
BASIC HARMONIC ANALYSIS ONPSEUDO{RIEMANNIAN SYMMETRIC SPACESE. VAN DEN BANDepartment of MathematicsUniversity of UtrechtP. O. Box 80010NL 3508 TA UtrechtThe NetherlandsandM. FLENSTED{JENSEN and H. SCHLICHTKRULLDepartment of Mathematics and PhysicsThe Royal Veterinary and Agricultural UniversityThorvaldsensvej 40DK 1871 Frederiksberg CDenmarkAbstract. We give a survey of the present knowledge regarding basic questions in harmonicanalysis on pseudo{Riemannian symmetric spaces G=H, where G is a semisimple Lie group: Thede�nition of the Fourier transform, the Plancherel formula, the inversion formula and the Paley{Wiener theorem.Key words: Harmonic analysis, Symmetric space1. IntroductionThe rich and beautiful theory of harmonic analysis on Rn and Tn = (R=Z)n hasbecome a powerful tool, widely used in other branches of mathematics, in physics,engineering etc. From our point of view all the basic questions are completely andexplicitly solved: The Fourier transform is de�ned, there exists a Plancherel formulaand an inversion formula for it, and (for Rn) there is a Paley{Wiener theorem,describing the image of the space of compactly supported functions.There exist many generalizations of this theory. Let us mention a few directions,based on various ways of viewing Rn and Tn.Rn and Tn are locally compact groups:� Fourier analysis on locally compact Abelian groups.� The Peter{Weyl theory for Fourier analysis on compact groups.



2 E. VAN DEN BAN ET AL.� Representation theory for locally compact groups and rings of operators onHilbert spaces (C�{algebras, von Neumann algebras, etc.).Rn and Tn are Lie groups:� The representation theory for compact Lie groups (the Cartan{Weyl clas-si�cation, Weyl's character formula etc.).� Representation theory for general Lie groups (semisimple, reductive, nilpo-tent, solvable etc.).Rn and Tn are smooth homogeneous manifolds:� Harmonic analysis related to homogeneous spaces and their transformationgroups.Here we take the last mentioned viewpoint. We claim that inside the class ofsmooth manifolds the class of (not necessarily Riemannian) symmetric spaces con-stitutes an appropriate framework for generalization of harmonic analysis: On theone hand this class of manifolds is wide enough to contain very many importantspaces of relevance in other branches of mathematics and in physics. On the otherhand it is restrictive enough to make feasible a theory of harmonic analysis, withexplicit parametrizations and descriptions of representations, explicit Plancherelformulae, etc.2. Symmetric spaces2.1. Definition and structureWe de�ne a (a�ne) symmetric space as follows:De�nition. A connected smooth manifold M with an a�ne connection is called asymmetric space if for every x inM the local reection in x along geodesics extendsto a global a�ne di�eomorphism, Sx, of M .Without going into technicalities we shall need a few facts about symmetricspaces (for details, see [21], [37], [38] and the references cited there):The group G = G(M) generated by the transformations Sx �Sy, (x; y 2 M), isa connected Lie group acting transitively on M . Therefore, choosing a base pointxo 2 M , we may identify M with the homogeneous space G=H, where H is thestabilizer of xo. If we de�ne �(g) = Sxo � g �Sxo for g 2 G, then � is an involutionof G, i.e. an automorphism whose square is the identity. It easily follows that H isan open subgroup of the group G� of �{�xed points in G. On the other hand, if Gis a connected Lie group with an involution �, and H is an open subgroup of G�,then the homogeneous space G=H is a symmetric space on which G acts by a�netransformations (but G di�ers in general from G(G=H)).Let r be the Ricci curvature tensor on M: This is a covariant tensor of degree2, which is canonically associated with the a�ne connection on M; and thereforeG-invariant. A symmetric space has the special feature that its a�ne connection is



BASIC HARMONIC ANALYSIS 3torsion free, and that the Ricci curvature tensor r is covariantly constant. In par-ticular, if r is symmetric and non-degenerate, then it de�nes a pseudo-Riemannianstructure on M whose associated connection is the original a�ne connection.Theorem 1. Let M = G=H be a symmetric space with G = G(M).(i) M is at if and only if G is Abelian.(ii) (M; r) is pseudo{Riemannian (that is, r is symmetric and non{degenerate)if and only if G is semisimple.(iii) (M; r) is Riemannian (that is, r is symmetric and de�nite) if and only if Gis semisimple and H is compact.(iv) IfM is irreducible then either dim(M) = 1, or G is simple, orM is a simpleLie group G1.In the last mentioned case, whenM = G1, we have that G is the product G1�G1with the left times right action on G1. In this case, the reection Sx : G1 ! G1 inan element x 2 G1 is given by Sx(g) = xg�1x. Choosing the identity element of G1as our base point we get that H is the diagonal d(G1) and that the involution of Gis given by �(x; y) = (y; x). We call this the group case.Our goal in this paper is to describe the state of the art for harmonic analysison semisimple symmetric spaces, i.e. the spaces of case (ii) above. From now onwe assume that M = G=H is such a space, with G = G(M) semisimple. Noticethat this is a stronger assumption than just requiringM to be equipped with somepseudo-Riemannian structure which is compatible with the given a�ne connection(Rn with any pseudo{norm is an example { here r = 0). However by (iv), if M isirreducible and of dimension at least 2 then G is semisimple.For simplicity of exposition we assume (which we may up to coverings of M)that G is a closed subgroup of GL(n;R) for some n, and that G is stable undertransposition. Let K = G \ SO(n), or equivalently K = G�, where �(x) = tx�1,then K is a maximal compact subgroup of G. We may choose the base point suchthat �(H) = H, or equivalently, such that � � � = � ��.We shall distinguish between the following 3 types of irreducible semisimple sym-metric spaces:� M is of the compact type if G = K, or equivalently if all geodesic curveshave compact closures.� M is of the non{compact type if H = K, or equivalently if all geodesiccurves have non{compact closures.� M is of the non{Riemannian type if G 6= K and K 6= H, or equivalently ifthere exist geodesic curves of both types.If M is of one of the �rst two types we say that it is of the Riemannian type (cf.Thm. 1(iii)). Notice that a simple group G1, considered as a symmetric space, iseither of the compact type or of the non{Riemannian type.



