp » C exp b
by the Baker-Campbell-Hausdorff (BCH) formula for the nilpotent
group L, and so exp b is a closed subgroup of L. Write

= 1. .= R . = . .= . .= .
L exp L., bl b Il, 05 [ Il, Bl exp bl, Cl exp ¢y

i
(0 <1 <m). Then Lis B.

, C. are closed subgroups of L. We
i i

shall prove inductively that Li = Bici’ The assertion is trivial
for i = m. Now fix 0 < 3 < m and assume that the assertion has

been proved alrveady for i = 3 + 1. It now suffices to show that

Cij c Bjcj’ for then Bjcj is an analytic subgroup of Lj with

Lie algebra bj + cj = Ij' Since Lj is connected this implies




that B.C. = L.. So fix b € Bj, = Cj. Again by the BCH formula
Sd J
we have bwlcbc~1 € L., - By the induction hypothesis it follows
J+1
. =1, ~1
that there exist b' € B, 4 and C' & C. , such that b “cbe =
J

3
= b'e'. Consequently cb = bb'c'c € Bjcj'
Now let L,B,C be as in Lemma 4.1. Since (b,c) ™ be, BxC L
is a diffeomorphism, the restriction n of the canonical map
L = L/C to B is a diffeomorphism B = L/C. Consider the action A
of L on L/C given by XX(yC) = xyC (x,y € L) and let 1 be the

action of L on B defined by:

Ne t{x) = Xxun (x € LJ. (9)

Note that t(b) = Ab if b € B. Since L,C are nilpotent, we have
det (AdL(c)) = det (Adc(c)) = 1, so by Lemma 1.15, there

exists a non zero L-invariant dim(1/¢)-form QL/C on L/C. Now

*
G = 0 (9,00

is a non-zero differential form of degree dim([/¢) = dim(b) on
B. By (9) and the L-invariance of QL/C the form Qé is T(L)-invariant.
In particular it is left B-invariant, and hence every invariant

dim(p)~-form on B is a complex scalar times Qé. Thus we obtain:

Lemma 4.2. Let 2 be any invariant dim(b)-form on B. Then

for every x € L we have

0 g, = 0.

Let us now return to the Lie algebra n and fix an element

w € W. Recall that w is a representative for w.




b

Lemma 4.3, lLet 1, b, ¢ be subalgebras of Ld(win (or Ad(@)nc;

such that:

{ i) s2ach of 1, v, ¢ is a sum of rootspaces 8, (ga C);
5
(iiy 1 = b ® ¢.
Write L = exp I, B = exp b, C = exp ¢. Then L, B, C are closed

subgroups of exp(Ad(wia) (exp(Ad(&)nc)), and the map BxC — L,
(b,c) = bc is a diffeomorphism. Now let 1 be the action of L

on B defined by
T(x){b) = xb (mod C) (x €L, b € B). (10)

If QE is any invariant dim(p)-form on B, then for every x € L

we have:

*
T(x) Qp = Qp - (11)

Proof. Of course it suffices to prove the lemma for w = I.
Now select a system of linear coordinates for a* such that the
corresponding lexicographic ordering < satisfies a € At w0 <a.
Define ¢ = {a € A+; 8, C 1} and let a(1) < ... < a(p) be the

numbering of ¢ induced by <. Put

1. = Z

<3 <p).
3 i>5 aiy,e MV (0 <j<p)

+ .
in C [S3
Since IQQ’QBI ga+6 whereas a + B > R (o8B A ) the descending

. - 5 . R L
chain I iy g 9 ? P, Ip 0 satisfies the condition
[I,Ii] C Ligppe Moreover, b, ¢ are direct sums of rootspaces, and

vy ® ¢ = 1, whence Ij = (p N Ij) ®© (¢ N Ij) (0 € 3 <p). The

lemma now follows by application of Lemmas 4.1 and 4.2.

4.3. An analytic extension of the Gindikin-Karpelevié procedure

++
Recall that A denotes the set of a € At with %a & a*Lo1f




1

Eey

it i

W

w € W we write n for the subalgebra nNAd(w Ju of g
independent of the particular choice of the representative w
. + - L +
of w), we write A (w) for the set of o € A with wla) € -A ,
++ ++ + . .

and A (w) for A N A (w) (these are Schiffmann's notations,

cf. [1]). Writing n_ = + and 7 = + if o € A7
. . 1ting m o= g, 894 dn, =g §_9y 1T @ )

we have

1

= |

Jn o= z

o€ A++(w)

no= o N AdGE

Put N = exp(in ) and N = exp(n ). Then N = N N w ‘Nw.

o o W W W

Let w,v € W. We call w,v adjacent (cf. also Harish-Chandra
[ 4, p. 120]) iff the Weyl chambers w-l(a+) and v—l(a+) are
adjacent, i.e. they have a wall ker(a) (o € A++) of maximal
dimension in common. Now observe that 84 the orthogonal reflection

1(a+). Consequently w = Vos -

. - + -
in ker(a), maps v 1(a ) onto w
Interchanging the roles of v,w if necessary we may assume that
o is strictly positive on v—l(a+), and then it is strictly

negative on w-l(a+). For a general s € W we have

A++(s)

{g & A++; B <X 0 on s—l(a+)},
and therefore:

2T = A++(v) U {a} (disjoint union).

So writing n(s) for #A++(s) (s € W), we have in particular that
n(w) = n(v) + 1.

Before proceeding let us briefly introduce some notations.
If L is a connected subgroup of G with Liealgebra [, we write I,

for the complexification of 1 in 8. and LC for the connected

subgroup of G, with Lie algebra T.- If s € W (or s € A++), and

if Ns is provided with some orientation, we denote the invariant




Z/@W%J%@Wﬂ

.

dim(N )-form on ﬁg associated with that orientation and the

inner product { , J on EQ by 0_ 0 (so q_ 0 is determined by the
s 8, S,
condition that (g ) (&£.,s...5£,) = 1 for an oriented
5.0 2 1 a
orthonormal basis £,,...£5 of 353.
ES

Now let w,v be two adjacent elements of W, and suppose that

w(w) = n(v) + 1. Let o be the unigue element of é%+(w>\é++(v).

We have a direct sum of vector spaces

1]
=

7 + n
W o v’

so, by Lemma 4.4, the map (n,n') = nn', ﬁqxﬁv - N is a diffeo-

morphism. Assume that Na’ Nv’ Nw have orientations such that
this map is orientaticn preserving.

S+ n.n' Jugup
Proposition 4.4. The map (n,n') - n n’, Na,OXNV,C - NW’C

ig a holomorphic diffeomorphism; the form QQ,OAQV,O corresponds
to Qw’eunder this diffeomorphism.

Notation. In the assertion of Proposition 4.4 we have used
the following notation. Let X, (1 €i <t) be C manifolds and
let X = Xlx...XXt. Denote the natural projection X - Xi by ..
1f €i are differential forms on X, respectively (1 < i < t), we

* *
write €1A...A€t for the form w1(€1)A...Aﬂt(€t) on X, and we

call it the product of El,...,it.

Proof of Proposition 4.4, By Lemma 4.3 the map

. [ P | N N kN 3 3 3 o 3
$: (nyn') >nn', Na,cxNv,c . NW,C is a holomorphic diffeomorphism.

Clearly (¢"i)*(Q ) is a holomorphic left Ea c-invariant

Q
a,0”"v,0 »

and right N, _-invariant form of dimension dim(ﬁw) on By
2

W,y

nilpotence of ﬁw

the form 2, 0 is bi-invariant. Consequently
2

2




~1.F o - , . . .
(3 ) (@ A0 ) = C.n . for some C € CN{0}. Now the derivative
o,07 " v,0 WLl
dple,e): n xn - q of ¢ at (e,e) is given by {(E,n) = £ + n
i B,C W, W,C
and we see that C = 1.

Consider the nilpotent algebra I = éd(g_l)nc with its sub-

algebras b = n_ _ = EC N1 and ¢ = n_ (V1. These algebras satisfy

V., o

all conditions of Lemma 4.3, How let T, be the action of

L=vVINvonB=TN defined by
c v,C

Hl

rv(x)(ﬁ) xn mod C, (12)

where C = exp ¢ = N, N V*lNCV. Applying Lemma 4.3 we obtain:

Lemma 4.5. If x € anNCG, then

*
Tv(x) (QV,O) = Q (13)

—-1

In particular this holds for x € N C v NCV.
?

Let ga be the subalgebra of ¢ generated by LW ;u' It is a
semisimple algebra, invariant under the Cartan involution. More-
over t* = 1 N g% is a maximal compact subalgebra of a%. Now let
Hu be the element of a such that (HQ,H) = a(H) for all H € a.
Then « r\ga = EHQH is maximal abelian in s N gu = 5%, Finally
n N ga =y and 7 F\gaz Ha’ It follows that Qa is a real-rank 1
semisimple Lie algebra with Iwasawa decomposition

ga = % 4 ¢% 4 LS G has a closed connected subgroup 6% with

Lie algebra ga. The Iwasawa decomposition of 6 induces a

decomposition of % by

N, K =KnNng', A7V = ANG".




Ay

i - 1
hed A

O o o . . . s L
K7, A7, N7 are connected closed subgroups of g% with Lie algebras
o a o ~C O a . o

%, &%, 2%, so 6% = KQAQN@ is an Iwasawa decomposition of the

emisimple group 6%. It follows that the natural maps g% o x%,

o2l

o A . . . . s
g% » 4 g% ”’ﬁa associated with this Iwasawa decomposition are

the restrictions to G of the maps k, ns v respectively.

By the discussion above, v maps ﬁa into Na. Therefore we

; £3 he m 1 N xN ¥ b3
may define the map ¥ N&XNV -> Iw N

WeV

v, (LA = 0 r, T Had@® T (14)

>

Lemma 4.6. The map ¥ : N xN
————— W a

v - Nw is a real analytic

\%

diffeomorphism. If (n,n') € quﬁv, we have:

H(YW’V(H,H')) = H(m) + H(m"). (15)
Moreover, writing I (%m(u) + m(2a) o, we have
« —pHC) —QQH(H) -pH(n") o
— - 1
(Ww’v) (e ”w,o)(n,n') e e (QQ,OAQV,O)(n’n ).

Proof. Denote the map ﬁaxﬁv - N, (n,n'") > nn' by . From

Proposition 4.4 it follows readily that ¢ is a real analytic

diffeomorphism with ¢*(Qw 0) = Q, oA, g- Let the map
b » b

6,: N xN_ - N xN_ be defined by
17 Talv a v

6, (LA =@, 1t v@ Hagm Han).

Then ¢, is bijective, its inverse is given by the formula

-1
b4

real analytic diffeomorphism, and so v
>

(m,n'") = (mAd((m) 1, (v(n))(n')). This shows that ¢, is a

v o by is a real analytic

diffeomorphism.

Let n € ﬁa’ n' € ﬁv‘ By (12) and (14) we have




N

(35'1N§).

Iy

A - el ey .
L v(n,n’) = nyin) “hin) n'hin) mod
Wy

Since nv(M) *h(m)™? = w(W), it follows that HCy An,n’)) =
5V
p— p— . . PR | P .
= H(n'h{n)) = Hh{n"Hh(m)hin) “vin")hi{n)), hence (15).
Finally, let us write

p, = z o . (16)

4
agr (V)

Then Ad(h(ﬁ)“i)*(ﬂ ) = exp(2p H(nJ))g . By (13) it follows
v, 0 v v, 0
that

x ZQVH(H)
94002, oAy o) = © 84,07, 0

*
hence the last statement of Lemma 4.6 follows from ¥ (Qw O) =
M
x
$,(Q AQ ) and Proposition 4.7 below (observe that
1 %, 0" ", 0

H(n) € «%).

Proposition 4.7. Let p  Dbe as in formula (16). Then

- = - Qa
2pv 0 pa on a-.
Proof. Let H, be the element of « with (HQ,H) = g(H) for all
H € a. Then Ha | ker o (with respect to ( , )), hence
Sa<Ha) = -Ha' Since o is a simple root for the Weyl chamber
+

v‘l(a+), 5, leaves the set of roots R = {8 € a*" U (-a"");

g ¥ o, g <0 on v_l(a+) invariant. Since

R = st u - GNP (el (17

and

we see that Sa(va - p) = ZOV - P+ 2p,. Hence —(QQV - O)(Hu) =

= SQ(ZQV - p)(Ha) = (ZDV - @)(Ha) + 2P,(H,). The assertion now




follows from the fact that e = EHGB.

The procedure of Gindikin and Ka?pelevig is based on Lemma 4.85.
Our first objective is to derive a suitable holomorphic extension

of this lemma.

+

Let 5 € W (or s € At ). By Lemma 1.8, ﬁs oS is the biggest
3

connected open subset of ﬁs o such that the map Hiﬁs has a multi-
b

valued analytic extension to it. We denote this extension by HY,

H is the restriction (in the sense of the appendix to Chapter 1)
of the multi-valued analytic map H to ES,C\S. Similarly, we

let KS, hs, vS denote the restrictions of the multi-valued
analytic maps k, h, v to ﬁS’C\S. These maps are the multi-valued
analytic extensions to Ns,é\s of Klﬁs, hlﬁs, vlﬁs regpectively.
By an argument similar to the one used in the proof of Theorem 1.5,

we obtain

Proposition 4.8. Let B € A**. The multi-valued analytic

maps KB, hB, VB map ﬁs,c\s into Kg, Ai, NBaC respectively.

If s €W (or s € A7) we denote the covering with base points

associated with the multi-valued analytic map H®: ﬁs c\S - oa by
3
Tt (NS,ES) - (NS)C\S,e).

Recall that this covering is the analogon of the Riemann surface,

cf. the appendix to Chapter 1. The lifting of H® to a holo-

morphic map NS >oa is denoted by gs) and we write B° = exp H7,
~3 N ~S
Y = v oﬂs-

Let us now return to the adjacent Weyl group elements w and

v, and recall the definition of Ww v (ef. (14)). Since v® maps
2




N c\& into Na o We may define the multi-valued analytic map

¥ (N NS)xH - H
WLV a0 0,C v,C W,

I C T AP Erv(v“(ﬁ>”1>Ad<ha<5>'1>cﬁ*).

Thus ?% v.c is the multi-valued analytic extension of the map
El 5

?w v with respect to the base point (e,e).

Proposition 4.9. Each branch Ww,v,U of WW,V’C over a simply

connected open subset U of (N \S)xN is a local diffeo-
0,C V,e

morphism.

Proof. Straightforward, by first showing that the proposition
holds for the multi-valued analytic map ¢1,c: (Na,c\S}xNv,c i

~ (Nu’C\S)XﬁV o defined by

b4

b, @A = (Hr 0@ THAIGTETH @), The map
3

- N N N pagiieng S G : : -
L Nu,cxNv,c Q‘Nw,c’ (n,n'") n n' is a holomorphic diffeo
morphism, and ww,v,c = ¢c°¢1,c'

Lemma 4.10. The restriction ww,v of Ww’v,c to (Na,c\S)x(Nv,c\S)
is a multi-valued analytic map of (NQ,C\S)X(NV’C\b) into NW,V\S.
Moreover, Ww v has a unique lifting to a holomorphic map

b
WWaV: NaxNv - Nw
with
Yw,v(sa,ev) = e,
Proof. From the definition of V¥ it follows that vy
e tiedeud W4V ,C WyV

has a unique 1lifting to a holomorphic map




7
H

with ¥ (e ,e. ) = e, In fact, ¥ _ is defined by
W,V o’ v WV
T oGoy) =G0 .t G0 T Had® o™ G (v
wov 7Y o Y ) v :
By Proposition 4.9 WW v is a local diffeomorphism, hence its
LV

image is an open subset U of ﬁw - If z € U then there exists a
b4
continuous curve o: [ 0,1] *~NaxN¥ with o{(0) = <€a’€v>’

¥, (010 = z. Let o': [0,1] = N, and o": [0,1] = N, be the
curves with ¢ = (¢g',¢"). From (15) it follows that the germ of

the real branch of H": (ﬁw c\S) > oa, at e is given by

kd

W — _ Ta ~v
(H )eo(vw’c)(ea,av)(x,y) = H'(x) + H (y).

This shows that H" can be analytically continuated along the

curve ¥ og, the branch over V¥ o ¢ being given by
W,V W,V
W o jade) v
HoV o0 = Hoog!' + Hog".
WaV

This implies that U € N_ \S. Hence im(¥

is an open subset
W,C v) p

k4

of ﬁw c\S. Moreover, the germ of H” at z obtained by continuation
?
along Ww,voa is given by

_ Do jadvs
(x,y) = H0,<1)(x) + HG"(l) (y), (18)

W
(H )Zo(\yw,v)g(l)

s0 it depends on ¢g(1) only. It follows that ?w v has a unique

3

lifting to a map Vw, : NQXNV > Nw such that Ww v(gufsv) = €

v 2

We now come to the holomorphic extension of Lemma 4.6. If

s €W (or s € A++) we write QS for the pull back of QS to

s 0 s
N_.
8

Lemma 4.11. The map ¥ : NxN_ = N_is a holomorphic local
e W,V a v W

diffeomorphism, and if x € WQ, y € ﬁv’ then:




HYG, ,Goy)) = 260+ B o).
Moreover, we have
~ *  _pTW~ ~Qu§a(x) —pﬁv(y) - N
(?w’v) (e Qw,0)<x’y): e e (QQ,OAQV,O)<X’y>’

Proof. The first two statements follow from the proof of
Lemma 4,10 (cf. formula (18)). In view of Lemma %.7 the last
statement holds locally at (ea,ev)- By analytic continuation

this completes the proof.

Now let w€ W be fixed in the remainder of this section, and
let g = n(w). Select a sequence of Weyl group elements w(j)
(0 < j < q) such that w(0) = I and w(g) = w, and such that w(j)
and w(j+1) are adjacent and w(w(j+1)) = nw(j)) + 1 for
0 <j <1. (It is easy to see how such a sequence might be
defined recurrently, starting with w(g) = w). If 0 < j <g
let g(j+1) be the unique element of A++(w(j+1))\A++(w(j)).
Then w(j+1) = W(j)°sa(j+1) (0 <j < qg) and by induction we

obtain

A3y = a1, .. ,a(3) Y, W) =S e 8 sy

< J < q. Sel i i N . .
for 1 < j q. Select orientations for the spaces Nu(j), Nw(])

< 3 < N . . N .
(1 <3 q) such that the maps Na(]+j)wa(]) - Nw(]+1),

=1

(n,n') »n n' (1 <3 <q) become orientation preserving.

i 0 N o XL XN - N ,. < 3
Define maps Yj Nu(j)x XN(ﬁl) Nw(j) (1 j s q)
recurrently as follows:

. < s .
o (TN (5, 4y)x¥3) (1 <3 <qgJ;

341 T Yui+) ,w(d)




S

=
H

o

D

and let ¥, T Wq'
s T 1 N N N4
Theorem 4.12. The map ¥, Na(q)x"'xNa(i) - hw 1s a real
analytic diffeomorphism. If Hj e ﬁa(j) (1 <73 <g), then
H(?w(nq,.-.,ni)) = H(nq) ... * H(nl).
Moreover,
-PH(.) q  -p_,. H(n:)
* a(3) j
Q = I Q R
(Ww) (e w,O) je1 e a(q),OA AQa(l),O

Proof. Straightforuvard by using Lemma 4.6 and induction on

the definition of Ww.

Corollary 4.13. (Gindikin—Karpelevig) Let A € a_. Then the

integral

. = (iA+p)H(M) -
I,(0) = [ e Q0

N

w

converges absolutely iff for every & € 2 * (w) the integral
=(ir+p JH(N)

Q_  (n)

I, (M) = ﬁf e a,0
o

converges absolutely. If these conditions are fulfilled, then
Iw(k) = aE;z++(w) Ia(l). (19)
By similar estimates as in the proof of Lemma 3.13 it can be
shown that for o € A" the integral Iu(l) converges absolutely
iff Im(A,a) <0 (cf. also Helgason [ 2] and Schiffmann [1]). Hence
I,(}) converges absolutely iff Im(r,0) <90 for all a € ISR

Let, for a € A™F, Q, be the invariant dim(Ny)-form on N -
3

normalized by




P

_J exp (-2pH(m))Q (n) = 1.
N

o

The form Qa is the analogon of & for the real rank 1 group

g% = KGAQNG. Now let Ka be the positive real number with

Q = K. 9 . In view of Theorem 3.12 and Lemma 3.13 we obtain
a,0 o'

that

I, = K e (h), (20)

*
if a € A++, and if A € a, gsatisfies Im(A,a) < 0. Here c, denotes
the c-funtion associated with Ga, and ka denotes the restriction

of X to ag. Similarly, let K be the positive real number with

QO = K@. 21

If we write u for the Coxeter element of W (i.e. the element
s € W with s(a’) = —a+), then

IU(A) = Kc(r), (22)

*
if X € a_ is such that Im(A,a) <0 for all o € a*t. By (22,
*
(19) and (21) it follows that for A € LR with Im(A,a) <O

(all o € A++) we have

c(X) = K il c (M)
0 a€A++ a o’’’
with
Ky = Ktom,, k. (23)
o€ A

Remark. The constant KO has been computed explicitly by

Duistermaat, Kolk, Varadarajan [1, §3.81.

We now come to the holomorphic version of the Gindikin-




Karpelevig procedure. Define maps ?iz N S Xa o XN -

al3) a1y T Ny

(1 = 7 < q) recurrently by:

¥, = id(NQ(i)),

Vipr = Ww(j+1),w(j)°(ld(Na(j+1))x?j) (13 <qJ);

and let Ww = ?q-

Theorem 4.14. The map Yot Na(q)x"'xNa(l) - Nw is a holo-

morphic local diffeomorphism. If x. € ﬁa (1 <3 <gq), then

] (3
Y . ~alq) ~o (1)
H (Ww(xq,...,xl)) = H (xq) + ... + H (xl).
Moreover,
* ~pﬁw~ q —pu(j)ga(j)(xj) . -~
¥ = . it 9
(Ww) (e QW,O) &3:1 e )ua(q)’OA..Aga(l),O.

Proof. Straightforward by application of Lemma 4.11 and in-

duction on the definition of Ew.

+

Remark. Let o € A+ . By formula (3.3) it follows that the

monodromy group of the multi-valued map HY: Na C\S > oa, at e
3
is isomorphic to the lattice A(M®) generated over Z by the

vector ZWiHa Now let w € W. Then from Theorem 4.14 it follows

07

that the monodromy group of Y Nw C\S > a,  ate is isomorphic
3

to the lattice

AU = z,, AU .

a€ A (w)

In particular it follows that the monodromy group of H: GC\S = oag

at e is the lattice A(M) = {X € a.; exp X &€ M} (see also the




. . ++ qr .
Select for each g € A a cylinder m{a)-cycle

o

9{]0,m] =B ) > H A8 as in Chapter 3. This can be done,

¥ 1,0 4,C

I,a’
for ﬁa A5 is the biggest connected open subset of N \S, con-
3 e

taining ﬁé, such that HING (the Iwasawa projection assocciated
L0

. A0 o, 0 . , e . .
with 67 = KA N%) has a multi-valued analytic extension to it

50 the set ﬁg C\S corresponds to the set ﬁC\S of Chapter 3. The
3

multi~valued analytic map B*: ¥ \S > 4% has a branch H®
a,C c I,0

as in Chapter 3 over YIo Let be the corresponding
2

'T,a
lifting of v to N . Let H denote the element of
I,Oﬂ OL,O
*
«% with a(H ) = 1, and define the function d : g =+ € by:
a,0 a [}
2ma (" o)
d, (A = e ST g,

Then if A € a;, Im(i,0) < 0 we have:

-(ik+pa)ﬁa(x)

J e ﬁu,o(x) = d (DI ) (24)

(cf. Chapter 3 and formula (14)).
By an easy application of Stokes' thecrem we see that we may

replace the cycle 71,@ by a smooth dim(ﬁa)—cycle ?a: Y, >N,

(where Yu is diffeomorphic to a dim(ﬁa)—sphere), such that:

I V-
YI,a Yu
for any closed dim(Na)—form £ on Wa. In particular the value of

the integral in (24) does not change if we replace ?I o by VQ.
3
Ceo

Define Yw = Yu(q)x"'XY It is a connected compact

o(1)”

manifold of dimension dim(ﬁw); we provide it with the product

orientation. Define the smooth cycle ?u(q)x-~-x?a(1)i i

Na(q)X...XNQ(1> by




. PR ~ s P
(tq,...hlf 9'{Ya{q)(tq}""’Yail}{tij}'

Theorem 4.15. Denote the smooth dim{ﬁw)-cycle
YWOCYa(q}X"'XYa(l))

-Cir+p) Y = (iasp EY

= I e Q

e 5] =
w50 a€ s o) Yy

~ *
by Yo If A €& 4., We have

o~ o,0
Y, ’

Proof. The integral on the left hand side of (25} is equal

to

[ ~ ok (i) Y
. - (WW) (e ngu).

J
Ya(q)x"’xya(l)

Application of Theorem 4.14% yields (25).

If s = w of s € A"" we denote the smooth dim(Ns)-cycle

oy : Y —-N_ \S by y_.. Moreover, we denote the branch of H"
s

s s S,C
over y corresponding to H® by HS. Thus, writing

—(ix+p)Hs<H>
J e QS,O
YS

+4 .
wor s € A, we may rewrite (25) as

(n) (26)

1

IS(A)

*
for A € a,s S =

I T, 27

T 0
W a € A++(w)

Moreover, (24) can be rewritten as
To(A) = d (AT M)

*
if » € e satisfies Im(A,a) < 0. By (19) we obtain the following

lemma.

*
Lemma 4.16. Let A € @, be such that Im(A,0) <0 for all

QLEA++

(w). Then




T (ay = { 1 4 (A23T (a3, (28)
w e o W
“ a€ A (W)
If uis the Coxeter element of W, we write T(.) for Tu(,},

o~ * .
Obviously T is a holomorphic function a_ = C. Now let d be the
holomorphic function a: - ¢ defined by

d(x) = I d (x). (29)

Then we have the following corollary of Lemma 4.16.

*
Corollary 4.17. If X € a is such that Im{A,a) < 0 for all

o € A++, then
T = Kaae(a). (30)

*
Consequently, the c~function extends meromorphically to a.-

4.4 Construction of the cycles Fw

Let w € W be fixed throughout this section. Recall that the
map MxN - K, (m,n) = mk(n) is a diffeomorphism onto a dense open
subset of K. Fix an orientation of M such that this map becomes
orientation preserving, and let Wy be the invariant dim(M)-form

on M such that

et § be the invariant dim(N)-form on N such that
-2pH(N)
J e Q) = 1 (31)
N
(cf. Section 1.5). The map MxN = K, (m,n) = wmk(n) is an

orientation preserving diffeomorphism onto a dense open subset

of K, and the pull back of w under this map is equal to




~2pH{n)
e mMAQ

(this follows readily from formula (20), Section 1.5).

We denote the element of W sending a+ onto *w(a+) by w'.

We obviously have w—l(a+) = ~(w‘}—1(a+}, hence

A++ = &++{w) U 5++(w’} {disjoint union},
and

;c - gw,c ®.;w',c'

by Lemma 4.3 the map ﬁWXN”, - N (n,n') > nn' is a real

w
analytic diffeomorphism. Assume that orientations of ﬁg and Nw,
are fixed such that this map is orientation preserving.

>N, (n,n') > nn'

Proposition 4.18. The map W,CXNW',C .

is a holomorphic diffeomorphism, and the holomorphic forms

and g, correspond under this map.

Qw,O"Qw',O 0

Proof. Just as the proof of Proposition 4.3.

Proposition 4.19. The map £: Mxﬁ%xﬁ%, -~ K, (m,n,n') - wmc(n n')

is a diffeomorphism onto a dense open subset of K. Morever,

-] - ot
£T(w) = K leTZPHR D )mMAQw)DAQw"O, (32)

and if (m,n,n') € Mxﬁwxﬁw,, writing 7 law = Qﬁl(a), we have:
H(at(m,m,0')) = H(Ad(w S(a)) (R ') - HE 7') + w *(log a). (33)

Proof. Since § = KﬁlQO (see formula (21)) the first statement

and formula (32) follow from the preceding discussion. Now let

(m,n,n') € Mxﬁwxﬁw,, a € A. Then




Hawme (T T')) = HGw H(a)e(d B'))

= H{w “(a)n n') - H(n n'),

whence (33).

We now apply a coordinate transform to put H{ag(m,n,n')) in
a form we can handle. If a € A, define the map

ngt Mwawa, - Mwawa, by

ng (A = (m,AdGeT (@™, R)LE")

where we have written Ad(w—l(a—l),ﬁ) for Ad(w—l(aﬁl))(ﬁ). n

a
is a real analytic diffeomorphism, and

H(a(gona)(m,H,H')) =

1

= H(HAd(w—l(a),H')) - H(Ad(W (a‘l),ﬁ)ﬁ') + w_l(lcg al.

(34)
Moreover, since obviously
% 2wpw

na (WAl oAyt o) = @ OpAQ, gA G [ (

where Py = z 0LDOt(summatior1 over A++(w)), we have
*
(gona) (w) =
4 2wp_ o -1, -1 '
. 1a W, 2pH(Ad(w “(a T),n)n'") (35)

WyASky oAt o
++ A++ +4
Let €(A ) denote the set C of functions A - €. If

zees’™, ne ﬁc’ n = exp(Ea(Xu+YG)) (summation over A++;

Xy € e g,e0 Y, € g—Zg,c)’ we define

- 2
z.n = exp ( Z it [z&xa + (Zu) Ya])'
o€ A




Obviously the map @{ﬁ++)x§c»» Ec’ (z,0} - z.n is holomorphic.

We define the map z,t A %»@(A++) as follows:

(z,(a)), ALY if qe s T,

. +
a-w(a) if g€ n Tw) = A++\A+*(w). (36)

Observe that zw(a) » 0 if a¥% 5 4w for all g € g++.

With these notations we have

Ad(w-l(anl),ﬁ) = Zw(a}.ﬁ,

Ad(w-l(a), n'y = zw(a).ﬁ',

o ’4—-— """' — < 3 -
for a € A, n € Nw,c’ n' € Nw‘,c' Hence, writing z, = zw(a),

formula (34) becomes:

H(a(gn,) (m,fi,n")) = H(A(z .5')) - H((z, DR + w tlog @)
(37)
Let yg* YS e-NS,C\S (s = w,w') be cycles as constructed in the
previous section, and let HS (s = w,w') be the corresponding
branches of H. Since im(y ) (s = w,w') are compact subsets of
NS\S we may select a simply connected open neighbourhood Uw of

. ++ - . — .
0 in €(p ) such that for z € U, n & imy ) n' e 1m(yw,) we

have:
n(z.n') € S & (z.m)n' ¢ S. (38)

1t follows that the multi-valued analytic maps H(n(z.n')) and
H((z.m)n') have branches over U XYy Vgt that restrict to HW(H)
and Hw,(ﬁ‘) over {O}xywxyw. respectively. We denote these
branches by HW(H(Z.H')) and Hw,((z.ﬁ)ﬁ') respectively.

Now consider the map gon,. If a € A, (m,n,n'") e‘Mxﬁwxﬁg,,

then




-

= S S
-

.