4 E. VAN DEN BAN ET AL.2.2. ExamplesThe irreducible symmetric spaces have been classi�ed by M. Berger [10]. Com-pared with the list of Riemannian symmetric spaces (see [27, Ch.X]), Berger's listis considerably longer.There is (up to coverings) one two{dimensional space of each of the three types:� The compact type: The 2{sphere S2 = SO(3)=SO(2).� The non{compact type: The hyperbolic 2{space M = H2. This has severalisomorphic realizations: As SL(2;R)=SO(2), as SU(1; 1)=S(U(1)�U(1)), oras SOe(2; 1)=SO(2), corresponding to, respectively, the upper half plane inC , the unit disk in C , or a sheet of the two{sheeted hyperboloid in R3.� The non{Riemannian type: The one{sheeted hyperboloid in R3, H1;1 =SOe(2; 1)=SOe(1; 1), which can also be realized as SL(2;R)=SO(1; 1). Ithas the two{fold cover SL(2;R)=SOe(1; 1).In higher dimensions there exist several `families' of symmetric spaces, manyof which have one of the spaces above as their lowest dimensional member. Forexample we could mention:The n{spheres: Sn = SO(n + 1)=SO(n).The spaces of positive de�nite quadratic forms in Rn: SL(n;R)=SO(n).The spaces of quadratic forms of signature (p; q) in Rn, (where n = p + q):SL(n;R)=SO(p; q).The hyperboloids in Rn+1: Hp;q = fx 2 Rn+1 j x21+� � �+x2p�x2p+1�� � ��x2p+q+1 =�1g where p + q = n (if q = 0 one must take a connected component). HereM = SOe(p; q + 1)=SOe(p; q).Similarly one can take the corresponding spaces over the complex numbers orover the quaternions.2.3. Some basic notationLet G;H;K; � and � be as above. Let g be the (real) Lie algebra of G, and let hand k be the subalgebras corresponding to H and K, and q and p their respectiveorthocomplements with respect to the Killing form. Theng = h� q = k� pis the decomposition of g into the �1 eigenspaces for � and � respectively. Since �and � commute we also have the joint decompositiong = h \ k � h \ p � q \ k � q \ p: (1)Notice that there is a natural identi�cation of q with the tangent space Txo(M).We denote by gC ; hC etc. the complexi�cations of g, h etc.A Cartan subspace b for G=H is a maximal Abelian subspace of q, consisting ofsemisimple elements. (If we assume, as we may in the following, that b is �{invariant,



BASIC HARMONIC ANALYSIS 5then all its elements are automatically semisimple, once b is maximal Abelian). AllCartan subspaces have the same dimension, which we call the rank of M . Thenumber of H{conjugacy classes of Cartan subspaces is �nite. Geometrically, aCartan subspace is the tangent space of a maximally at regular subsymmetricspace.We say that a Cartan subspace b is fundamental if the intersection b \ k ismaximal Abelian in q \ k, and that it is split if the intersection b \ p is maximalAbelian in q \ p. There is, up to conjugation by K \H, a unique fundamental anda unique split Cartan subspace. If the fundamental Cartan subspace is containedin k it is called a compact Cartan subspace. The dimension of the p{part of a splitCartan subspace is called the split rank of M .Let D (G=H) denote the algebra of G{invariant di�erential operators on G=H.There is a natural isomorphism (the Harish{Chandra isomorphism) � of this algebrawith the algebra S(b)W of W{invariant elements in the symmetric algebra of anyCartan subspace bC . Here W is the reection group of the root system of bC ingC . In particular, D (G=H) is commutative, and its characters are parametrized upto W{conjugation by D 7! ��(D) = �(D)(�) 2 C . It is known (see [2]) that thesymmetric elements of D (G=H) have self{adjoint closures as operators on L2(G=H).3. Basic harmonic analysis3.1. Harmonic analysis on RnWe want to generalize the basic notions and results from harmonic analysis on Rn.These are:The Fourier transform: f 7! f^(�) = (2�)�n=2 RRn f(t)e�i��t dt; f 2 C1c (Rn).The Plancherel theorem: f 7! f^ extends to an isometry of L2(Rn) onto L2(Rn).The inversion formula: If f 2 C1c (Rn) thenf(x) = (2�)�n=2 ZRn f^(�)ei��x d�:The Paley{Wiener theorem: f 7! f^ is a bijection of C1c (Rn) onto PW(Rn),where PW(Rn) is the space of rapidly decreasing entire functions of exponentialtype. More precisely, a complex function  on Rn belongs to PW(Rn) if and onlyif it extends to an entire function on C n for which there exists R > 0 such that thefollowing holds for all N 2 N:sup�2C (1 + j�j)Ne�Rj Im�jj (�)j < +1: (2)The aim of the basic harmonic analysis on G=H is to obtain analogues of thesenotions and results.



6 E. VAN DEN BAN ET AL.3.2. The `abstract' harmonic analysis on a semisimple symmetric spaceLet G and H be as above, thenM = G=H has an invariant measure, and the actionof G by translations gives a unitary representation L in the associated Hilbert spaceL2(G=H). From general representation theory it is known (since G is `type 1') thatthis representation can be decomposed as a direct integral of irreducible unitaryrepresentations: L ' Z �G^m� � d�(�); (3)where the measure d� (whose class is uniquely determined) is called the Plancherelmeasure, and m� (which is unique almost everywhere) the multiplicity of �. More-over, only the so{called H{spherical representations can occur in this decomposi-tion. By de�nition, an irreducible unitary representation (�;H�) of G isH{sphericalif the space (H�1� )H of its H{�xed distribution vectors is non{trivial. Here we de-note by H1� and H�1� , respectively the C1 and the distribution vectors for H�,such that H1� � H� � H�1� . We writeV� = (H�1� )H :It is known (see [2]) that m� � dimV� < +1, in particular, all multiplicities are�nite. Denote by GĤ the set of (equivalence classes) of H{spherical representations,then it follows that the Plancherel measure d� is carried by GĤ .The `abstract' Fourier transform f 7! f^(�) for G=H is now de�ned byf^(�)(�) = �(f)� = ZG=H f(x)�(x)� dx 2 H1�for � 2 GĤ ; � 2 V� and f 2 C1c (G=H). Thusf^(�) 2 HomC (V�;H1� ) ' H1� 
 V��(notice that the integral over G=H only makes sense because � is H{invariant). Onecan prove (using [35] and [40]) that there exists for almost all � 2 GĤ a subspace Vo�(of dimensionm�) of V�, equipped with the structure of a Hilbert space, such thatif f^(�) is restricted to Vo� for almost all �, then f 7! f^ extends to an isometry ofL2(G=H) onto R�GĤ HomC (Vo�;H�)d�(�): Here the norm on HomC (Vo�;H�) is givenby k'k2� = Tr('� �') =Xi k'(vi)k2; ' 2 HomC (Vo�;H�);where '� is the adjoint of ' and fvigi=1;:::;m� is an orthonormal basis in Vo�.We thus have the Plancherel formulakfk22 = ZGĤ kf^(�)k2� d�(�); f 2 L2(G=H):