(ioﬂa}(m,n,ﬁ’) = @mm((zw{a>.5)5’).

Let U = {z € UW; zZ, € R for all g € a++}, and define the

map ¥ : U PXMXﬁwxﬁw, - K by

3

w(z,m,5,57) = wme({z.T)n').
Then for a € A we have
w(zw(a),.) = Eom - (39)

By the conditions on Uss the multi-valued extension v, of y has

a branch over U xMxy xy ,, that restricts to
Yy W wo'w
Gmnw,(ﬁ')

over {O}xMxywaw,. Here Kot denotes the branch of k over Yoo
corresponding to the branch hw' = expon, of h over Yo (recall
that the map «h is single valued, ¢f. Theorem 1.5).

Select a constant CW > 0 such that zw(a) € Uw for a € A(Cw)

(cf. formula (1)), and define r. A(Cw)wawa, -> KC by
Fw(a,.) = ww(zw(a),.\o(id(M)wawa,). (40)

Writing rw(a) = Fw(a,.), I is a smooth homotopy of smooth

w

dim(K)~cycles Fw(a): Y(w) = Mwawa, = K . By formulas (40,
(39) and (37), the multi-valued map H has a unique branch HO w
3
over T  with
W

*
ww(zw(a),.) (HO,w(a')) =
= H (Fz .6')) - B, ((z DA + u (log a). (41)

If a € A(Cw), we obtain by analytic continuation of (35) that

2wp  -2pH ,((z .m)n")
* =1 W w' W
ww(zw(a),.) (w) = K "a e wMAQW’OAQW,

»0




Hence

. (iA-pIH

(a,.)
W
wwizw,.) (e

’ w) =

w(ik-p+wpw)~ o
= a @w(A,zw,n,n)wMAQw’DAQw,,O,

where:

-1 (lk—p)Hw(n{z.n’))*(il+p)ﬁw,((z.n)n‘)

3W(A,z,ﬁ,5’) = K "e .
(42)
. *
Define the map @w: aCwa - C by
- ey’
o, (h,2) = I % (d,z,n,n Y8y, oM o (43)

Yo Yt
Since gw is helomorphic in (i,z) € aZwa, e is a holomorphic
map. It follows that

(ix=p)H (ak)
e 0,w w(k) =
Fw(a)

*
- [ ez .0 W
XYWXYW'

W(ik—p+wpw)
= a @w(x,zw(a))
From (42) and (43) it follows that

-1 f <ix-p)Hw<H) —<ix+p>Hw,(H')

@w(A,O) = K e e Qw

Yo Yot
So, using the notation (26) of the previous section,
-1l & .

@w(A,U) = K Iw(-A)Iw,(A). Finally, observing that w(p-2pw) =
= w(pw.—pw) = p, we have proved the following theorem.

Theorem 4.20. There exists a constant Cw >0 and a ¢ map
'+ A(C_J)xMxY xY , = K together with a branch H of H over
w W wotw c

0,w

*
ro such that the following holds. For every a € A(Cw), X € a

we have that




. 1wh= .
e w(k) = a™ Pe i,z (a)).
W W

Here & is the holomorphic function ngUw = € defined by (43),
Uw is an open neighbourhood of 0 in @(ﬁ++), and z is the map
A(Cw) > U, defined by (36). Finally, employing the notation

(26), we have
-

@W(X,O} = K Iw(—A)Iw,(R) (4h)

Observe that in view of the above theorem the function

¢w,A: A(Cw) - € defined by
(iA-D)HO w(ak)
¢ (a) = J e ? w(k) (45)
wak r ta
w

. . . +
has an asymptotic expansion for a > « in A (cf. also the
discussions in Section 3.4 and in Section 4.5). The principal

term of this expansion is given by

¢ . (a) ~ alm’%wu,o). (46)

Wa A

3t

is a solution of the system of radial differential equations

Theorem 4.21. The function ¢w : A(Cw) -+ € defined by (45)
3

A(D)6 = Y(D,iA)¢ (€ U(gC)K). (47)

Proof. Fix a, € A(Cw). Since the cygles Fw(a) are smoothly

homotopic to Tw(ao), there exists an open neighbourhood A of

a, in A(C ) such that
0 W
(ix-p)H
¢ (a) = J e 0,
WA .
I' (a
w 0

w&ak)
w(k)

for a € A. By Theorem 2.9 1t follows that b N satisfies the
k4

system (47) in A.




4.5 Harish-Chandra's formula

* *
Let «a be the set of ) € . with (i,a) # 0 and éwik,ﬁ) * 0

c,0

: +
for all o € A *

, w € W. In view of (uly, (28), (19), (20) and

(23) we have that

0,00,0) = Ky W, d (e () T, d, (Meg (),

v a& A (w) a€ aA (w')

and so by formula (3.32) for the real rank 1 c-function we

easily obtain the following proposition.

*
Proposition 4.22. The set “. 0 is the complement of a Weyl
b

*
group invariant, locally finite union of hyperplanes in a- In

. * . *
particular, a is a connected dense open subset of a,-

c,0

Now fix a constant C. > 0 with C0 > Cw for all w € W. If

0
*
X e a.> and (A,a) = 0 for all o € A++, then the functions

A(CO) -, a ~ alwA-p (w € W)

are linearly independent. Consequently, by (46) we obtain

*
Theorem 4.23., If A € « then the functions ¢ : ACCL) = C
B ) c,0 Wiyl 0
(w € W) are linearly independent elements of B, (A(Cy)) (for
this notation see Theorem 2.8). Since dim E,(A(C ) < #W
it follows that dim EA(A(CO)) = #W, and (¢W,A)WEEW is a basis
for EA(A(CU))'

*

Lemma 4.24. There exist holomorphic functions e 49
b4

*
- £ (w € W) such that for A € al gt
>




(48)

! ew<A>®W,A'

b, =
A [SY

W

Proof. Fix ag € A(CO), and let ?(ag): E)(A(CO)) - CN be the

linear map defined in Theorem 2.8. It is injective, hence

i
is a basis for @N whose elements depend holo-
W

{P(a0)¢w,k)wéiw

. *® . *
morphically on i € L The function A — P(a0)¢x, a, > C

is holomorphic, and therefore there exist holomorphic functions

- € such that P(a )¢, = Z e (MP(a.)¢ . Since
07 %X we W 1% 0" Tw,A

) is an injective linear map this implies (48).

e : a
W c,0

P(ao

*
Lemma 4.25. Let X € a w € W. 'lhen ew(A) = eI(wk) (w € W).

,0°

Moreover,

1 1

eI(A) = I da(k) = d(A) . (49)

+
a€ att

Proof. Tirst we establish (48) by a technique due to Harish-

*
Chandra. Let us fix A € a such that Im(A,a) < 0 for all a € a*Y.

c,0
Select H € a* such that exp H € A(CO), and write a(t) = exp(tH)
(t 21). If w € W, w # I then Im(wi~XA) > 0 on a+, hence by
(46) it follows that exp(t(p—ix)(H))¢w A(a(t)) = 0 (t = +2).
k

By (46), (48) we obtain that

lim a(t)P A

o ¢y (alt)) = e (Mo (X,0). (50)

On the other hand

a(t)p-i) ¢k(a(t)) - { e(i%—p){H(Ad(a(t),n))-H(n)}e~2pH(n)dH.

(51)

In his paper [ 2} Harish-Chandra showed that the integral on

the right hand side of (51) converges to the absolutely con-

vergent integral




.

.
.

\

ey = [ en (FATEIH(N) 4 (52)
N

(see Harisch-Chandra [2, p. 287, p. 291]). Consequentiy

clr) = eI(A)Ql(R,O), and in view of (36), (30) this proves (49)
for » with Im{i,a) <0 (all o € A*+), and hence by analytic
continuation for all i € a:,G‘

* -
By the same argument as above, for 1 € a with

Im{wl,0) < 0 we have

lim a(t)p-1WA

P ¢A(a(t)) = eW(A)QW(A,O),

and since ¢A: ¢wk we obtain that

ew(A)QW(A,O) = eI(wA)QI(wA,O). (53)

*
By analytic continuation (53) holds for all A € “ 0 and in
b

view of the proposition below this completes the proof.

*
Proposition 4.26. For all ) € a, we have

@w(A,O) = @I(WA,O). (54)

Proof. We start with the observation that for a € A" "\a"*(w)
we have fa(x)= ?Wu(wk) whereas for a € A" (w) we have
Ia(k) = ?_wa(-wk) (this can be proved by showing that similar
statements hold for da(A), Ia(k)). It follows that

Iw(~A)Iw,(A) =

= il I (=2 i I (X)) =
a€r TGy © aeattwry @
= L I—wa(wx) I, Iwa(WA) B

a€ A (wh)

a€ A (w)




= ¥++ T wa) = II,{WA>,
o€ A
; + 4
where we have used that AT s w-n T u A T, By
Theorem 4.20 this proves (54).
. * *
Now define the subset ‘ac of « by
* * . +
W s i€ d’y AH, ) €4i% for all a €A77}, (55)
c c a,0

* -
Clearly ‘ac is the complement of a Weyl group invariant locally
*
finite union of hyperplanes in ags and so it is a connected

*
dense open subset of a,- Obviously if w € W, then
W s e d; dtwn) # 0
a, = {A als Wk }.

Finally from Lemmas 4.24 and 4.25 we obtain:

*
Theorem 4.27. If A € 'ac, a € A(CO) then:

p,@ = = aP g Tre (g, (a0, (56)
W W
wE&W
Formula (56) corresponds to Harish-Chandra's asymptotic
expansion for ¢A(a), when a = « in at. 1In fact, let S be the
set of simple roots corresponding to the choice of positive
+
roots A , and let L denote the set of all sums Z e g D¢ (n
o€ S o o
*
nonnegative integers). The function op: aCXUw -+ ¢ is holo-
morphic, so using the power series expansion of @I(A,.) at 0
*
we see that there exist holomorphic functions FL: a. - ¢

such that

o A,z (@) = T rr(aye Hlog al (57)
LEL




Obviously this series is an asymptotic expansion. Moreover, it

converges uniformly absolutely in all derivatives on A(Cg).
Now let w be the Casimir operator of G. Since y{(w,iX) =

= ={i,A) =~ {(p,p) (cf. Harish-Chandra {2, p. 271]) the function
$I,A(a) = exp{(ir~pllog a)@IiA,ZI(a)) satisfies the differential

equation

il

A(w)@I’A (=(a,A) - (p’p)}¢l,k' (58)

The radial part of w is given by
AMw) = L, + Z m(a) (coth a)(.)Hu, (59)

where LA denotes the Laplacian with respect to the inner
product (, ) on g, and where Ha € g is viewed as a first order
invariant differential operator on A. (¢f. Harish-Chandra [ 2,
p. 270} ). Substituting (57) and (59) in (58) and using the

power series expansion coth a = 1 + 22k>’1 exp(~-2ka) we obtain

the following recurrence relations for PL(A):
Fé(l) = @I(A,O),
{lu,u) - 2i(u,k)}F;(k) =

= 2 Z m(a) Z T! (M) {(u+p-2ka,a) - (a,A)}.
aeat k>1 W ~Zko

(60)
Now let Fu be the functions determined by the recurrence
relations (60) and the condition I', ¥ 1. The Tu are rational

0

. *
functions on 4y and we have

1 P
Fu (X)) = @I(A,O)Tu(l).
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Since Qw} = Qk for all w € W, it follows from Lemma 4.24 and
®
na 4.25 that for 1 € w € W. Als
Lemma #.25 that ¢w,k @I Wi r all A a5 W W. Also
o (X,0) = Kvﬂf(}k) = d{(xjc{i) and hence we have proved:
Theorem 4.28. Let TU (u € L) be the rational functions
*
on @, defined by the recurrence relations (60) and TQ = 1., If
*
r e 4. g @ € A(CO> we have Harish-Chandra's formula (cf. [2]):
3
¢>\(a) -3 C(w)\)euw)\—p)log a 5 F“wk)e—u(log a).

wE W uLE L




Chapter 5

Asymptotics along the walls of At
5.1 Introduction
In the previous chapter we derived the formula
-1 (iA-D)HD w(ak)
@A(a) = £ dlwx) e ’ w(k), (1)

weW I‘w(a)

valid for a € A(CO), A€ 'az. It does not give us any information

when a varies in a neighbourhood of a wall of XT. In fact by
a careful analysis of the radial differential equations one
can show that the functions S n’ A(CO) - € defined by (4.2)
extend real analytically to the whole of A% but become singular
at the walls. A good example of what might happen to the
cycles Fw(a) if a tends to a wall is provided by the case of
SL(2,IR). In Figure 3.1 we see that the singularities of the
function @ — H(aRa 1) - H(®) correspond to the points i, -i,
aui, -a%i. Thus if &% | 1 then the cycle Y1 ig pinched by i,
a%i and by -i, -a%i.

In this chapter we will derive formulas like (1), expressing
¢, as a sum of integrals, valid in certain neighbourhoods of
walls of XI. To explain the main results, let us first

introduce some notations. F will be a fixed subset of S, the

. . +
collection of simple roots of A +. We set

4. = N ker a, A, = eXD arp»
F o € F r F

and we will be concerned with the wall AF N A+. Note that ap is
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the split component of the standard parabolic subalgebra pr
determined by F (for standard facts concerning parabolic sub-
algebras and subgroups, we vefer the reader to Varadarajan

[ 2 1). Moreover, we write

L

*q = (aF) N oa, 8oz exp(Fa),
and if ag € A we set:
a. = *aa (*a € *a, a € AF)'

+ + 4 +4
AN ZE, Ap = bp N A and Ap = Ap nA .

Now let AF

1f *c > o0, Cp > 0 we put

A(F,*C,CF) =

= {a; € A; lg(log*adl < *c, af > CF for o € A++,

g e att\a 3.

A basic result of this chapter is the following (see Theorem 5.5,
Lemma 5.9). If *C > 0 is arbitrary then there exists a CF >0,

cycles T v(aO) (v € W) depending smoothly on a, € A(F,*C,CF)

F, 0

and branches HF v of H such that the functions
b

(ix-p)H (a k)
- F,v "0
¢F,v,x(a0) = J e w (k)

satisfy the radial differential equations on At n A(F,*C,CF).

*

proas C be defined by

Now let the function d

dF(x) = M, da(k),
o €A \AF




- — S N ASONG
- - = - @

W\W

and let d e > T, % » d.(vi) (v € W). Then the functions

G , and d . depend on the coset Wev of v in ”%\w only
b

tes the centralizer of ¢ in W). If ¢ = Weov we

(here W, den

shall also write ¢ and d for those functions. With
P,0,A F,o

these notations we have:
4

4. (a,) = 2 d (A g (a.), (2>
Ao o€ WAW F,o Foo,A770

for ag € A(P,*C,CF), A€ ’a; (see Theorem 5.14). We will use
this formula to study the asymptotic behaviour of ¢A(a0) when
ag > @ in A(F,*C,CF). By the latter statement we mean that

a., € A(F,*C,CF) and a% - +o for every o € A++\AF' Observe that

0
since T and *C are allowed to be chosen freely the set A+ can

be covered by a finite number of sets A(Fj,*cj

in principle the asymptotic behaviour of ¢y is determined by

’CF j), and thus

2

the asymptotic behaviour of the br o A(ao) when a, = = in
j) 3

A(Fj,*c.,C ).