BASIC HARMONIC ANALYSIS 7Similarly, there is the inversion formula (for suitably nice functions f)f(e) = ZGĤ m�Xi=1hf^(�)vijvii d�(�): (4)(Here h�j�i denotes the inner product on H�, as well as the naturally associatedpairing H1� �H�1� ! C .) Consequently we also have, for suitable ff(x) = ZGĤ m�Xi=1hf^(�)vij�(x)vii d�(�):The basic problems are now(a) Describe (parametrize) GĤ , or at least �{almost all of it.(b) For �{almost all � 2 GĤ describe (parametrize) Vo� and its Hilbert spacestructure.(c) Determine d� explicitly.A Paley{Wiener theorem would amount to an intrinsic description of the Fourierimage of C1c (G=H) in terms of GĤ . We add this as a fourth basic problem:(d) Describe C1c (G=H)^ in terms of the parametrizations and possible holo-morphic extensions.For each � 2 GĤ we have that V� is a D (G=H){module in a natural way. Us-ing that the symmetric elements of D (G=H) are essentially selfadjoint operators onL2(G=H) one can show (with the arguments in [40]) that Vo� can be chosen to beinvariant and diagonalizable for this action. Thus Vo� is spanned by its joint eigen-vectors for D (G=H). Let b � q be a Cartan subspace. Then such an eigenvectorsatis�es �(D)v = ��(D)v; D 2 D (G=H);for some � 2 b�C . We say that v is a spherical vector of type �, and that theorthonormal basis fvigi=1;:::;m� in Vo� is spherical if its members are spherical.The maps ��;i : f 7! hf^(�)vijvii in (4) are H{invariant distributions on G=H.As distributions on G they are positive de�nite and extreme (see [40]). With aspherical basis fvig each ��;i is also a spherical distribution, that is an H{invarianteigendistribution for D (G=H). The solution of Problem (b) is then closely relatedto the study of the spherical distributions.3.3. Results valid for specific classes of symmetric spacesHere we give some brief remarks concerning the status of the above problems forsome speci�c classes of semisimple symmetric spaces.3.3.1. The compact type. For a homogeneous space G=H with a compact group Gthe abstract formulation above follows easily from the Peter{Weyl theorem and the



8 E. VAN DEN BAN ET AL.Schur orthogonality relations. In particular, Vo� = V� = HH� , and if we give Vo� thesubspace norm from H� , we have d�(�) = dim(�). For the symmetric spaces ofcompact type we then have the following explicit solutions to the above problems(see [28, x V.4]):(a) GĤ is parametrized by a subset of the set of dominant weights.(b) dimVo� = 1 for � 2 GĤ .(c) d� is given by Weyl's dimension formula.(d) The smooth functions are determined by a certain growth condition on theFourier transforms (see [39]).3.3.2. The non{compact type. We write M as G=K. The four questions are settledbeautifully by the work of Harish{Chandra, Helgason and others. See [28, x IV.7].Let a be a maximal Abelian subspace of p.(a) A su�cient subset of GK̂ is parametrized (up to conjugacy by the WeylgroupW of a in g) by means of the spherical functions '�; � 2 ia� (see (23))and the corresponding spherical principal series representations (��;H�).(b) For � = �� 2 GK̂ we have Vo� = HK� and dim(Vo�) = 1. We can then usethe subspace norm from H�.(c) The Plancherel measure is given by d�(��) = jc(�)j�2d� on ia�=W . Herec(�) is Harish{Chandra's c{function, which is explicitly given in terms ofthe structure of G=K by the formula of Gindikin{Karpelevic.(d) We have C1c (KnG=K)^ = PW(a)W . Here PW(a)W is the space of W{invariant functions in the image space PW(a) for the Fourier transformf 7! f^(�) = Za f(X)e��(X)dX; � 2 a�C ; f 2 C1c (a); (5)that is, the space of rapidly decreasing entire functions of exponential typeon a�C (see Sect. 3.1, but note that since the imaginary unit i is not presentin the exponent in (5) one has to replace Im� by Re� in (2)). Helgason hasextended the Paley{Wiener theorem to the space C1c (K;G=K) of K{�nitefunctions in C1c (G=K), and also to the full space C1c (G=K).3.3.3. The group case, M = G1. This case is almost completely settled by the workof Harish{Chandra ([23]) and others.(a) The map �1 7! �1 
 ��1 is a bijective correspondence from the unitary dualG1̂ onto GĤ . A su�cient subset of G1̂ is described by the discrete seriesand di�erent families of (cuspidal) principal series.(b) For �1 2 G1̂ and � = �1 
 ��1 we have V� = (H�1� )H = C 1�1 , where 1�1is the identity operator on H�1 . Notice however that in this case V� 6� H�,since the latter space can be identi�ed with the space of Hilbert{Schmidtoperators on H�1 . We take Vo� = V�, and use on it the Hilbert spacestructure obtained from the identi�cation with C in which 1�1 = 1.



BASIC HARMONIC ANALYSIS 9(c) With the above choice one can give d� explicitly in terms of the formaldegrees of discrete series and certain c{functions.(d) A Paley{Wiener theorem for the K{�nite functions on G1 has been es-tablished in [14] (in split rank one) and [1] (in general). In particular, thePaley{Wiener space is determined by the minimal principal series only. Forthe full space C1c (G1) a Paley{Wiener theorem has not been established.3.3.4. The non{Riemannian type, rank one. There is a vast literature dealing withthe questions (a){(c) on speci�c classes of rank one symmetric spaces of the non{Riemannian type. See for example [19], [40], [31]. Common for all these spaces isthat the decomposition of L2(G=H) contains a discrete series as well as a continuouspart. Problem (d) is solved in [9] (see below) for the K{�nite functions, under themore general assumption that the split rank is one.3.3.5. G=H = SL(n; C )=SU(p; q). See [12].4. A survey of results valid for general semisimple symmetric spacesEven though the basic problems have been solved for many speci�c classes ofsemisimple symmetric spaces, there are still few �nal answers known which holdin complete generality. On the other hand, very much is known about the represen-tations connected with these problems, and there is hope for the general answers ina not too distant future.By analogy with the group case one expects in general that the left regular rep-resentation L on L2(G=H) can be decomposed in several `series' of representations,one series for each H{conjugacy class of Cartan subspaces for q. The most extremeof these would then be the `most continuous' part, corresponding to the conjugacyclass of Cartan subspaces with maximal p{part (the split Cartan subspaces) andthe `most discrete' part (sometimes called the fundamental series), correspondingto the conjugacy class of Cartan subspaces with maximal k{part (the fundamentalCartan subspaces). If the fundamental Cartan subspaces are compact, then this`most discrete' part is in fact the discrete series, that is, the irreducible subrepre-sentations of L. For both of these `extreme' parts of L2(G=H) very much is knownabout the Problems (a), (b) and (c); below (in Subsections 4.1, 4.3 and 4.4) we shallreview some details and give precise references.With respect to Problem (d) we want to mention two results of a general nature:One ([17], see Subsect. 4.2) which exhibits a large class (though too small to be `thePaley{Wiener space' in general) of functions which are Fourier transforms of K{�nite functions in C1c (G=H), and another ([9], see Subsect. 4.5) which shows thatthe Fourier transform of a function in C1c (G=H) is determined by its restrictionto the meromorphic extension of the unitary principal series (the `most continuous'part mentioned above). Along with the latter result goes a conjectural descriptionof the K{�nite Paley{Wiener space. The conjecture can be con�rmed in the above