3°7F,]
As we will show in Section 5.3 there exist functions @% v
b

holomorphic in the first and last and real analytic in the

second variable, such that for X € az, ag € A(F,*C,CF) we have:

ivi-p o1 o

P (3)

( = Q *a,(a” )
¢F,v,k aO) a ,v V2 a,{a )ae A++\AF

Hence ¢F,V,A(a0) has a series expansion which is asymptotic for

ag = @ in A(F,*C,CF)‘ The principal term is given by

Op v,atag) ~

SV K O a1 0.1, o0, ()
W W

val(F)
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Here K, is a positive constant, w,w' are the

Jeyl group elements

determined by

SO 5*+<v>\v'1<AF>,

sy = PN o) uvT e s

and ¢ _, (y:.) denotes the elementary spherical function
v ()

associated with the reductive pair (G _4 Ky ) and the

N v (F) v 7(B)
linear functional y € a (here we have written G _, for the

v T(F)
centralizer of v 1(a ) in G, and K for G n X). For
r -1 -1
v ~(F) v T (F)

this result, we refer the reader to Theorem 5.7.

Let us now expose the structure of this chapter. In Section
5.1 we discuss some preliminaries. In Section 5.3 the cycles

T v(ao) are constructed. As in Chapter % this is achieved by

F,

studying a pull back of the map k - H(aok), but now under

Er K _y xﬁwa , > K, (k,n,n') = vke(n n'). This pull back is
v (F) w

equal to

HO'SKAD(S,H A')) - HGE n') + v T(log a),

-1

v-l(*a), @ = v “(a). By a further

where we have written '3 =

pull back under a suitable coordinate transformation n(ao) in
= = . Ee ~ = = - = .

K xN xN , we bring H( akAd(a,n n')) - H(n n') in a form

v ey ¥
that is a perturbation of

H(*Zk) + H(m) - H('). (5)

The cycle T v(ao) is then obtained by transportation under

E,

tonla,) of the cycle id(K Yxy_ xy , over which (5) has a
0 WwowW

v-l(F)

branch. We end Section 5.3 with a proof of (3) and (4).
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In Section 5.4 formula (2) for @R is derived. The idea is

as follows. The functions ¢ satisfy the radial differential

F,vsi
s & N .
equations on A = A(F, C?CF) . A{CG), and hence are linear com-

binations of the ¢, {u € W) with coefficients depending
4

A

holomorphically on ) € az 0 Comparing the principal terms of
3
asymptotic expansions these coefficients can be identified and

we obtain
1

dF,Vu)’i@F’v’}\(aO) = uéwf dlavid g, (ag).
By (4.5) this proves (2) on A, hence by analytic continuation
on A(F,*C,CF) as well.

Formulas (2) and (3) lead to a converging series expansion
for ¢A(a0) which is asymptotic when ag > e in A(F,*C,CF). This
is the asymptotic expansion Trombi and Varadarajan obtained in
[1, §2.11] using a certain system of radial differential equations.
Thus we see that the expansion they gave actually converges. In
the last sections 5.5 and 5.6 we examine this expansion and
give estimates for the remainder Terms, with certain properties
of uniformity with respect to real values of A. If ) remains
bounded we obtain the same result as Trombi and Varadarajan (see
Theorem 5.21). If ) is allo&éd to vary freely we have not been
able to obtain their result. However, if HAH~1A varies in a
compact subset of the set a*' of regular points we have ob-
tained results that are sharper. We hope that a synthesis of
our techniques with those of Duistermaat - Kolk - Varadarajan
[2] will eventually lead to a full understanding of the

asymptotic behaviour of ¢A(a) in a and X simultaneocusly.

Remark: In their research for [2], DKV independently used

similar "rescaling arguments” as we did by our definition of




In this section Y is a fixed element of a. If L is any sub~-
group of G, L. denotes the centralizer of Y in L. Similarly we
S

write 1., for the centralizer of ¥ in a Lie subalgebra 1 of g.

Y

Thus G X N N,, are closed subgroups of G; their Lie

Y Uty? Ty

algebras are g, !

Y

— . - ++
yo By and ny, respectively. Writing AY =

= {a € A++; a(Y) = 0}, we have:

Moreover, we have the direct sum of vector spaces

n o= on, © z n ® z T (8)
Y o€ A++ o o€ A++ a’
a(y) <o alY)>0

the three summands are subalgebras of n.

Proposition 5.1. Let % € a. Then there exists a unique w € W

such that

{a €™ 0(2) <0} = 2w,

Proof. The uniqueness of w is obvious. For the existence,

consider the root systems ¢ = A++ U (~A++) and o, = {a € 03

alZ) = 0}. o, is a subsystem of ¢, and A is a choice of positive

++
Z
roots for @Z. Let ¥ be the set of simple roots of Az+. Its

elements are linearly independent, hence there exists a 7. € a

[N

such that a(Zl) > 0 for every o € 3. Since A:+ C W.Z it follows
. . + .
that a(al) > 0 for every g € AZ+' Now write Z2(t) = Z + tZl

(t >0). If t is sufficiently close to 0 we have:




a(Z{t)) < 0 =« al(Z) <0,

alZ{t)) > 0 & al(Z) 2 0,

- ++ . . : 5 ;

for any o € A . In particular, Z(t) is regular and contained

. R ; - + ) e

in some Weyl chamber w 1(a ) {w € W) of a for t sufficiently
. ~ 4 ++ ~ T+ — A

small. Consequently A (w) = {a € A ; al(Z) < 0}. Observe

-1 T
that 2 € w (g ).

By the above proposition there exist unique elements w, w' €

++
€ W such that for every o € A we have:

alY) <0 e wa) € - At

(7)

oY) >0 « w'(a) € -A++.

So, (6) can be rewritten as:

n=nY®nw®uw|-

Now ;Y ® Hw is a subalgebra of n, and so, applying Lemma 4.3

twice, we see that the map NYXNWXNW, -+ N, (nY,H',n") - n'nyn" is

a diffeomorphism. Let Nv,ﬁw,Nﬁ, be oriented so that this map is
orientation preserving, and let Qy,O’QW,O’QW',O be the Riemannian

volume forms associated with the invariant oriented Riemannian

structures on NV,NW,N

, induced by the inner products ( , ) on

W

LTI As usual we denote the holomorphic extensions of these

p4

forms by the same symbols.

Lemma 5.2. The map N.xN xN , - N, (n.,n'.n") » n'n.n" is a
P v w Nt s ¥ 5 11 I J,Y

diffeomorphism. The forms @ GAQw Y L and Q correspond under
] N Y g

Y

under this diffeomorphism.




exists a smooth function f: vi&“xﬁws - R such that
= W 3
* ) - £ [ 1] I
g (g0 = fln,,n' .00, Gﬁgw,OA“w’ 0’
Ifn' € N, n" €W _,, we have
W W
AN e pln"loe = g0 (idxA(n' ) xp(n"))

. o . E . ~ l 11 -
and since QO ig bi-invariant, whereas QY,OAQW,GAQW’,U s in
variant under idxx(T')xp(n") it follows that f(n,,n',n") =

+

= f(ny,e,e)u MNow G normalizes the subalgebra

zZ g
a€a,aly)>0 ©

of a8, hence NY normalizes the intersection ;w of this subalgebra

with n. Similarly NY normalizes EQ" It follows that NY

— — %
normalizes N _, and by nilpotence of N, we have Ad(nY) (Qw o) =
>

= n_ € x,. n, € N,
QW,O for ny ?Y If Ny NY’ then

AR dog = ego(n{n IxAd(n Ixid),
y Yy Yy

and Q. is invariant under A(n. ) whereas AQ AL, is
0" "w,0 Mw',0

0 vy Yo
invariant under X(Hy)xAd(Hy)xid. Therefore f(Hy,e,e) = fle,e,e),

showing that f is constant. The derivative de(e,e,e):

=]

noxn xm o,

L of ¢ at (e,e,e) is given by (Uy,U‘,U") = U’ + UY+ U,

Therefore £ ¥ 1 and the proof is complete.

GY is a reductive subgroup of G. It has an Iwasawa decompo-

sition GY = KYANV, and the corresponding map GY - KY is equal

to the restriction of k to Gy - Hence the map ¢.: Nxﬁy v Ky

(m,n.,) > me(n.,) is a diffeomorphism onto a dense open subset of
2ty Y ¥




e

oW
i
[¥e]

Ky. We give K, the orientaticn that makes this map orientation

preserving. Now let be the invariant dim(K,)-form on X with
&

Wy

i

1.

Iy
Ky
As in Section 4.4 we have that

-7 Hif
* -1 ZMYH\QV}
($g) (wY) = Ky'e wy Ay

;N
g U

where p, = E&pa (gummation over A++(Y)), and where Ky is the
positive real number given by the absolutely convergent integral

—QQYH(HY)

Ky = J @ .0
¥

Lemma 5.3. Let (., be the image of the map : MxN, - mg(n,).
Lemma 5.3 y g 0 y y

Then the map n: onﬁwkﬁ

Wt K, given by

(ky,ﬁ',ﬁ") = K(H'kYH")

is an orientation preserving diffeomorphism onto a dense open
subset of K. Moreover, if (m,HY,H',H") = Mxﬁyxﬁwxﬁw,, ky = mK(HY),
we have

-2pH(n 'k, ,n")-2p H(N,)
* -1
n (w) = KgK e ¥ v ¥

*

Wy (8)

. *
Here we have written wy for wyAQw’OAQwvao'

Proof. Consider the diagram:

T N n
W

y——3 K




o

where ¢, ¥, £, & are the maps defined Dby:

¢(m,n,,n',n") = imK{EY),g’,E”)S
PO, T, LA = (m,Ry,mn T, Ad (R T, (VAR
€(m,ﬁy,5‘,5”} = (m,i‘nyﬁ”)
§(m,n) = mel{n).
Here T _, is the map 5'_1N§'XNW, - ﬁw’ defined by formula (4.12).
Observe that v maps G, into N, C T INET . Now ﬁg(m,EY,E’,H") =

= mK(H’HYH"), whereas

n¢¢(m,§Y,5’,E”) =
=k [ma '™ Tk (RO (R )T, (VL) AN (R )“1]
Y Y w! Y Y ?
and since Tw,(v(HY),H") = v(HY)H" mod N it follows that
8e = n¢y. Hence the diagram commutes, and since ¢, ¢, & are
orientation preserving diffeomorphisms, whereas § is an orien-
tation preserving diffeomorphism onto a dense open subset of K,
this proves the first assertion of the lemma.
*
Writing Q@ = wyAL we have that

AQ AR
W

Y,0 ,0" w07

* %

¢ (wY) = KY e Q
-20 ,H{n,)

v @) = e ¥ ok,

* *

£ (wMAQO) = Q,

6*(w) = K_le‘zpﬂ(n)w A

Now let g: MXNYXEWXNW, » R" be the smooth function determined by




- e e %
£ {w}(mK(nY},n’,n"D = g{m,ny,n*,n“)wy.

Then we obtain that
-1 —2than>

* % - = - *
¢n (w) = Ky'e glm,ng,n',n")a ,

hence

- {7 Y )
-1 QQYﬁ(nY) QQw,ﬁ(nY/

* %k —
podon (w) = Ky e g(m(m,ni

On the other hand, we have that

-2pH(n'n,n")
* % -
e 8§ (w) = K 18 ¥ o .

Therefore, writing v = v(HY), h = h(ﬁi), and using that

" n, By A LA = (m,Hy,m“lﬁ'mTw,(V'1>Ad<h“1)

we obtain that

-1

v exp[(—ZQY-—pr,)H(HY)]g(m,Hy,H',H“) =

KK

exp[—2pH(m~15'mnYTw.(v—l)Ad(h_l)H"]

1

it

exp[—2p{H(H'mﬁYv— nTiEn) 4 H(HY)}]

H

exp{-ZpH(H’mK(HY)H") - 2pH(HY)].

t

Since p Py * Py, T P this proves

P
P

s T

et

"u)’

n

g(m,ﬁy,ﬁ',ﬁ") = KYK.1 exp[~2pH(H’kYH") - ZQWH(HY)]

with kY = mKCHY). Hence (8).

Lemma 5.4, Let g: KYwawa, - K be defined by

Eisi
Py
o

LA = ko (RYET).




o
£

%

Then there exists a real analytic function J: N

such that

* —
r N = Tt n" dw. i 9)
£ {w) (n',1 }QEAQW,QﬁQw’,D {

Moreover, if n" € § ,, we have

Fa7
1 =2pH(n™) (107

J(e,n™) = K K e .

Proof. There exists a real analytic funtion f: KYXﬁwxﬁw' - R

such that
£5(w) = Flky,n' AN wgaR -AQ
Y Y, 07w, 07

Now Aog = go(AKXidxid) for k € K and since w is left K-

Y)
invariant, whereas w,Af AQ is invariant under A, xidxid
Y w, 0% w ', 0 k

for k € K,, it follows that f(ky,ﬁ‘,ﬁ“) = f(e,n',n"). This

Y’
proves (9) with J = f(e,.,.).

For (10), observe that J(e,n") is determined by

at (e,e, ™ (w ) = J(e,n") (w

k(n™) Y)<e,e,5">'
Here the derivative df(e,e,n") of £ at (e,e,n") is the map

EYXEWXTE"(EQ') - TK(H“)K given by
(8ky,6n",6n") = de(n"){dp,(e) (8ky + sn') + &n"}

and this map is also the derivative of n at (e,e,n"). But by

Lemma 5.3 we have that

—1e-sz<H"> *

%
dnle,e,n™) (wK(H”)) = KYK (wY)

(e,e,n™)’

This proves (10).




5.3 Construction of the cycles I'n
-

technical reasons we fix an

element X € g such that 8 € Mip = 8{X) = 0. Thus

LEE
A = AX .
In our constructions and definitions we will often refer to the

element X. However the constructed or defined objects will
never depend on the particular choice of X. We will often
indicate them by the subscript F. For instance the centralizer

of X in G depends on F only, and is also denoted by G..

In this section v will be a fixed element of W, and we write

We will use the results of Section 5.2 for this element ¥ € a.

In particular, let w,w' be the elements of W determined by (7).
* .
Fix C > 0 arbitrarily. Cr will stand for a big enough positive

. *
real number, depending on F, v, C. In the course of the con-

struction we will encounter conditions on its magnitude.

We now start the construction of the cycles I'p V(aD) for
kd

a, € A(F,*C,CF). Observe that

0

K, = ViKY,

Y X
and consider the map & = gF,v: KYXNWXNW, - K given by

£(k,m,n') = vke(nm o'y,

J = J

By Lemma 5.4 there exists a real analytic funt

7
<




where s AS . ~ - Moreover
o “rLv “YA%M,UAQw’,U ?
1 =2pH{(n") —

" A4 Zponin’t )

Jle,n') = KYK e (n' & NV,E
T v ko *
Now let ag € A(F, €,Cp). Then

LT Ty X =y oy
Elk,n,n') = H( aavkn n') - H{n n")

e v T R

L K . ~
= H{ akan n'a ") - H{n n') + log a

-1 % —

. * 1% — ~ -1
where we have written a = v “( a) v av and a = v

1

(a). As
in Section 4.4 we shall first apply coordinate transformations
to bring H(aaé(k,ﬁ,ﬁ’)) in suitable form. First, if *a EE*A,

k €Ky, we define the map o (Fa,k): NW —>ﬁw by

1

o(*a,k) = rw(v(*5k>’1>oAd(h<*5k>‘ ).

Here it should be observed that v maps &k € Gy into Ny cw lww.

Obviously 0(*a,k) is a diffeomorphism, and we have:

* o,
20 H( ak)
)y = e ¥ Q

* *
g a,k) (Qw,O w,0

Moreover, we have
F _
H(" ko (Fa,k) (M) =

1

i

BT, (B0 T H IR CRI0 T D+ BRSO

1 1

HCS% (30 "t 30 7 )+ 150

H(m) + H(*3%). (12)

H

e . . = = =
If ag A, define n(aﬂ). KYwaxhw, ﬁ»KYwawa, by

n(ag ) GGT, ) = (ko(Ma,k)e Ad(E™H) (D), 00).




Obviously

n(aG) is a diffeomorphism, and we have that

# ~
N QQWH( ak) 2pw1@g a
n(ag) (wE,v> = e e | Op (13)

By (11) and (13) it follows that

Moreover,

have

*
Now if a

varies in

uniformly

(gon(ao)>*(w) =

E 3
2p HCEK) 2p
a

= Jo*a,0AdF 1T, e wp - (1)

writing H(a ) for the map k - H(agk), K - a, we

03"

H(aga«in(ao)(k,ﬁ,ﬁ’)) =
* . * — ~ —
= H( 3ko( a,k)(n)Ad(E,n')) +

- HGo(Fa, 10 AdE 1L, om0 + v Hlog a). (15)

. . * X _—
varies in a compact subset of A, and if (n,n')

, then

a compact subset of N xN ,
W, w',c

3

o(Fa 0 AdE™ L)) » e,

Ad(Z,n') — e,

[

. * —_— -
with respect to ( a,n,n'), when a” - += for every

+ . . .
o € A +\A?. Consequently the multi-valued analytic extension

of (@W,n")

of

- H(aoggn(ao)(k,ﬁ,ﬁ')) - v~1(10g a) 1s a perturbation

¥ * — -
H( ako( a,k)(n)) - H(n'),




which by {(12) is egqual to

H(®ak) + H(®) - HE").

At this stage, let us introduce some notations. We write
™\ ) for the space of functions é++\AY = €. If

4 - . ; } +4
z € C(A \AY), n o= exp(Ea(UOi + bZa)> {(summation cver A (s},

- o p ;
s = w or s = w'), with Ua € g_ , U € g—?a,c we set

a,C 20

z.n = expl® z Uy + 2%u. 1.

o 20
. — — 4+ = = _ .
Obviously the maps (z,n) = z.n, C(A \/fx\’{)XI\IS,C d NS,C (s = w,w')
are holomorphic. Now define the map Zp i oep 7 C(A++\AY) by
b4
(z. (an, = a’(® if o € 4T ()
Zp .y o i ,
~-v{a) . +4
= a if a €A (w'). (16)
With these notations, and writing a = vhl(a) = V_la;, we have
that:
AdGZTY ) = 2. (a).m (n €N
? F,v w,C
~ — B} - T
Ad(a,n) szv(a).n (n Nw‘,c)

Recalling that Y = v—lx and that (7), we see that

z. (a) =~ 0 if a. = = in A(F,*C,C.).
v 0

F, F

1f we write z = z
r,

V(a) formulas (15) and (14) become:




H(ao,gn(ac){k,g,ﬁ')> = (173

L * — . * I -1
= H( Zko( a,ky{n)(z.n)) - Hiol a,k)¥{z.nin’) - v “(log aJ,

and
*
. * o Z’QWH( ak) ZQW
(ion(ag)} (w) = Jla( a,ki{(z.n),n'"Je a wp -
Js

Moreover, observe that

fonta ) (k,0,0') = vke(o(Ta,k) (2. M.
0

4
F

. . * * - . . .
relatively compact in A. Therefore o( a,k)(n) varies within

* % * * * *
The set A( C) = { a € A; lallog a)] < C for ¢ € A, } 1is

a compact subset of N
W, S s,C

(s = w,w') be the smooth cycles constructed in Section 4.3. We
denote the branch of « over Ye (s = w,w') corresponding to

the branch HS by Kge Now select an open neighbourhood UF v of
3

0 in @(A++\AY) such that the following condition holds:

* * ok — —
For all a € A(C), k & Ky, n e imyw, n' € imyw,, Z € UF

we have:
o(fa,x)(z.mn" ¢ s, (18)
*eo * — —
(Tak)o( a,k)(n)(z.n') & S. (19)

¥ o y
k( ak)n med H_, and so,
S

il

¥ —
For (18), note that ( ak)q(*a,k)(n)

by left Kc_ and right Nc—invariance of 8, we see that

CaoFa, (M) & © if 7€ imy .

)

as long as n does. Let vgr Y, o N_ \S

N




. . o Tt 4

HNOow rite 1 for 1 { R (A ALY e { A

Now write Ug . for Up N R4 Vo) (here RCA "M\ay)

. . 4 .
denotes the space of functions A" \gy ~ R} , and define y:
1 * /*{‘\ ESE ks
i * AL COxK,xN xN Kb
Urp v,r AL )xﬁyxlwxfw, - ¥ by

* _ * R
Ylz, a,k,n,n') = vke(c( a,kl){z.nln").
Then we have
* —

gn(ag)(k,ﬁ,ﬁ’) = w(ZF,v(a), a,k,n,n’').
From the conditions on UF v it follows that the multi-valued
3

analytic extension of ¢ has a branch y, over

* %k — =
u x A( CIxK,xN xN , that restricts to
v Y ww

F

M

vkek 4 (n')
W

* %
over {0}x A( C)XKnywxyw,. Now assume that CF is such that for

any a € Ap with a® > CF for all g € A++\AF we have z

Then it follows that the map T

V(a) € UF .

F, sV

*
ACF, C,CL XK xY XY, = K_

F,v' Y

defined by
*
FF,V(aO") = wV(ZF,V(a)’ a)o(ld(KY)xywxyw,)

is a smooth cycle in KC (recall that YS = domain(ys), s = W,Ww').

Moreover, the multi~valued analytic maps

* *
H( ako(a,k) (W) (z.7m)), H(o(*a,k) (z.m)n")

* % .

have branches over UF,VX A( C)xKnywxyw, that restrict to
- ¥ — * *

Hw(n) + H( ak) and Hw,(n') over {0}x A( C)xKnywxyw,. We

denote these branches by the subscripts w and w' respectively.

In view of (17) the multi-valued analytic continuation of




- e
s o~ 43

H{a,;.) has a unigue branch H {a.3.) over I'. {a. ) =
S E"xy; O f'g\f C

(a } such that {(with z = Zp (a))

* %
I £ . o
&vsz’v\ajg al HF,v(aO"> =

£ — — * ——
= Hw( aks(*a,k)(n)(z.n)) - Hx,(g( a,k){z.nin') +
=

e 1
+ v “(log aJ.

Finally, the function J defined by (11) has a multi-valued
analytic extension that has a branch JO = JP,V,O over FF,V’

extending the real branch, and we have:

* ok
¢V(ZF,V(3)’ a) (w) =

¥
.20 2p H( ak) N o
=a "o V¥ JO(G( a,k)(z.n),n')wF v
b

Now let

o2

= expl (iA-p) {H_(*Fko (*a,k) (F) (z.7)) - H (0 (Ma,k) (z R} x

* expl 20 HCHO1I (0(Ma, k0 (2.7 ,750)

* kX%
3 \ o} . X X -
and define the map Fov LN AC C) UF,V C by
o, 0, = | ¥, e,z k,0,R e (20)
F,\i b s ‘Y-I F,V £ 34 hglly F,V
F,v
(where Yr v id(KY)XYwXYKW)' Then the map ®F,v

*
is holomorphic in (X,z) € a *u and real analytic in

F,v
* *, ok .
a € "ACTC), and it follows that




- . . ++ o, 4+ 4 .
Observing that 4 (w) C 4 (v) C A (w) U A, we see that
1

). Since v(p—?pv) = p (cf. the proof of

Theorem 4.20) we have proved the following theorem.

*
Theorem 5.5. Let C > 0 be arbitrary. Then there exists a
constant CF > 0 and a family of smooth dim(K)-cycles

*
T (a,): Y(F,v) = KC depending smoothly on a, € A(F, C’CF)’

F,v 70
such that the following holds. If a

0

*
0 € A(F, C’CF)’ then

(aO)) NS = ¢g. Moreover H has a branch HF , over
3

(aO)(y) such that

A(ao) (im Iy

the map A(F,

Y
*
C

2 L,C XY (FP,v) ~ GC\S, (au,y)—>aOF

F F,v

(il—p)HF v(agk)

Op v, (0’ T J © ’ wik) =

v

—~
>
“
o
“
N
ks
-
<
—~
o
~
~—
-
.
I
-

Here z (a) is defined by (16), and 9 is the function
F,v F,v

* ok ok
a X A( C)XUF v €, holomorphic in the first and last and real
b

analytic in the second variable, defined by (20).

U

0

*
ing the Taylor expansion for z - o v(k, a,z) at 0 we
kd

sec that the function ¢, . has an asymptotic expansion for
T,V A
. X i . . . . .
ag > @ in A(F, L,£F>. e principal term of this expansion is

given by




ivi-p
a ®F,V

*
5.y .2(20) (A, a,0). (22)

*
For the computation of ¢p V{A, a,0) we need the following
3

proposition. Recall that wF denotes the centralizer of ar in

W, and write

Proposition 5.6. Each v € W decomposes uniquely as v = uw

. +
with u € W w € wF. Moreover, we have A +(w) =

F’
o €a*ty av™ 0 <03,

Proof. The first assertion is a consequence of Proposition

3.9 in Borel-Tits [1]. As for the second assertion, fix

o € ATT 1f a(v-lx) < 0 then (va)(X) < 0 and since X € ot

+ +
*. Conversely let voa € =A +, and

this implies that va € -A
write B = -va. Then g € A++(v_1) and so B(X) # 0. Consequently

a(v—lx)

i

-g(X) < 0.

If 7 is any subset of A we write GZ for the centralizer of

A .
v € 3 ker ¢ in G. Moreover we put KZ

reductive closed subgroup of G with maximal compact subgroup

= KN GZ‘ Now GZ is a

K it admits the Iwasawa decomposition GZ = KZA(N,H GZ). If

i
*

TR a, we denote the elementary spherical function of (GZ’KZ)

determined by u by ¢Z(u:.). With these notations we have the

following theorem.

Theorem 5.7. Let all notations be as in Theorem 5.5 and

- * * %
ut K. = KK i.Then for every A € a _, *a € "A(C C) we have
P F X y c




= Kped g (hrw (C 2. I 0. T (0. (23)

Remark. Fprom this theorem it follows that the right hand
side of (22) depends on the coset Wgv of v in WF\W only. As we
will see in the next section this even implies that the function
depends on the coset WFV only.

¢F,V,A

Proof of Theorem 5.7. By analytic continuation we have

- -1 o=
J gle,n') = KK .exp(—Zow.h(n')>

F,v, Y

over Y - Substituting this in (20) and taking into account

that KX = KY and that

H, CakoCMa,k0@) = B (D) + HCt30),

we obtain that

* ~ o~
op (A 2500 = KP.¢(*a>.1w(-x).1w,(x>, (2u4)
(ir-p+2p JH{*3K)
o (*a) = J e “ wY(k).
Ky

Now WFV = WFW and hence Y = v "X = w—lX and v-l(F) = wﬁl(F).

Moreover, w—l(AF) is the rootsystem of the pair (gY,a) =
(g ,a), and w—l(A;) is the choice of positive roots

w (e
corresponding to N N Gy. Consequently, if we write

= 3 Z+m(<x)ot,
F

P
F o€ A




[ea]
i
™
ay

positive roots. Now consider the semisimple algebra 8y,
Y
.8, . Then g,. 0 a s the orthocomplement of N (ker o)
Lay>eyl 8y ocompLemen @ (Y)=0 o

1
-1 %
in a. Hence 8y, Ma = w 1( al). It follows that 8y, admits the

Iwasawa decomposition

1k
= f, *tw 1( a) + n

8y1 Y y*
. -1 % .
Consider the closed subset qu = KYw ( A)NY of Gy. It is a
subgroup with Lie algebra By, - By the given Iwasawa decomposition

1

- %
it follows that H maps G into w “( a). Hence we see that

Y1

E W -1 % * * P
H( ak) € w “( a) for a € A, k € K By Proposition 5.8

Ve
F3
below, Pr and p have the same restriction to a. Hence on

-1 %
w ~( a) we have:

P 2p, = Wnl(p) = wnl(pF).

* X
Consequently ¢( a) = ¢ (X: a). Now let u be the element

-1
w (F) -1 % 1 -1 %
of Wy such that v = uw. Then a = v "(a) =w u (a)s=
-1 - -1 %
vy 1w{w ¢ a)]l and since ¢ _, (A:.) is invariant under the
w “(F)

Weyl group w—lew of the pair (ng,w—l(*a)) it follows that

* -1 %
0Ca) =9, QuwtCan.
w (F)
L * *
Proposition 5.8. pFl a = pl a.
' @ = (N K Loy o ££3
Proof. Since a = ( e p Ker o) = wEF ker o it suffices

to prove that p.(H ) = p(H ) for each o« € F. So fix o € F.
F o a

Since SQ(X) = X, g, permutes Ar. Now o 1s simple and hence Sy

permutes 2 N\ {a} as well. Consequently S permutes A;+\{a} and
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* *

Let C, be the positive constant fixed in Section B.5, and
g
- *
select a constant C > {

Cra. N AL, ) # 2.

uch that A( A Co

<
n

Moreover, fix a constant CF > 0 such that the results of

the previous section hold for each v € W. Put

A = acE,"e,cp) 0 A,

Then A is a nonempty connected open subset of A .

*
Lemma 5.9. Let A € ¢_, v € W. The function ¢ defined
e tsarren C Fava)\

by (21) satisfies the radial differential eguations (4.47) on A.
Proof. Just as the proof of Theorem H.21.

Lemma 5.10. Let v € W. Then there exist holomorphic functions

- ¢ (u e WP) such that for every ) € “Z g we have:
3

T oep (25)

F,v, uv,A

on A,

Proof.Just as in the proof of Lemma 4.24 it follows that

. . s . *
there exist holomorphic functions e_ = e i oa - C
s F,v,s c,0

*
(s € W) such that for every A € a, g we have:
2




Z5

e (x)
gw RAAER
the functions ¢F3¥9%, ﬁssk
is given by

*aa)

0

$F,V,A

)

behaviour of

A, The asymptotic
(recall thenotation a

on
in the variable a
the formulas
_ _isA-p *_ disd-p N N
¢S,A(a8> = a (al ¢ (h,z (agl), (262
_— , .
(A, a,z. (a)y. (273
F,v
1 -1
EYS

p ivi=p
q)s,v,k\aﬁ) @ ¢F,v

s 0 unless s

= uv for some

= e (u € W.).
uv F

From this it follows immediately that e
on ap. The latter condition is equivalent to: s
with eF,v,u

u € We. Therefore we obtain (25)
Theorem 5.11. Let v € W and let w,w' € W be the elements
- ++
= wer™ oo <o, 2w =
a(v-lx) > 0}, If A € ¢_, then for all a, € A we have

determined by A++(w)
++
{a € A 3
a. (7Y (ap) = £ dluwn) e (a)
Fow Fovyn 0 uw, 077
ue WF
where (for s € W):
A o= (=2 it d {x) .
dF,S(X) it da\ A it ot
qe att e ATt
a(s™ )< a0 als™ix) >0
Proof. Consider formula (25) in Lemma 5.10. Since W, v =
it can be rewritten as
= {3 364 { foa
z VBW\AJQuW,A\aOD {287

la,) =
PRavaaT T ey
-




C e s iwh-p
(u € Wo). If we divide (28) by a~ " " and

i .. 1 4 N . . - -
take the 1limit for a = +o (g € A \ﬁnﬁﬁ then in view of (283},

%
@Fjv(lﬁ a,0) =
111 A - F ES
=z (CaytuiATe (e (h,zo Ca)) =
u = wr’ Uuw uw W
= = E3 5 — *
-1 G, s Lz Can. (29)
u€w "Wow wu wu wu

F

T *
Here z; (s € W) is the function A - €A™ given by:

* -
GEFan =0 if a(s™h0 = 0,
3 o
* -
= Ca)®? if ats ix) <o,
= (Fay7se if als ) > 0.