10 E. VAN DEN BAN ET AL.mentioned cases 3.3.1, 3.3.2 and 3.3.3, and it also holds when G=H has split rankone.4.1. The discrete seriesThe basic existence theorem is the following, where we preserve the notions fromabove. Let L2d(G=H) � L2(G=H) be the closed linear span of the irreducible sub-representations of L.Theorem 2, [20], [33]. Let G=H be a semisimple symmetric space. Then thediscrete series space L2d(G=H) is non{zero if and only ifrank(G=H) = rank(K=K \H): (6)The condition (6) means that G=H has a compact Cartan subspace. An equiv-alent more geometric formulation is that it has a compact maximally at subsym-metric space.We shall now discuss Problems (a), (b) and (c) for the discrete series. Assume(as we may by the above theorem) that (6) holds, and let t be a compact Cartansubspace of q. Let � be the root system of tC in gC and �c the subsystem of tC inkC . Let W and Wc be the corresponding reection groups.A rough classi�cation of the discrete series is obtained by means of the commu-tative algebra D (G=H). Recall that the characters of D (G=H) are parametrized byt�C =W via the Harish{Chandra isomorphism � : D (G=H) ! S(t)W . Let E�(G=H)denote the joint eigenspace for D (G=H) in C1(G=H) corresponding to the charac-ter ��, where � 2 t�C . Then Ew�(G=H) = E�(G=H) for all w 2 W . Since D (G=H)is commutative and its symmetric elements act as essentially selfadjoint operatorson L2(G=H), there is a joint spectral resolution of L2(G=H) for this algebra. Theresulting decomposition is G{invariant because of the invariance of the elementsin D (G=H). It follows (see [2]) that L2d(G=H) admits an orthogonal G{invariantdecomposition L2d(G=H) = L̂� L2�(G=H);where L2�(G=H) is the closure in L2(G=H) of L2(G=H) \ E�(G=H), and where thesum extends over the W{orbits in the set of those � 2 t�C for which L2�(G=H) isnon{trivial. In order to parametrize the discrete series we must then determine thisset of �'s, and for each � therein the irreducible subrepresentations of L2�(G=H).Let � � it� denote the set of elements � 2 it� satisfying the following conditions(i){(iii).(i) h�;�i 6= 0 for all � 2 �:Given that (i) holds, let �+ = f� 2 � j h�;�i > 0g; (7)



BASIC HARMONIC ANALYSIS 11then this is a positive system for �. Put �+c = �+ \ �c, and let �, resp. �c, bede�ned as half the sum of the �+{roots, resp. �+c {roots, counted with multiplicities.(ii) � + � is a weight for TH , i.e. e�+� is well de�ned on TH . Here TH denotesthe torus in G=H corresponding to t (that is, TH = T=(T \ H) whereT = exp t).(iii) h� � �; �i � 0 for each compact simple root � in �+.(that � is compact means that the root space g�C is contained in kC ). Notice that(ii) implies that � is a discrete subset of it�.Under the assumption that � 2 � there is a rather simple construction (which weshall outline below) of a g{invariant subspace U�;K of C1(K;G=H) (the space ofK{�nite functions in C1(G=H)), which can be shown to be contained in L2�(G=H).Let U� denote the closure of U�;K in L2(G=H), then U� is a subrepresentation ofL2�(G=H). Let �� denote this subrepresentation.For `large' � 2 �, or more precisely if h�+ �� 2�c; �i � 0 for all � 2 �+c , it canbe shown by elementary methods that U� 6= f0g. For the remaining �'s one has toadd a more technical assumption in order to ensure that U� 6= f0g. We shall notstate this condition here (the condition is stated in [30] together with a proof of itsnecessity for the non{vanishing of U�).Theorem 3, [33], [41]. The discrete series space L2d(G=H) is spanned by the U�'swith � 2 �. Moreover for each � 2 � either the representation �� is irreducibleor U� is zero, and if �; �0 2 � we have U�0 = U� if and only if �0 = w� for somew 2Wc.It follows that if � 2 t�C then L2�(G=H) is the sum of those Uw� for which w 2Wand w� 2 �. In particular it has at most as many components as the order of thequotient W=Wc.With this result, Problem (a) is solved as regards to the discrete series. Itis conjectured that ��0 is unitarily equivalent to �� if and only if U�0 = U�, orequivalently in view of the above, that the discrete series have multiplicity one inthe Plancherel formula. The conjecture is proved for all classical groups G, and isonly open for a few exceptional cases for very special values of � (see [11]).Evaluation at the base point in G=H gives rise to an H{�xed distribution vector�� for U�, for which it is easily seen that we havef^(��)(��) = P� f; f 2 C1c (G=H);where P� is the orthogonal projection of L2(G=H) onto U�. It follows that if we takeVo�� = C �� and use on it the Hilbert space structure obtained from the identi�cationwith C in which �� = 1, then d�(��) = 1. In other words, the Plancherel measurerestricts to the counting measure on the discrete series. This provides the solutionto Problems (b) and (c) for the discrete series.At this point it is however interesting to note the following. Though the discreteseries has been parametrized as above, it seems to be an open problem to determine



12 E. VAN DEN BAN ET AL.an explicit expression for the spherical distribution �� : f 7! hf^(��)��j��i on G=Hassociated to �� (or equivalently, for the projection operator P�, which is given byconvolution with ��). In the group case one knows that �� is given by d���, whered� is the formal degree and �� the character of �� (see [22, x5]), but there is noobvious generalization of this formula.We shall not try to describe the proof of the above theorems. However as theconstruction of U�;K can be described by quite elementary methods we would liketo indicate it.Let the notation be as above, and recall the decomposition (1) of g. Let gd bethe real form of gC given bygd = h \ k � i(h \ p) � i(q \ k) � q \ p;where i is the imaginary unit. Assume (again for simplicity of exposition) that G is areal form of a linear complex Lie group GC , and let Gd be the real form of GC whoseLie algebra is gd. Then the subgroupKd = Gd\HC is a maximal compact subgroup.The symmetric space Gd=Kd is called the non{compact Riemannian form of G=H.The subgroup Hd = Gd \KC of Gd is a (in general non{compact) real form of KC .Let (G \ Gd)e denote the identity component of G \ Gd. Then both G and Gdare contained in the set KC (G \ Gd)eHC . The K{�nite functions on G=H extendnaturally to left KC {�nite and right HC {invariant functions on this set (and so dothe Hd{�nite functions on Gd=Kd, provided the Hd{action admits a holomorphicextension to KC ). We call this partial holomorphic extension. Let C1(K;G=H)and C1(Hd;Gd=Kd) be the spaces of K{�nite, resp. Hd{�nite smooth functionson G=H, resp. Gd=Kd. There is a natural action of gC on both of these spaces.Proposition 4, [20]. Partial holomorphic extension de�nes a gC {equivariant linearinjection f ! fr of C1(K;G=H) into C1(Hd;Gd=Kd), the image of which is theset of functions in C1(Hd;Gd=Kd) for which the Hd{action extends holomorphi-cally to KC . Moreover, f is a joint eigenfunction for D (G=H) if and only if fr is ajoint eigenfunction for D (Gd=Kd).The construction of Gd=Kd and this proposition hold independently of (6). How-ever, this assumption is crucial for the following construction.Since Gd=Kd is a Riemannian symmetric space the joint eigenfunctions for thealgebra D (Gd=Kd) can be described by means of the so{called generalized Poissontransform. This is de�ned as follows. It follows from the fact that t is a maximalAbelian subspace of q, that tr = it is a maximal Abelian split subspace for gd.Hence there is an Iwasawa decompositionGd = KdT rNd (8)of Gd with T r = exp tr, which corresponds to a given �+. Let P d = MdT rNdbe the corresponding minimal parabolic subgroup in Gd, and for � 2 t�C let D0� =