*
Since the constant C could have been fixed arbitrarily big, the
identity (29) is actually valid on the whole of *A ﬁA(CO). We

shall now compare the asymptotic behaviour of both sides of the

*
identity (29) when ( a)¥ > 4o for every a € A;+. First con-

*
gsider the formula (23) for @F V(A, a,0). If ( a)® = +o for every
>
-1 %
a € A;+, then w 1( a) tends to infinity in the positive Weyl
-1 % -
chamber of w j( a). Therefore ¢ -1 (A:w 1(a)) has an asymp-

w ~(F)
totic expansion as in Secton 4.5. Since w "Ww is the Weyl group

-1 *
, W 1( a)), the principal terms of this

(F)1

expansion are given by

of the pair (g 1
w

- %
(hiw " a)) ~ I (w ~C a) .co_ (ur)
S




where ¢ -1 denotes the c-function of the pair (G LK
w (F) % w {F} w T(F}
i

,* )

By Proposition 5.8 we have po a = pl a, and so, compar
Yy F I

*

principal terms of the asymptotic expansion of ¢, (i, a,0)
FL,v
thus obtained with those of the right hand side of (29}, we

obtain

-~
Loy
o3
s

4
-k

. (?)(uu),l (-231 _,() = ewu(k)Qwu(R,G),

for every u € w—iwgw. Before proceeding with this proof, we

first prove the following proposition.

Proposition 5.12. Let w € WF, and let w' € W be the element

1

determined by &' (w') = {a€a*™, a(w Ix) > 0}. If u € w™ Wew

we have the following identity of meromorphic functions:

1

o8]
[N
-t

(UAYT (=2)I ,(A) = dlwur) ~¢_ (A,0). {:
W W Wu

w—l(P)

Proof. As we proved in Sections 4.3 - 4.5 the functions

-1 o .
Ky Cw'l(P) (ury, T (-MI () and K ld{wuk)@wu(}\,u)

can be written as products

. ey - 1,00 (i =0, 1, 2
Sy i

respectively, where I

ST

o= le€a s alw X = 0 & un

= {a € 2™ ratw™h0 > 03,

]

N b
i

a € Ay wua € 1A},




hig is established as follows. Tirst let a € A )

Now th
-1 R =, . .
a{w “X) = 0. Then ualw ~X) = 0 and so wua has the same sign on
5 ~F + + .
a as w “{(wua) = us. Conseguently Ly = I, N A,. Next, let

o €A77, alw XY # 0. Then wua(X) #* 0, and so *a(w "X) > 0 &

-1 L * -
w tual{w ~X) > 0 & twua € A . Therefore iy = I

indeed (32).

End of proof of Th., 5.11. By (4.27) we have that

dp OOI (-0I () = I (-0T_, (1), and hence:
\ W W . W W

- 3

e () = d. Oodawuw) L
wil F,w

for every u € w—inw. This completes the proof.

*
Corollary 5.13. Let X € a . If v(1),v(2) € W are such that

WFv(l) = WFV(Z)’ then

Provc,y T O CELv) e

Notations. If o belongs to the coset spacé Wﬁ\w; we write

(v € 0) and d,

5 A F,o

(v € 0). With these notations we have the following theorem.

¢F,G,A instead of ¢F,v instead of dF,v

* *
Theorem 5.14. Let A € 'ac, a, € A(F, C’CF)' Then

-1

F,0 ¢F,G,l ). (33)

(a

b, (ag) = % dn. ()
rE CEWN\W

0




e

{
£
o
Fa
S

Proof. By Theorem 5.11 and Lemmas 4.24, 4.25 formula {33)

holds for a, € A = A(CO) N A(F,*C,CF). By analytic continuation

0

it is valid on the whole of A(F,*C,CF). The second assertion

is a consequence of Theorem 5.5 and Corollary 5.13.

Remark. If v € WF, A€ “Z’ then the function z - o V(A,z)
bl
has a converging power series expansion at z = 0. This yields

a series expansion

- iV}\‘D 1 ¢ * ~u ~y
¢, (a,) = z a z r (h, ada ™. (24)
AU ewr e L, Fovou
Here L, denotes the set W, (S\F), the T! are functions
0 Fov,eu

* . . . . . N
’GCX(*Q) = €, holomorphic in the first and real analytic in the
second variable. The series (34) converges absolutely in all

. . * * ) .
derivatives for x € ta s a & A(F, C,CpJ), locally uniformly

0

with respect to A and a,. Using standard estimates for the

0

remainder terms of the power series expansion of ¢p V{A,z) we
2

see that (34) is an asymptotic expansion for ¢A<a0>’ when

. Lok . N . o
ag = o in A(F, C,VF). It is leocally uniform with respect to

* * N 1 T a4 «:
(A, a) € 'a _x( a), Moreover, by (23) and since

*
el

faal
~
H
-
[
F-id
o~
e
S
3
[l
—
i
ot
"
-
-
s
.

-1
d. (a7
FLv

R




the principal terms of this expansion are by
¢1{ac} ~ (35)
IVA- IR I
~ T O Koo _, Gov Tan .1 ()., 00,
o F ¥ -1, - v v
vE W v ()

5.5 Asymptotics along A, for ) bounded

Tn this section we will study the asymptotic expansion (34)
for ¢A(a0) when ag > in A(F,*C,CF) in more detail.

Let L be the set M.S. Each element y € L can be written

uniquely as u = EaEES ulade with pla) nonnegative integral. The
number
lul = £ ula)
a€ S

is called the order of u. Let L., denote the subset WN.(S\F) of L.

0
Fix a numbering {ql,...,ap} of S\F and identifyimp with L
via the map (u(i)) - Eu(i)ai. We thus have | (u(i))] = Zufi)d.

We will focus our attention on the problem of estimating the

remainder terms:
RF)k(A,aO) =

= ¢k(a0) - z a)a ¥ (38)

when A varies in the set

«*' = {g € a*; (£,a) #+ 0 for every o € A++}.




If » is kept in a bounded subset of «*', then the remainder

terms RF,k(A,aOD can be estimated uniformly with respect to i,
even though at first sight (36) becomes singular when (J,a) = 0
for some o € A++ {cf. Theorem 5.22). This main result of Section
5.5 is the local version (with respect to i) of a result of
Trombi-Varadarajan {(cf. [1, §2.11}1). In the next section we will
discuss the problem of egtimating RF)k(A,aO) when ) is allowed
to tend to «.

First we show that the estimation of RF’k(A,aO) can be re-
duced to estimation of the remainder terms of the asymptotic
expansion for ¢ (A,*a,zF,I(a)). The following lemma is the

r,I

initial step in this reduction.

Lemma 5.15. If w € W, x € “Z’ then

d (M) = d (wrd, (37)
% 51

F, F Or wor - PF,T,unc

Proof. By Corollary 5.13 and the fact that d depends on

F,w
the coset Wpw only it suffices to prove this for w € WF. If

u € wF then ¢uw,x : ¢I,uwx = q)u,w)\'

obtain

Hence by Theorem 5.11 we

a. (o7t g LG~

) 1
F,w Orw,n - 9 S T,un"

Therefore we may restrict ourselves to the first identity of (37).
If o € 8"\a" (W) then 4 (1) = d_ (wd) and if a € 477 (w) then

d (x) = 4d (-wX). Now
o ~Wo

w({a € A++; a(walx) <op

"
i
N
o>
—~
=
-
-~
>

i

=

+

+
e
~
&>

3

-+
-

JuEY
~—rt

U AL,

w({a € A++; a1 > 01




Hence substituting B = -wo in the first product and B = wa

in the second product on the right hand side of the identity

for dp. w(}x) (¢f, Theorem 5.11) we obtain that
L

d. d

(x) = (wi) = d. (whJ,
F,w gE ﬁ;;i*\AF r

B 5L

From now on we shall also write d,. for d. and ¢ for 4.
F r,I FyA .1,

With this notation we have the following corollary.

Corollary 5.16. Let X € 'a¥, a/ € A(F,*C,C.). Then

1

$,(ay,) = I d.(wA) "¢ (a)) =
A9 sewf T Fowh 0
1 -1
T b> d.(wX) ~¢ (a.).
TWel  Lew T F,wi 0

*
Now let m: @ ™ € be the function defined by

a(A) = i (a,A).
aeat?

The following lemma, combined with the observation that the
function wd}? is real analytic on a* is the next step in our

reduction.

Lemma 5.17. Let D € U(aZ). Then there exist finitely many
D. € U(a¥) (1 <1 < 1) of order < order (D) + #27", such that
* ®
the following holds. If f: a - C is any C (real analytic)

function, then the function o*' = C,

1

fwd) (38)

A 2 wlwa)




. © . g . ®
extends to a C {(real analytic) function F: & > C. Morecover,

I

L *
if 2y € o, then:

{DF(kGﬂ < max max IDLE(A0 T, (39)
1€i<1 }\ECh(}\D) -

where Ch(xg) denotes the convex hull of the set {wi.: w € W}.
0

Proof. We postpone the proof to the appendix at the end of
this chapter. It is based on a formula of Demazure, expressing T

as an iterated difference quotient (cf. [1]).

Let us now concentrate on the function
ix- *
¢F,A(a0> = a DQF(A, a,zp(a)),

where we have written @F for o and z. for z Consider

r,I F F,I°

again the construction of I'p = Ty I(a0>' In this case we have
b

v=1I,Y =X, and by (7) w = I. Set
u = w'.

Since Nw = {e}, J corresponds to the single valued analytic

,C F,I

function Jpt Nu C\S - ¢ given by

- -2pH(T)
JF(n) = KF e

(cf. (10) and Lemma 1.19). Moreover, by (20) we have

@F(A,*a,z) = (40)

b

(1x-p)H, (Fak(z.7)) -(ir+p)H ()
J € € OxAy g

KXXYu




= z
u,c o€ A,a(X) <0

gOC,C’

. . ke o * -
and so it normalizes Nu o Hence for a, € A(T, u,CF} we can
3

rewrite the integrand of (40) with z = ZF(a) as:

(ir-p)H(*ak) (ir-p)HylAd(a*ak,m)x(*ak)] -(ir+p)H (W)
e e e . (u1)

where HO now denotes the real branch of H in some neighbourhood

of Ky in GC\S. Now put

*AC*C) = {*a € *A; allogfa) > -C*, o € ARV

If a% - +o for all o € A++\AF, then (a*a)™®

- 0, uniformly
with respect to *a e zA(*C), and so (41) can be seen as a
perturbation of

(ir-p)HTak) =(ir+p)H ()
e e u .

Keeping this in mind, we introduce the map Lyt AF - @P. First,
if ¢ € ¢f we define 2(2) € €(ATN\Ay) as follows. If o« € a7 \4y,

o = 2P k(i)a, mod N.F, then
1=1 1

k(1) Ck(p)_

z(L)y = ) SRR

We shall also write £.n for z(2).n (z € ¢P, n € Nu o) - Now let

3

the map Lp: Ap 7 ¢P be defined by:

-0

tp@)y = a J (1 <35 <p).




Then obviously, if a € A., n € N, we have:
i

g?(a}iﬁ = ZF(a).E = Ad(a,n).

Let V be an open neighbourhood of K, in GC\S such that the

real branch HG of H exists in V. If ¢ > 0, we set
D(0se) ={g & C7; igjl < e, 13 <p}.

We now have the following easy proposition.

Proposition 5.18. There exists a ¢ > 0 such that for every

*a € TA(*C), x € Ky, T € imy > ¢ € D(0s¢) we have

[c.Ad(*ak,H)]K(*ak) € V.

By Proposition 5.18 we may define the map

vei aXx[JA*C)]xD(03e) ~ € by

=
* o~ ‘
WF(A, a,rg) = . iy wF'mXAQu,D’ 42)
X" Tu )
KW = Ko ¥ a0k, 0,0 =

(ir-p)H(Fak) (ix-p)Hy ([ z-Ad(*ak,m)]k) ~(ix+p)H ()
=z e e e .

Here we have written x = wx(*ak).
If C' > 0 we set AL(C') = {a € Ag; a% > C', o € S\F} and:

+A(P,*C,C‘) = :A(*C).AF(C’). (43)

With these notations we have:
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o
1

o IV s, -
Lemma 5.19. The map ¥p: an[+é( C)ixD(03¢) = € is holomorphic

in the first and last variable, and real analytic in the second

RN

variable. Moreover, 1if ag = +A(F,*C,g- ), then:

; - il'p * i
@F,A(ao) = a WE{A, a,;F{a)). (uy)

Proof. The first assertion is obvious. Formula (H4) is valid
for a, € A(F,*C,CF) f\+A(F,*C,g—1) and hence by analytic con-

tinuation it is wvalid on +A(F,*C,g_1).

The function ?F(k,*a,.) has a power series expansion

v (x,*a,0) = 2 0. (2, Fa)cH, (45)
F LEL Fou

where
0. (a,*a) = = (2My (A, *a, ) (46)
F’U s U! FYa F 2 2 L Q=O'

Here we have identified WP with LO under (y(i)) -~ Eu(i)ai

and we have used the multi-index notations:

plos p(D e u(pt, M= C§(1>...gu<P>,
p
u u(1) wip)
<§L> = (=2 co (=2 .
4 3C1 BCP

Observe that with these notations we have QF(a)u = a ¥ for

a € Ap- Hence (45) leads to the converging series expansion
bpytag) = at Pz ep (G Taat 47)
2 LE LD s M

Thus, in view of Corollary 5.16 we obtain (34) with




Now let

H

i

Then the following lemma

Lemma 5.20. If i

it

RF’k(A,aO)

1
Wl

we W

Before proceeding, let

T

us introduce some notations.

37

dplwdl) 76 {vi, al. (48)
* Lol
b op u(x,*a>g“, (49)
%
ue L(}
ful <k
follows immediately.
z, a, € +A(F,*C,e_l), then
1 iwA-p *
m“)‘ a RF,}((W)\’ a,z;F(a)). (50)

We write

I .I for the norms determined by ( , ) on ¢ and g*. If ¢ € cP

we put |z

function of (GF,KF) given by

Kp

where dk., denotes the normalized Haar measure of KF

J e~pH(xk)dkF’

max {]cll,...,lgpl}. Finally let Ep be the spherical

(51)

K

¥ (observe

that by Prop. 5.8 and the proof of Th. 5.7 we have EF = éF(O:.))

Lemma 5.21. Let D

A
k € IN.

lDAR

T,k

€ U(aZ) be of order < d, and let R > 0,

Then there exists a constant A > 0 such that

k+1

On*a,o)l < AL+ llog*al) @z Cadligh**?,
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for » € a¥with Al <R and for *a € in*C}, r €00zl

Refore proving Lemma 5.21 we present the principal result

of this section. Let g € o« be defined by

g = min o
a E5\F
Then obviously a™® - HQF(a>H for a € Ap.

Theorem 5.22. Let DA € U(ag) be of order <d, and let R >0,

k € W. Then there exists a constant B >~ 0 such that

iD (l,ao)l < (52)

WRF,Lk
< B . [(1 + flog a1 + “log*a”)]d+NEF(*a)a-(k+1)8—p
for A € a® with A <R and for a, € +A(F,*C,g_1). Hepe

N = #A++,

Proof. In view of (50) this follows from Lemma 5.21 by

application of Lemma 5.16 to the functions

£f A

> ”(}\) alk—pR
0 r

*
a—F"(-ﬂ' k()\° a,CF(a)).