BASIC HARMONIC ANALYSIS 13D0�(Gd=P d) be the space of (� � �){homogeneous distributions on Gd=P d, that isthe space of generalized functions f on Gd satisfyingf(gman) = a���f(g); g 2 Gd;m 2Md; a 2 T r; n 2 Nd:The group Gd acts from the left on this space. The Poisson transform P� : D0� !C1(G=H) is de�ned byP�f(x) = ZKd f(xk) dk = ZKd p�(x; k)f(k) dk; x 2 Gd:Here the `Poisson kernel' p� 2 C1(Gd �Kd) is de�ned by p�(x; k) = a����, wherea 2 T r is the T r{part of x�1k in the decomposition (8). It is known that P� is a Gd{equivariant transformation into a joint eigenspace for D (Gd=Kd) in C1(Gd=Kd),and that it is injective if �+ is given by (7) (see for example [7, Thm. 12.2]).Let D0�;Hd be the set of Hd{�nite elements in D0�, and let D0�;Hd(HdP d) denotethe subset of elements supported on the Hd{orbit HdP d in Gd=P d (which is closed,cf. [37, Prop. 7.1.8]). Let now � 2 �. Then condition (ii) implies that the Hd{�niteaction on D0�;Hd(HdP d) extends to a holomorphic KC {action. The space U�;K isnow de�ned byU�;K = ff 2 C1(K;G=H) j fr 2 P�(D0�;Hd(HdP d))g:The proof that U�;K � L2�(G=H) can be found in [33] (see also [7, Thm. 19.1]).4.2. A partial Paley{Wiener theoremWe now return to the general case, where condition (6) is not necessarily ful�lled.We shall see that a variation of the ideas going into Prop. 5 provides us with aconstruction of the inverse Fourier transform for a large family of `nice' functionson GĤ .Recall that for f 2 C1c (G=H) we have de�ned the Fourier transform f^ on GĤsuch that f^(�) 2 Hom(Vo�;H�) = H� 
 (Vo�)�:Let b � q be a �{invariant Cartan subspace. Let fvigi=1;:::;m� be a spherical basisfor Vo� (for a given �), and let �i 2 b�C be the type of vi (determined up to conjugationby W ).As in the previous section let Gd=Kd be the non{compact Riemannian form ofG=H. In analogy with the de�nition of tr we de�nebr = b \ p+ i(b \ k) = bC \ gd; (9)then br is a maximal Abelian split subspace for gd. Hence the roots of bC in gC arereal valued on br, and br is W{invariant.



14 E. VAN DEN BAN ET AL.Let PW (br)W be the space of W{invariant entire rapidly decreasing functionsof exponential type on b�C . By the classical Paley{Wiener theorem this is the im-age of the space C1c (br)W under the Fourier transform on the Euclidean space br(de�ned as in (5)), and by Helgason's Paley{Wiener theorem it is also the image ofC1c (KdnGd=Kd) under the spherical Fourier transform (see 3.3.2 (d)).Let KK̂\H be the set of (equivalence classes) of irreducible representations of Kwith non{trivial K \ H{�xed vectors. For any  2 PW (br)W , � 2 KK̂\H and� 2 GĤ we de�ne F ;�(�) 2 Hom(Vo�;H�) byF ;�(�)vi =  (�i)P�vi; (i = 1; : : : ;m�);where P� : H�1 ! H1 is the K{equivariant extension to H�1 of the orthogonalprojection of H� onto its �{component (given by the convolution with the normal-ized character of �_). Notice that F ;� is independent of the choice of the sphericalbasis fvig for Vo�.Theorem 5, [17]. Let  2 PW (br)W and � 2 KK̂\H be given, and let F ;� be asabove. There exists a unique function f = f ;� in C1c (G=H) such that f^ = F ;�,or equivalently, for any � 2 GĤ and any spherical vector v 2 Vo� of type � 2 b�C wehave f^(�)v =  (�)P�v: (10)Moreover, the function f isK\H{invariant andK{�nite of type �, and the equation(10) holds more generally with v a spherical vector of type � in V�.Notice that it follows from (10) that the spherical distributions given by ��;i : ' 7!h'^(�)vijvii, i = 1; : : : ;m�, satisfy��;i(f) =  (�i)hP�vijviifor all � 2 GĤ .In order to indicate the proof of Thm. 5 we shall need the following proposition,which is closely related to Prop. 4. Let the spaces KnG=H and HdnGd=Kd begiven the measures inherited from the invariant measures on G=H and HdnGd,respectively.Proposition 6, [20]. Partial holomorphic extension de�nes a norm{preserving iso-morphism f ! fr of L1(KnG=H) onto L1(HdnGd=Kd).Indication of the proof of Thm. 5. The uniqueness of f follows easily from theabstract Plancherel theory discussed earlier. The existence is established as follows.Let  2 PW (br)W and � 2 KK̂\H be given, and let V� be the representationspace for �, equipped with an inner product for which � is unitary. By the Paley{Wiener theorem for the spherical Fourier transform on Gd=Kd there exists a Kd{invariant function F 2 C1c (Gd=Kd) such thatZGd=Kd F (x)'�(x) dx =  (�)