>

Proof of Lemma 5.21. Consider the Taylor expansion for the

function t DAWF(R,*a,tQ) around t = 0. At t = 1 its k-th order

remainder termis just equal to DARF k(%,*a,z), and so
2

D4R s Ly Ip v, *a, )]

(A ¥a,0)] <00 max e L ()
? ? ! 0<t<1 (k+1).l dt

T,k




N

0 QX X

Now let P: a -~ € be the polynomial function defined by P(H) =

= Dk(exp ia(H») ) Then differentiation of (42) under the

=0"

integral sign yields
N R
DA¥F(A, a,r) = P.?F.wXAQH,Q

where F = P(*a,k,,m) = P[H(*ak) + H,([c.Ad(*ak, M) ]c(*ak)) -
- Hu(ﬁ)]. By Kostant's convexity theorem we have fTH a0 <
< Hlog*aﬂ (for a recent elegant proof of this theorem, see
Heckman's thesis [1, Theorem 1]). Now Lemma 5.21 follows from
a straightforward estimation of

g
dt

k+1

=5 [g(*a,k,tc,ﬁ)vy(k,*a,k,tg,ﬁ)].

5.6 Asymptotics along AF’ for A unbounded

In [1, 82.11], Trombi and Varadarajan obtained estimates for
RF,k(A,aO), uniform with respect to A € a*'. These estimates are
like (52), with an additional power of (1 + llAll) on the right hand
side of the inequality. We have not managed yet to obtain these
results with our techniques. However if A1 is a compact subset

of {§€a*'; &l = 1}, and if X varies in the set
A= {18; £ € Al’ T 2 1} (53)

then we are able to obtain estimates which are sharp in A. Of

course here the problem is to suitably estimate the function

Y Im(HD[{C.Ad(*ak,yu(y))}K(*ak)] - H Iy 0D (54)




-

-

-

integral for Ry k(k,aQB. For
, 0

P deforming the cycle v so that a

1

multi-variable version of the method of steepest descent can

be applied (for a description of the single variable method,

see Erdéilyi {41, §2.51). After this deformation, the main con-

tribution to the integral comes from a certain non degenerate

stationary point olo) € Y, ® domain (Yu} of the function (54

of v. This point is independent of the value of the parameters

(x,*a,k,r) if ¢ is sufficiently close to 0. Here the allowed

magnitude of [ depends locally uniformly on A € a*'. On the

other hand if (A,a) = 0 for some o € A++\AF then the set

of stationary points of {(54) is completely different, and there-

fore the obtained results are not uniform if A becomes singular.
The idea to analyse the set of stationary points of the

function (54) in order to obtain asymptotic expansions is due

to Duistermaat, Kolk and Varadarajan (DKV). In DKV [2] they use

the method of stationary phase to obtain asymptotic expansions

for integrals of the form

J LTAH (ak)
K

gla,k)dk (g € CT(AxK)) (55)

when A € a*, T = 4=, with a kept in a compact subset of A. By

an ingenious method they are able to obtain uniform estimates
for (55) even when A varies in neighbourhoods of singular points
in «®. We hope that a synthesis of their techniques with those
presented here will eventually lead to a complete understanding
of the asymptotic behaviour of @A(a) with respect to A and a

gimultaneously.

We now come to the main result of this section.
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el

Theorem 5.23. Let A be a set as in (53). Then there exists

L1

a constant € > 0 such that the following holds. If k € IN then

there exists a A, K > 0 such that
AL
- n(E,k) o %y ~(k#1)p=p
fRF’k(l,aO)i \"Aﬁ,k’(i + A cEpCTad.a
for every a, € +A(?,*C,e"1), A € A, Here m(F,k) = k + 1 -

i

Bt

dim(w ).
u

Proof. This theorem follows immediately from (50) and

the lemma below.

Lemma 5.24. Let A be a set as in (53). Then there exists a
constant € > 0 such that the following holds. If k € N then

there exists a B K > 0 such that

A,
la-(0 R - (L *a,00 <
F P,k Mo @
m(F,k) -  * k+1
< By (1 1D 2yl (56)

for every X € A, *a € :A(*C), z € D(0se).

Proof. As in the proof of Lemma 5.21 the left hand side

of (56) can be estimated on

IdF(x)l’l
max @ —t———, |<—~ WP(A,*a,tC) . (57)
0<t<1 (k+1)!

Now (d/dt)k+1W (3,*a,tr) is a finite sum of terms of the form

F

: *
P(AQLL) J e(lk—o)H( ak).eTf.g.wXAQU,O

K

Xqu




where P and § are polynomials of degree < k+1,

P . ) — - - - N .
= g{h, a,k,tz,n) is a uniformly bounded function, and where

R P PU R

The proof is completed by application of the lemma below.

Lemma 5.25. The cycle Y, can be chosen so that for every
compact subset A1 of {£ € «®'; 2l = 1} there exist constants
€ > 0, A" > 0 with the following property. If G: Y, C is

any continuous function, then

TECE, a5k, 0Ly, () . -
e G(y)Yu(Qu:O) <
Y

u
. ~-3d
< A'. max lG(y)l.dF(Ti).T 2
yEY,

for *a € :A(*C), k € K z € D(03e), £ € Al’ T 2 1. Here we

X)

have written 4 = dim(?u) = dim(Yu).

Proof. We will give a sketch of the proof, and leave the
details to the reader. It will occupy the remainder of this
section, with at some places interruptions by propositions.

It will be convenient to work with a parameter k € Ky
and with the parameter n = (Z,k,k) varying in the compact set

E = AlxKXXKX' Moreover, we shall work with a parameter

z € @(A++\AF>’ varying in a sufficiently small polydisc




4
“ \ e

D'(0se) = {z; tz | <g' for all a € A N4

Now let the function T: EXQ’(D;EDXYu -+ IR be given by:
Fin,z,y) = (59)
= -€ In {Hﬂ[{z.Ad(k,yu(y)}}K} - H v}

Then with n = (£,k,x(*ak)), z, = Z(C)a.(*a)“g for a € A++\AF,

we have
Fin,z,y) = f(g,*a,k,c,yu(y)).

Hence we are done if we can choose Yoo ¢! so that (58) holds
with f replaced by F, for all n € E, 1 2 1, z € D'(03e").

We will view F(n,z,y) as a perturbation of
F(n,0,y) = & Im {Hpev ()} =

= ueEA“ £ Im {Huoya(yu)}.

Here we have used the notations of Secton 4.3 and we have
written y, for the Ya-coordinate of v € Y, We will now describe
how the v : Y, *‘Naac\S must be chosen. Let us fix a € A++(u),
and use the notations of Chapter 3 for the corresponding real
rank 1 group ¢%. Fix a number 0 < by < im, a sufficiently

small number § >0, and a 1-dimensional ¢” submanifold Y& of

B’xR ac drawn in Figure (5.1).




Moreover, let Y ~be the set of (£,(X,Y)) € [O,W]XBI with
(£, (X, ) € Y&. Thus Y, is a compact ¢® manifold of dimension
dim(Na). It tends to 3({w0,w—wO]XBI) if § I 0. Now let

Yoi Yy 7 NQ7C\S be defined by

¥, (£, (Y = ate T THEGG A

(cf. also the formula above (3.8)). If § is sufficiently small,
then v is homotopic to Yo and so we may use it in the con-
structions of Chapter 4. In Figure 5.2 we have drawn the image

of Y  in the case of SL(2,IR) using the same coordinates as in

o

Figure 3.1.




Figure 5.2.

Now let Hu be the branch of H over Yo corresponding to HI’
an let ofa,+1) = (wo,(0,0)) € Ya, o(a,-1) =(ﬂ-w0,(0,0)) € Ya'

Then we have the following easy proposition.

Proposition 5.26. If y € Y&\{o(a,+1),o(u,—1)}, then

0 <a Im {HaoYQ(y)} < 27,

and aHaoya(o(a,+1)) = 0, uHaoya(o(a,~1)) z 27i. The function
y = o Im {HQ°YQ(Y)} has non degenerate stationary points at

o(a,+1), o0(a,~1). Moreover, the second order total derivative
4% Im (Haoya)) is positive definite at o(a,+1) and negative

definite at (a,-1).




N

A, =Y L (disjoint union),
E
cEW
each A being a compact subset of a®1. Clearly it suffices to

prove Lemma 5.25 for each of the A So fix o € W, and suppose

lo”

that A, = A Now define the point o(g) € Y, as follows:

1o
- *
0(6)Oc = g(a,-1) if o >0 ono 1(a +),
0(a), = 0lu,+1) if o <0 on o T(a*T).
Next, define the function 29 . az - € by

o

LX) = 2w, z A(H ). (60)
a€a™Na, @50
o) eatt

Since for every y € Yu we have

Hov (y) = z Hovy (y.)
u 'u (x€A++\AF a ‘a Ja’’?

the following proposition is an easy corollary of Proposition

5.26.

Proposition 5.27. If y € Y \{o(a)}, £ € Ajs»> then

o
£ Im {Huoyu(y)} < iy,

and & Im {HUOYU(O(G))} = $9(¢). The function y > £ Im {Huoyu(y)}




has a non degenerate stationary point at o(c). Moreover, the

second order total derivative d2(€ Im {Huoyu}}(s(d)) is negative

definite.

Now recall the definition {(59) of F, and observe that

d F(n,z,0(0)) (the subscript v means that the total derivative

2
¥
with respect to the variable y is taken) is a perturbation of

dgF(n,O,a(G}) = a’(5 In {H v })(0(0)).

Proposition 5.28. There exists a constant €' > 0 such that

for all n € E, z € D'(0;e') we have

29gy,

iH

Fln,z,0(0))

it
o]

dyF(n,z,o(o))

diF(n,z,o(o)) is negative definite.

Let us now finish the proof of Lemma 5.25. By the Morse Lemma
with parameters (cf. Hormander [ 1, Lemma 3.23]) thereexist a
neighbourhood U of o(g) in YU, and a system of coordinates

x = x(n,z,.): U~ ﬂfi, depending c” on n and z such that
Fln,z,y) = Qn’z(x(n,z,y),x(n,z,y)) + zo(g>

for some negative definite quadratic form Qn 2 depending
3

smoothly on n,z. Using a c” partition of unity {¢1,¢2} on Yu,

with supp(¢1) cu, ¢, = 0 in an open neighbourhood U' of 0(o)

we may rewrite the integral in (58) with f replaced by T as

Ii(G) + IZ(G)’ with




o
T.(G) = eE (tg) j e Mo% {@1.61(y(n,z,x))&(n,z,x)dx

where y(n,z,.) is the inverse of x(n,z,.), and where J is some
Jacobian. Applying the substitution x' = yTx, we see that

exp(-ZG(Tg))Il(G) equals

' 1
0Oy (n,2,220] Tz, D axt

4 0 (x',x")
-l { e Ns,2Z
= =

IRd

Now let

Q Z(x,x)
B! = max ](¢1oy).J] . max ( J e > dx >
n,z
IRd
(the integral is absolutely convergent and defines a ¢” function

of (n,z)). It follows that

Nj

1 T,(8) < B'.max| 6l .exp(s°(te)) .1 (61)

On the other hand by Proposition 5.27 there exists a constant

€9 > 0 such that

Fln,z,y) <3%() - €q (62)

forn €L, y € Yu\U’, z = 0, If €' is chosen sufficiently small
then (62) still holds for z € D'(03;e'). Consequently there

exists a constant B" > 0 such that

P, (G < B".max!Gl.exp(ZO(Ti) - Teg) (63)




coo e

for n € E, z € D' (03¢e'). Now (58} follows from (61), (63)

and the observation that
exp(z7(rE)) = 0(dp(rE)) (1 = +o),

uniformly with respect to § € Ais’

Remark 1. In the case of SL(2,IR) we may use the curve
along which Im(H(z.n) - H(n)) has its steepest descent. By the
Cauchy~-Riemann equations this is the level curve Re(H(z.n) -

- H(n)) = 0. In the coordinates used in Figure 3.1 it is given
by the equation:
2

1+ 22221 = 11 + 2

If ¢ =~ 0, this curve tends to the limit curve |1 + 22 = 1
(see the cover of this thesis). Thus the method of steepest
descent can be applied in its purest form here. This leads to
an asymptotic expansion of d(w%)~1¢(wk,c) (w € W), when

(A,a) > +=, ‘ocally uniformly with respect to ¢t € ¢, lgl < 1,

The principal term is given by

-1 1 -%% det(w) 1 5 -1
N e 2 -

d(wir) “o(wir,zg) 7= e .X(HQ’G) A1 z .
where v 1 - gz is the complex root having its argument in the
inte rr
interval ( 2,2).

Remark 2. By putting the cycle Yy (u € W determined by

u(a™y = -a*) in a position of steepest descent in a neighbourhood

of the relevant stationary point, it is possible to obtain




(t2) "8 (tx,z), when T = +», locally
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uniformly with respect to € g ' and uniformly with respect

to [ varying in a sufficiently small neighbourhoed of 0 in

+4 . . . . . ;
C(A ). Substitution of ¢ = 0 gives the asymptotic expansion
*

for c(7x) (1t = +», X € a ') which Cohn derived by application

of the method of stationary phase (cf. [1]).

Remark 3. As I learned recently, curves as the loop in
Figure 5.2 are known as contours of Pochhammer type. In his
paper [1] Pochhammer introduced such loops in order to represent
solutions of ordinary second order differential equations of the
regular singular type by integrals over them, the advantage
being that convergence is ensured. In [2] he applied this idea

to the study of Euler's Béta function, and to the study of

the hypergeometric functions.
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Appendix to Chapter 5

Iterated difference quotients

]

n this appendix we give a proof of Lemma 5.17, based on
a lemma of Demazure (cf. [ 1, Lemma 4]).

We shall consider the space a* together with the root
system R = 2™ U (-*") and the choice rRT = 4%t of positive
roots. The corresponding set of simple roots iz denoted by S.
The action of the Weyl group W on o« naturally extends to

S(a*), the symmetric algebra of «* (over €). We define the

linear endomorphism J of s(a™) by

J(p) = T det(w).(wp) (6u)
wEW

and we define the element 7 € S(a™*) by

T = I a.
a € RY

If a € R, p € s(a®) then it is easily seen that a divides

p - sa(p) in S(a*). Ve set

D - sa(p)
Aa(p) = ———-—&-———-—.

Thus Aa is a linear endomorphism of s(a®) mapping the homo-

m+l, * . m, %
geneous component S (a”) into S (a’ ),

As usual, if w € W, an expression

TS0 MR T Eep'

with S0(d) € 35 (1 <3 <1t) will be called a reduced expression

for w if it is of minimal lernsth. This minimal length iz called
& &
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the length of w (notation: £(w)). As is well known, we have

2(w) = plw) (cf. Varadarajan [ 1, Theorem 4.15.10]).

Lemma 5.29. (Demazure) Let Wy € YW be the element with

be a reduced ex-

+ =t .
WS(R ) = -~R, and let wg S (1% " % ()

. o * -
pression. Then for every p € S{a ) we have:

ﬂ.Aa(i)o-..oﬁa<N>(p) = J(p) (653

Proof. Identical to the proof of Lemma 4 in Demazure [a17.

We now come to the analogue of Lemma 5.29 for the space
C”(a*) of € functions a* - €. Let P(a*) denote the subspace
of polynomial functions «* = €. The identification of «* with
a** by a = (a,.) induces an algebra isomorphism s(a®) = P(a™).
From now on we identify S(a*) with the subalgebra P(a*) of

c”(«*) in this manner. Observe that the action of W on P(a®) is

given by

1

(wEY(A) = £(w ~2),

for w € W, f € P(a®), ) € a¥. We extend it to Cm(a*), using the
same formula. Moreover, we extend the endomorphism J to an
endomorphism of c”(a™) by just using formula (84). If f € ca*),
then the function A *‘(u,k)_jlf(k) - f(sa(k))] is ¢7. To see
this, note that

[f(su(t)(k))]dt

1y
EOND - £(s (W) = {3 =

where Sa(t) ig the linear map ¥ - o*,




Writing 3(a) for the differential operator defined by

(s X[ A] = (asae)lf(x + ta}lt:@’ we thus obtain

FOAY - Fls (X)) , 1
o 2
= (3 f) (ty(ayjatr. (686
(2 (.o é W) [s, ]

Consequently the endomorphism b, of P(a™ naturally extends *to

C®(a®).