BASIC HARMONIC ANALYSIS 15for all � 2 b�C , where '� is the elementary spherical function on Gd=Kd. Let eo 2 V�be a K \H{�xed unit vector and de�neF�(x) = dim(�)ZHd F (hx)h�(h)eo jeoidh; x 2 Gd=Kd:Here � is de�ned on Hd by the holomorphic extension from K to KC . It followsthat F� is Hd{�nite of this type. Let f 2 C1(K;G=H) be the element such thatfr = F� by Prop. 4.It follows easily from this construction that f has compact support. To �nish wemust calculate f^(�)v for all spherical v 2 V�. Let � 2 b�C be the type of v. Since fis K{�nite of type � and K\H{�xed it su�ces to calculate hf^(�)vjv0i, where v0 isa K \H{�xed vector in V�. Now hf^(�)vjv0i can be written as an integral over Kfollowed by an integral over KnG=H, and by Prop. 6 the latter can be transferredto an integral over HdnGd=Kd involving F�. After some rewriting one ends up by�nding hf^(�)vjv0i = ZGd=Kd F (x)'�(x) dx hP�vjv0i =  (�)hP�vjv0i;from which the result follows.4.3. A Plancherel formula for the most continuous part of L2(G=H)In this subsection we discuss Problems (a), (b) and (c) for the `most continuouspart' of L2(G=H) (to be de�ned below). The main reference is [9].Let notation be as in Sect. 2 (in [9] the assumptions on G=H are somewhat moregeneral, but we shall not discuss that here). The representations ��;� that occur inthe most continuous part of L2(G=H) are constructed as follows. Let P =MAN bea parabolic subgroup of G, with the indicated Langlands decomposition, satisfying��P = P and being minimal with respect to this condition. Then M and A are�{stable. Let aq = a \ q, where a is the Lie algebra of A, then it follows thataq is a maximal Abelian subspace of p \ q, and that the Levi part MA of P isthe centralizer of aq in G. Let (�;H�) 2 Mf̂u, the set of (equivalence classes of)�nite dimensional irreducible unitary representations of M , and let � 2 ia�. Werequire that � 2 ia�q, that is that � vanishes on a \ h. Then by de�nition ��;� isthe induced representation �P;�;� = IndGP=MAN � 
 e� 
 1 (the `principal series'for G=H), that is, the representation space H�;� consists of (classes of) H�{valuedmeasurable functions f on G, square integrable on K and satisfyingf(gman) = a�����(m)�1f(g); (g 2 G;m 2M;a 2 A;n 2 N); (11)and G acts from the left. Here � = 12 TrAdn 2 a�q. (The convention in (11) di�ersfrom the above cited references: The induction takes place on the opposite side.)



16 E. VAN DEN BAN ET AL.The Plancherel decomposition for the most continuous part of L2(G=H) is ob-tained by realizing the abstract Fourier transform explicitly for the principal series.This realization is then a partial isometry of L2(G=H) onto the direct integralZ ��;�m� ��;� d�(�; �): (12)The multiplicities m� (which happen to be independent of �) and the measured�(�; �) are explicitly described below. The most continuous part of L2(G=H),denoted L2mc(G=H), is then by de�nition the orthocomplement of the kernel of thispartial isometry. Its Plancherel decomposition is exactly given by (12).In order to realize the Fourier transform we must �rst discuss the space V�;� =(H�1�;� )H . Let W � NK (aq) be a �xed set of elements such that w 7! HwPparametrizes the open H � P orbits on G (it is known (see [36] or [29]) that anyset of representatives for the double quotient NK\H(aq)nNK (aq)=ZK (aq) can beused as W { in particular, W is �nite). Viewing an element f 2 H�1�;� as an H�{valued distribution on G, satisfying appropriate conditions of homogeneity for theright action of P , it is easily seen that if f is H{invariant then f must restrict toa smooth function on each open H � P orbit. Hence it makes sense to evaluatef in the elements of W, and in fact its restriction to the open orbit HwP will beuniquely determined from the value at w. We denote this value by evw(f). It iseasily seen that evw maps V�;� into the space Hw�1(M\H)w� of w�1(M \H)w{�xedelements in H� (note that w�1Mw = M , but w�1Hw may di�er from H). LetV (�) denote the formal direct sumV (�) = Lw2WHw�1(M\H)w� ; (13)provided with the direct sum inner product (thus, by de�nition the summands aremutually orthogonal, even though this may not be the case in H�). Furthermore,let ev : V�;� ! V (�)denote the direct sum of the maps evw. The construction of the induced represen-tations ��;� and of the map ev makes sense for � 2 a�qC , the complex linear dualof aq (though the representations need not be unitary for � outside ia�q). We nowhaveTheorem 7, [3]. The map ev is bijective for generic � 2 a�qC .For generic �, let j(�; �) : V (�)! V�;�



BASIC HARMONIC ANALYSIS 17be the inverse of ev, then by de�nition we have for � 2 V (�) that the restrictionof the distribution j(�; �)(�) to the open H �P orbit HwP , w 2 W, is the smoothH�{valued function given byj(�; �)(�)(hwman) = a�����(m�1)�w: (14)(Here �w denotes the w{component of �, viewed as an element of H�.) Notice thatif G=H is a Riemannian symmetric space, so that H = K, then we have G = HP bythe Iwasawa decomposition. Hence we can take W = feg, and since M � K = Hwe have V (�) = f0g unless � is the trivial representation 1, in which case V (1) = C .Then j(1; �) is completely determined by (14); in fact we havej(1; �)(x) = e�(�+�)H(x);where H : G! a is the Iwasawa projection (since V (1) = C we can omit �). Thusthe kernel P�(x; k) = j(1; �)(x�1k) on G=K �K is the generalized Poisson kernel.For general G=H we can supplement (14) as follows: If Reh� + �; �i < 0 for all� in the set �+ of positive roots (the a{roots of n = Lie(N)), then j(�; �)(�) isthe continuous function on G given by (14) on HwP for all w 2 W and vanishingon the complement of these sets (the condition on � ensures the continuity). Forelements � outside the above region the distribution j(�; �) can be obtained fromthe above by meromorphic continuation. (See [34], [32], [3]. These results have beengeneralized to other principal series representations in [13], [15].)Having constructed the H{invariant distribution vectors j(�; �)� as above wecan now attempt to write down a Fourier transform for the principal series. Forf 2 C1c (G=H) we consider the map(�; �) 7! f^(��;�)j(�; �) = ��;�(f) j(�; �) 2 H1�;� 
 V (�)�: (15)In the Riemannian case this is exactly the Fourier transform, as de�ned by Helgason(see [24]). However when G=H is not Riemannian a new phenomenon may occur:by the above de�nitions (15) is a meromorphic function in �, which may havesingularities on the set ia�q of interest for the Plancherel decomposition, and thus itmay not make sense for some singular � 2 ia�q. This unpleasantness is overcome by asuitable normalization of j(�; �), which removes the singularities. The normalizationis carried out by means of the standard intertwining operators A( �P ;P; �; �) from�P;�;� to � �P ;�;�, where �P is the parabolic subgroup opposite to P . Letj�(�; �) = A( �P ;P; �; �)�1j( �P; �; �);where j( �P; �; �) is constructed as j(�; �) above, but with P replaced by �P . Sincethe intertwining operator A( �P ;P; �; �) is bijective for generic �, it follows thatj�(�; �) : V (�)! V�;�is again a bijection, for generic �. Moreover, we now have