Lemma 5.3C. Let notations be as in Lemma 5.29. Then for

every £ € C¥(¢*) we have

FGO = T oatw) L Ewn) . (67)

A orevel
a(1) a(N) wEW

Proof. Give C (a*) the usual topology of locally uniform

o

convergence in all derivatives. Then s(a™®) P(a*) is dense in
Cm(a*), and since the operators Aq (o € R) and J are continuous,
this proves (65) for every p € c”(a*). Since T(wr) = det(w).m(})

this proves (67).

Proof of Lemma 5.17. By repeated application of formula (66)

it follows that there exist finitely many polynomials pﬁ(t) =
pj(ti,...tN) and finitely many differential operators Pj & U(aZ)
of degree < N = #A++, such that for any f € C™(g*) the left
hand side of (67) is eqgual to

(t)0lde, .. .4t

1 N

e B
It N

1
. é pj(t) -(ij)[ SN(tN)o v a0 S

(here we have written s; F sa(i)D.It is easy now to complete the

proof.







Asymptotic behavicur for singular values of A

6.1 Introduction.

In this chapter we shall study the asymptotic behaviour of
. * * .
@A(ao), when ag = « in A(F, C,CF) and when A € a, is not
necessarily contained in 'az. For the meaning of notations not
specified here, see Chapter 5.

If A € 'a*, we have
c

1

9,(ag) = z dF(vA)— Y, ' (1)

veut Or v, %0

for ag € A(F,*C,CF). This formula breaks down at points X € az

F. The aim of this chapter is to

with dF(vA) = 0 for some v €W
obtain formulas for ¢k valid at such points.
We will obtain formulas expressing ¢, as a sum of integrals

over the cycles Ty V(ao), valid when A is kept equisingular

>
(see Theorem 6.3). We get these formulas by differentiation of
(1) with respect to A; this explains the appearance of the
polynomials Q%)V(A,.) in (3). The formulas thus obtained lead to
formulas from which the asymptotic behaviour of ¢A(a0) when

ag >« in A(F,*C,CF) can be read off (see Theorem 6.4). This
behaviour is locally uniform with respect to the parameter A

that is kept equisingular. To obtain results uniform in X one

n

"N

would have to tackle the same problem as we indicated

Chapter 5, that of bringing the cycles in such a position that

the function k = exp[(il—Q)HF V(aek)] can be estimated suitably.
3




At the end of Section 6.2 we will derive Harish-Chandra's

well known estimate for = = o from the principal terms of th

{0

44}

asymptotic expansions for © (see Corollary 6.5). Moreover, these

principal terms will be computed explicitly (see Theorem 6.6).

6.2 Formulas for singular values of 2

Fix an element § € az and put

INEED)

1

fo €877 g1 ) €1z},

i

* * . ++
aC(E) {o € al s n(Ha,O) € i%Z for a € A (&) .

Thus aZ(E) is a locally finite union of mutually disjoint linear
varieties in az. Therefore aZ(g) is a complex analytic sub-

manifold of az. Define
'aZ(E) = {n € az; ATy = At

Thus 'aZ(E) consists of the n € az equisingular to §. Obviously
this set is the complement of a locally finite union of lower
dimensional linear subvarieties in aZ(E). In particular it is
a connected dense open subset of aZ(E), and we may speak of
holomorphic functions on 'aZ(E).

We define the meromorphic functions dE and d%,v (v € WF)

%
on a, by:
aFoo = o am,
. o

1 1

£ - 4t -1 . & -
dF V()\) = d (A)dF,V(A) = d (A)dp(vk) .

3




is holomorphic at each

E o« - * £
Thus d4° is holomorphic on a, and éi
L)

7

3

p € "a*(E). Moveover, on some open neighbourhood of 'e*(£)
[« ’ = C

in a: we have:

bord WYY

dg(k)®l(ag) = % _a

(a,J (23
vEW v

,V(A>¢F,V3R

Let E}@tﬁ denote the algebra of constant coefficient
. . . * . \
holomorphic differential operators on a.s and let 8 be the

isomorphism S(az> - Kxa;) determined by

[a(nifl1 (A) = ( £FA + tn) = 4af(A)y(n),

)
dt t=0

o« » < L
for £ € C (q:) A E az, n € a%. If D is a linear holomorphic

differential operator defined in a neighbourhood of a point
u € a:, then there exists a unique differential operator

* s . . . .
DU € Iﬂac) sucii that for any holomorphic function f defined in

a neighbourhood of u we have

(DY () = (Duf)(U)'

The operator DU is called the local expression of D at u. Now
ES
let P(aZ) denote the algebra of polynomial functions e - C,
and let 70 € P(az) and §° € S(ﬂZ) be defined by:
g, *
T(A) = I ((}32\): wo o= I (S (x € ah)

a€a (e ae A T

Then we have the following propositions.

s . ~E g, . . . A
Proposition 6.1. 3(w ) {(r”) is constant and strictly positive.




Proposition 6.2. Let M(E) be the positive real number

27w

MeE) = (3(@5rtyoy. T L.

o € 2t

Then the holomorphic differential operator

pé. £ - me) L a@® @b

*
has at each point u € a_ (&) the identity as its local expression.
*
Proof. Fix u € ac(E), and let f be a holomorphic function
defined in some neighbourhood of u. Using Leibniz' rule re-

peatedly and observing that for every a € A**(£) the function

S A exp(ZWk(H@ O)) - 1 vanishes at }» = p, we see that
3

(o @H1an = [awHab 1 .£q0.
Moreover, we obviously have
pwbat =1 1 2T} a(wbynt

cx€A++(£) (a,a$

and this proves the Proposition.

If x € ’aZ(E), let Q% v(?\) denote the local expression of
b

-1
dF,v

‘E(GZ) of order at most k. Obviously the map

Dg at A. If k € N we write E#(GZ) for the elements of




[0
¥3
¥
o
o]
v
b
o)
1]
'
3
e
o0
O
=]
o]
o]
he)
<
e
w0
=]
o
¥
as!

is holomorphic. Now conside

D(a¥) = P(al) defined by

LH

DO > M HY

P () o

Writing Qg V(l,.} for the image of Q§’V(A) in P{ai} under this

isomorphism, we have the following theorem.

Theorem 6.3. If a, € A(F,*C,CF), A € 'a(E), then:

0
¢X(aO) =
i [ £ (i)\-p)HF v(aok)
= VGEWF ] QF’V(A,HF’V(aGk))e ’ wlk)
F.v

’ (33

Proof. By (2), Proposition 6.2 and the definition of the

Q% (1) it follows that for a, € A(F,*C,Cp), u € 'aX(£) we

F,v 0
have:
= z £ nd (
tyag) = Zop QT g G tag
Now

(iA—Q>HF,v(aGk)

Q%’v(u){k > e ] =

(ix-pJH ({a k)
- b ; F,v 70
- QF,V(U,HF,\?(aGK))e ?

and so differentiation under the integral sign completes the

proof.




is the collection

L= Z £ o (£& € M),
a €S o
and if H € a, £ € L we define
£
e o1 e %
o €8
Finally if £ € L, let £l = Zoeg Ly

Theorem 6.4. There exist functions ®§

i3

'ac(i}XA(*C)XUF Lo e,
b

,V,LL°

Len, lel<q=#"r )

depending holomorphically on the first and on the last variable,

and real analytically on the second variable, such that for

all a, € A(F,*C,CF), X € ‘u*(E) we have:
c
¢A(a0) = 2z r alvk~p Z (log a)z.@%
vEW LeLn
Z1<q

Proof. There exist polynomials Q

£
Fov,4

£ €1, l£l < q) depending holomorphically

H', HE az we have
b onut s viam =z b
K lel <q

With the notations of Section 5.3 we have

(iA-
V(aak))e

£

F,v

Q% (x,H

F,

(A,*a,z (a)).

,V,4L F,v

(4)

(A,-) € P(al) (v € W',

on A, such that for

(,anEE.

,V,/K

Q)HF,v(aOk)

w(k)




.0 ivi-p.E y (5 ¥ Y S 5
= Yj a ijvik,wv(z, al H?,v(aﬂ")}@F,vwF,v (5)
'T,v
where YF,V = K _1(n)xyvxyv,, z = ZF,V(a}, and where @F,v
v F
= @F’v(l,*a,zF,v(a>,k,H,H‘). In view of the formula for

*\* . . . g
wv(ZF,v(a)’ a) H y(ao,.) in Section 5.3 we have

Fs

O;.)) =

(a),*a)"H. (a
v F.v

Qg’v(k,wvizg’

(o Y38 (L *a,z (@)K, (6)

F,

where:
* R
(A, asz,k,n,n

= QF, OGH I Take (a0 (M) (2.5 - Hulo(Fayk) (2. DA,

: £ .oa ¥ *
Define QF,V,E' ac(g)xA( C)XUF,V - € by

£ * -
@F’V’K(A, a,z) =

=1 @, g8, 00 ez ey
YF,V
Then obviously ¢%,v,£ is holomorphic in its first and last
variable, and real analytic in its second variable. Moreover,
(4) follows from (3) by substitution of (6) in (5).
++

Corollary 6.5. Let A € 'ag<g), and set q = #A (£). Then the

function

a - aP(1 + lllog aH)—%)\(a)




is bounded on A, locally uniformly with respect To ;.

. - N ; *
Proof. The assertion holds on all sets of type A(F, C’CF)

} . A - ; e ¥
satisfying the conditions of Chapter 5. The constants "C can be
. s . . F o .
chosen arbitrarily big and so A can be covered with a finite
. ., \ ) . . r

number of such sets. Therefore the assertion holds on A as

-1 T .
well. Now fix w € W. Then we have w (p) < p on a . Hence if

o
a € A then:

(wa)?(1 + llog w(a)l) ™9, (va) =

1
= a" P 4 log al) ™%, (a) <

< a1 + llog al) ™Y, (a).

. . . . ¥
This shows that the assertion is valid on w(A ) for every w € W,

and therefore on A.

Remark. Corollary 6.5 with & = 0, A = 0 yields the well

known estimate

-pH(ak)

fa) = J e dk < E(1 + lilog al)N, (7
K

where N = #A++ and where E is a positive constant (cf. Harish-
Chandra [ 2 , P- 2791). It is sharp, as can be read off from

Theorem 6.6 below.

If F €35, we write Gp for the centralizer of ap in G, and

we put Kp = GF N K. The analogon of & for the reductive pair

(GF’KF) is denoted by Z.. By the expression "a, ™ * along AF"

9

F




e e S

we mean that there exist constants *C > 0, CF > 0 such that
ag > = in A{?,*C,C?) {cf. Section 5.1). Finally we define

o~

- *
w&&)g‘ ©= S{ﬂgj and g, 75'1:3 € }?{ﬁc) b}’

@ = I, as @p I, os
(0 = L Ges)s wp(a) = m L (asad,
o€ A o€ Ap

and we let Crp denote the c-function associated with the pair

(GF’KF)'

Theorem 6.6. Let F C S and let a, - «» along AF' Then:

0

ilag) ~ EEEF(*a)a°p ., ali log a),
B e pwon 2eE e O (or) (o)
¥ B DIGP N (CFWF)(O) )

Proof. Consider the proof of Theorem 6.4 with g =0, » = 0.

The principal term of the right hand side of (6) is equal to

QF (O,v_llog a.

sV

Hence by (5) and by (5.20), the principal term of the expansion

for E(ao) corresponding to (4) is egual to

=040 -1 *
\]éw a QF,V(O’V (log a))@F,V(O, a,0). (8)

By Theorem 5.7 we have

.  (0,%a,0) = (0,%a,0) =

op 1

F,v




<

& 4
LS

= :‘E(*wg?{g b Tu(ﬁ} (9)
o . 4 ++ . b
where u € W is determined by & (u) = 4 \NAp- Writing ip for

o~
the analogon of I for G, we have

o= n,, 1., T - i T
I I { u +
a€ Ap g’ . a €A \A? ¢
and hence T T. = T. Moveover, Kﬁlf = dc and Kml? = §LC
- “u F ’ - ? X Tu e
where
§ = i d ,
¥ ++
o€ Ap ¢

and so Kk I (0) (dc)(D).(éFcF)(O)_i. Observe that (de)(0) #

# 0 and (SFCF)(O) # 0, by (3.32) and the product formula for

1

the c~-function. If o € A++ then (r,o) da(k) > 2na,a) = if

A - 0, and so (9) becomes

(re)(0) 27

(WFCF a) I [(u,u)]

(10)
++
a€r Nbgp

6. (0, a,0) = E.(*a)

F,v F

On the other hand, Qg V(O) is the local expression of the
Ed

differential operator Dood_1 = M(O)_la($>o(ddtl ) at 0. Writing
F,v F,v
v* for the pull back of v: “Z - a: operating on functions we
*

have B(n)ov* = v*oa(vn) for n € ag and so

0 -1 -1 ~ -1
D QdF’v = M(Q) i.det(v).a(w)ov*oéFo(v )*

= M) L et (V) v 3 (VDo 80 (v ¥

= MO T R 3 (e 50 (VTR

This shows that for H € “Z we have




ix(H)

]

P

Qh L (0,v ) = M) e @I > 6,0 -

B o= i
w = e B, o.
@ F
If HE ap, then 3(ad[r = elA(H}]A:O = 0, and therefore
0 -1 N -1 .
QP v(O,V (HY) = M(0) .(B(wF)éf)(O). L, a(iH).
? a€ A \NA

F

By (8), (10), the formula for M(0) and the fact that

~ . 27
3(0).F>(6F) - { H++ m

3o (@) (r)
a€ sl FTF

this proves the theorem.
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Comerernev

Samenvatting

In dit proefschrift wordt het asymptotisch gedrag bestudeerd
van elementaire bolfuncties behorend bijeen reéle halfenkelvou-
dige Liegroep G (samenhangend, met eindig centrum) en een maxi=-
maal compacte ondergrcep K. De harmonisch analyse van pi~-K~inva-
riante functies (ook wel bolfuncties gencemd) op 6 is grotendeels
door Harish-Chandra ontwikkeld ([2], [3]). Hierin spelen de ele-
mentaire bolfuncties een rol die analoog is aan die van de expo-
nentiéle functies in de Fourieranalyse or R". Zo bestaan er
bijvoorbeeld een inversieformule en een Plancherelformule.

De elementaire bolfuncties kunnen geparametriseerd worden
door een eindig dimensionale complex lineaire ruimte az modulo
een eindige spiegelingsgroep W, de Weylgroep. Als X € az
zekepre regulariteitscondities vervult dan kan de bijbehorende ele-
mentaire bolfunctie ¢k volgens een bekende formule van Harish-
Chandra geschreven worden als eindige som van functies by =
Zwezw ww,l' Iedere summand ww,l wordt gegeven door een reeksont-
wikkeling die het asymptotisch gedrag beschrijft indien de groeps-
variabele in een bepaalde collectie van richtingen naar oneindig
gaat. In dit proefschrift worden de functies ww,% op nieuwe wijze
voorgesteld, namelijk als integralen over compacte cykels in een
complexificatie K, van de groep K. Deze voorstellingen dienen
vervolgens als uitgangspunt voor de studie van het asymptotisch
gedrag van de ww,k'

De ontwikkelde techniek is ook toepasbaar als de groepsvari-
abele in andere richtingen naar oneindig gaat. Dit werpt nieuw
licht op resultaten van Trombi en Varadarajan ([11).

Tenslotte is het mogelijk formules af te leiden. voor waarden

* . - . . .
van A € a. die niet voldoen aan bovengenoemde regulariteitscondi-

ties. Dit leidt tot enige nieuwe asymptotische ontwikkelingen.
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