18 E. VAN DEN BAN ET AL.Theorem 8, [9]. The meromorphic function � 7! j�(�; �) is regular on ia�q.We can now de�ne the Fourier transform f 7! f^ for the principal series properlyby (15), but with j replaced by j�:f^(�; �) = ��;�(f) j�(�; �) 2 H1�;� 
 V (�)�:Notice that when G=H is Riemannian the normalization makes our Fourier trans-form di�erent from that of Helgason { in this case the normalization amounts to adivision by Harish{Chandra's c{function c(�). See [8] for the determination of j�in the group case.We can now give the solution to Problem (b) for this part of L2(G=H): We takeVo�;� = V�;�, and give it the Hilbert space structure that makes j�(�; �) an isometry.The solution to Problem (c) is as follows. Let H be the Hilbert space given byH = Z ��;�H�;� 
 V (�)� d�(�; �); (16)with the measure d�(�; �) = dim(�) d�, where d� is Lebesgue measure on ia�q (suit-ably normalized). Here � runs over Mf̂u (notice however that some of them maydisappear because V (�) is trivial), and � runs over an open chamber ia�+q in ia�q forthe Weyl group Wq = NK(aq)=ZK (aq).Theorem 9, [9]. Let f 2 C1c (G=H). Then f^ 2 H and kf^k � kfk2. Moreover,the map f 7! f^ extends to an equivariant partial isometry F of L2(G=H) onto H.In particular, we thus have the multiplicities m� = dimV (�).We de�ne the most continuous part L2mc(G=H) of L2(G=H) as the orthocomple-ment of the kernel of F. Then F restricts to an isometry of this space onto H. In [9]it is shown that L2mc(G=H) is `large' in L2(G=H) in a certain sense { in particularits orthocomplement (the kernel of F) has trivial intersection with C1c (G=H) (thusf 7! f^ is injective, even though the extension F need not be). Moreover, if G=Hhas split rank one, that is if dimaq = 1, then there are at most two conjugacy classesof Cartan subspaces, and hence one expects from the analogy with the group caseas mentioned earlier that only the corresponding two `series' of representations willbe present. Indeed this is the case; it is shown in [9] that the kernel of F decomposesdiscretely when the split rank is one. Thus, in this case the Plancherel decomposi-tion of L2(G=H) can be determined from Thm. 9 together with the description ofthe discrete series (see Sect. 4.1 above), except for the explicit determination of theHilbert space structure on Vo� for the discrete series representations �.On the other hand, when G=H is Riemannian then F is injective and Thm. 9gives the complete Plancherel decomposition of L2(G=H) (in the formulation ofHarish{Chandra and Helgason the Plancherel measure is jc(�)j�2 d�, but here thefactor jc(�)j�2 disappears because of the normalization of j�).A further discussion of the multiplicities m� can be found in [8].



BASIC HARMONIC ANALYSIS 194.4. The K{finite caseThe isomorphism of (16) onto L2mc(G=H) (the `inverse Fourier transform') can begiven more explicitly when one restricts to K-�nite functions. In this subsection weshall discuss this restriction, which happens to be crucial in the proofs of Thms. 8and 9.4.4.1. Eisenstein integrals. Let (�; V�) be a �xed, irreducible unitary representationof K. Taking �{components in (16) we haveH� = Z ��;�H��;� 
 V (�)� d�(�; �): (17)Moreover, by Frobenius reciprocity we haveH��;� ' HomM\K(V�;H�)
 V� (18)asK{modules (whereK acts on the second component in the tensor product), for all� 2Mf̂u; � 2 a�qC . Note that since each representation � 2Mf̂u is trivial on the non{compact part of M , we have that �jM\K is irreducible, and that HomM\K(V�;H�)is non{trivial if and only if this restriction occurs as a subrepresentation of �jM\K.We use the notation � " � to indicate this occurrence; it happens only for �nitelymany �. Thus by taking K{types the integral over � in (17) becomes a �nite sum,hence more manageable. In analogy with the earlier de�nition of the space V (�) wenow de�ne the space V(�) to be the formal direct sumV(�) = Lw2W V w�1(K\M\H)w� :It is easily seen from the above thatV(�) ' L�"�HomM\K(H�; V�) 
 V (�): (19)Hence in view of (18) we haveV(�)� 
 V� ' L�"�H��;� 
 V (�)� (20)for all � 2 a�qC . From (17) and (20) we �nally obtainH� ' Z �� V(�)� 
 V� d� ' L2(ia�+q )
 V(�)� 
 V�: (21)This isomorphism indicates that the Fourier transform, when restricted to K{�nitefunctions of type �, can be considered as a map into the V(�)�
V�{valued functionson ia�q.



20 E. VAN DEN BAN ET AL.Instead of working withK{�nite scalar{valued functions on G=H, it is convenientto consider `�{spherical' functions f on G=H, that is, V�{valued functions satisfyingf(kx) = �(k)f(x); k 2 K; x 2 G=H:Let L2(G=H;�) denote the space of square integrable such functions, then by con-traction we have a K{equivariant isomorphism� : L2(G=H;�_)
 V� ��! L2(G=H)�: (22)(Again K acts on the second component in the tensor product. The map dim(�)�is an isometry.) Notice that when passing fromK{�nite functions to spherical func-tions one must also pass from � to its contragradient �_. Since V(�)� = V(�_) weare led to the search, for each �, of a Fourier transform, which is a partial isometryof L2(G=H;�) onto L2(ia�+q )
V(�). Going through the above isomorphisms in de-tail, we are led to the following construction culminating in (26), which essentiallyis the `projection' of the construction of f 7! f^ to functions of type �.For  2 V(�) and � 2 a�qC with Reh� + �; �i < 0 for all � 2 �+, let ~ � be theV�{valued function on G de�ned by~ �(x) = � a�����(m�1) w if x = hwman 2 Hw(M \K)AN;w 2 W;0 if x =2 [w2WHwP:(It is to be noted that M = w�1(M \H)w(M \K), and hence Hw(M \K)AN =HwMAN .) It can be shown that ~ � is continuous as a function of x, and hasa distribution{valued meromorphic continuation in � 2 a�qC . Let E�( ; �) be thesmooth �{spherical function on G=H de�ned byE�( ; �)(x) = ZK �(k) ~ �(x�1k) dk:(Even when ~ � is only a distribution, the convolution with � makes E�( ; �)smooth.) We call these functions Eisenstein integrals for G=H. When G=H isRiemannian and � is the trivial K{type 1, the construction produces the sphericalfunctions '�(x) = ZK e�(�+�)H(x�1k)dk; (23)and for otherK{types we get the generalized spherical functions of [26]. In the groupcase the Eisenstein integrals de�ned in this manner coincide, up to normalization,with Harish{Chandra's Eisenstein integrals associated to the minimal parabolicsubgroup. It can be seen that the vector components of the Eisenstein integralE�( ; �) are linear combinations of generalized matrix coe�cients formed by thej(�; �)�, (� 2 V (�); � " �_), with K{�nite vectors of type �.



BASIC HARMONIC ANALYSIS 21The spherical functions are eigenfunctions for the invariant di�erential operatorson G=K { in analogy we haveDE�( ; �) = E�(��(D;�) ; �) (24)for all D 2 D (G=H). Here ��(D) is an End(V(�)){valued polynomial in �. Justas it is the case for the spherical functions, one can derive an asymptotic expansionfrom this `eigenequation'. Here we have to recall the `KAH'{decomposition of G,G = cl Sw2WKA+q w�1H;where A+q is the exponential of the positive chamber in aq corresponding to �+,and where the union inside the closure operator cl is disjoint. Since the Eisensteinintegrals are K{spherical, we have to consider their behavior on A+q w�1, for all w 2W. Notice that when G=H is Riemannian there is only one `direction' to control,since the KAH{decomposition then specializes to the Cartan decomposition G =clKA+K. The expansion is essentially as follows (see [4] and the remark below):E�( ; �)(aw�1) = Xs2Wq as���[C(s; �) ]w + lower order terms in a; (25)for a 2 A+q , w 2 W, where Wq is as de�ned above Thm. 9, and the `c{function'� 7! C(s; �) is a meromorphic function on a�qC with values in End(V(�)) (it followseasily from the �{sphericality that we have E�( ; �)(aw�1) 2 V w�1(K\M\H)w� fora 2 Aq). The expansion converges for a 2 A+q ; the `lower order terms' involvepowers of the form as����� where � is a sum of positive roots.Remark. The de�nition of the Eisenstein integral given here does require � to be�nite dimensional, but not necessarily irreducible, and therefore remains valid for anarbitrary �nite dimensional unitary representation of K: In fact such an EisensteinintegralE� is introduced in [4] for a representation � de�ned as follows. Let � 2 K^;and let C(K)�_ denote the space of continuous functionsK ! C which are �nite andisotypical of type �_ for the right regular representation R of K: Put V� = C(K)�_and let � be the restriction of the right regular representation R to V� : Then by thePeter-Weyl theorem we have natural isomorphismsV� ' V�_
V�; and � ' �_
IV�:It now follows easily that the Eisenstein integrals E� and E�_ are related as follows.One has V(� ) ' V(�_)
 V�; and accordingly, for  2 V(�_); v 2 V� :E� ( 
 v; �)(x) = E�_( ; �)(x) 
 v:It follows from this that the corresponding c{functions are related by C� (s; �) =C�_(s; �) 
 I: From these remarks it should be clear how the results of [4] carryover to the present situation.4.4.2. The Fourier transform. It would now be natural to de�ne the Fourier trans-form F�f of a function f 2 C1c (G=H;�), the space of compactly supported and



22 E. VAN DEN BAN ET AL.smooth �{spherical functions on G=H, as the V(�){valued function ' on a�qC givenby h'(�)j i = ZG=Hhf(x)jE�( ;���)(x)i dx;  2 V(�);where the inner products h�j�i are the sesquilinear Hilbert space inner productson V(�) and V�, respectively. Via the isomorphisms in (21) and (22) this wouldessentially correspond to the Fourier transform in (15). However, as with j(�; �) wehave the problem that E�( ; �), which is meromorphic in �, may have singularitieson ia�q. Again we have to carry out a normalization: the normalized Eisensteinintegral is de�ned by E��( ; �) = E�(C(1; �)�1 ; �):In other words, the Eisenstein integral is normalized by its asymptotics, so that wehave E��( ; �)(aw�1) � a��� w for a 2 A+, w 2 W and Re � strictly dominant.It can be shown that this normalization corresponds to the one on j(�; �), in thesense that the vector components of E��( ; �) are linear combinations of matrixcoe�cients formed by the j�(�; �)�, (� 2 V (�); � " �_), with K{�nite vectors oftype �. Moreover, it can be shown that the statement of Thm. 8 is equivalent withthe following `K{�nite version':Theorem 10, [9]. The meromorphic function � 7! E��( ; �) is regular on ia�q, forevery � 2 K^ and  2 V(�).With this in mind we de�ne the �{spherical Fourier transform F�f as above,but with E� replaced by E��, that is, byhF�f(�)j i = ZG=Hhf(x)jE��( ;���)(x)i dx;  2 V(�): (26)Then F�f corresponds to f^ via the isomorphisms in (20) and (22). For complete-ness the precise correspondence is given as follows. Let � : C1c (G=H;�_)
 V� !C1c (G=H)� be the contraction (as in (22)) and let pr�;� : V(�)�
V� ! H�;�
V (�)�be the projection corresponding to (20). Then for all f 2 C1c (G=H)� we havedim(�) f^(�; �) = pr�;� ��(F�_ 
 IV�) ��1� f�� (��)� ; (27)for � 2 a�qC ; � " �, and f^(�; �) = 0 for all other �.When G=H is Riemannian and � = 1, the normalization again amounts to divi-sion by c(�), and thus F�f is in this case related to the spherical Fourier transformof f as follows: F�f(�) = c(��)�1 ZG=K f(x)'��(x) dx;



BASIC HARMONIC ANALYSIS 23where '� is the elementary spherical function in (23). If G=H is Riemannian and� is non{trivial there is a similar relation, also involving c(�)�1, to the Fouriertransform in [26].Let C�(s; �) = C(s; �)C(1; �)�1, then we have from (25)E��( ; �)(aw) = Xs2Wq as���[C�(s; �) ]w + lower order terms in a: (28)The following theorem generalizes results of Helgason and Harish{Chandra for theRiemannian case and the group case, respectively (see [25, Thm. 6.6], [23, Lemma17.6]).Theorem 11, [4], [5]. For every s 2 Wq we have the following identity of mero-morphic functions: C�(s; �)C�(s;���)� = IV(�) (� 2 a�qC ):In particular, for � 2 ia�q; the endomorphism C�(s; �) of V(�) is unitary.Notice that by Riemann's boundedness theorem it follows from the above resultthat the meromorphic function � 7! C�(s; �) has no singularities on ia�q: Thereforethe possible singularities of E��( ; �) must occur in the lower order terms of (28).This observation plays a crucial role in the proof of Thm. 10.On G=K the spherical functions satisfy the functional equation 's� = '�, for alls 2Wq. The analog for the normalized Eisenstein integral on G=H isE��(C�(s; �) ; s�) = E��( ; �) (29)(see [4, Prop. 16.4]. For the group case, see also [23, Lemma 17.2]).ThoughE��( ; �) by Thm. 10 is regular on ia�q, it will in general have singularitieselsewhere on a�qC . It is remarkable, though, that in a certain direction only �nitelymany singularities occur. To be more precise, one has the following. Let(a�qC )+ = f� 2 a�qC j Reh�;�i � 0; � 2 �+g;and put (a�qC )� = �(a�qC )+.Theorem 12, [4]. There exists a polynomial �0 on a�qC , which is a product of linearfactors of the form � 7! h�;�i+constant, with � a root, such that �0(�)E��( ; �) isholomorphic on a neighborhood of (a�qC )+.Notice that �0 depends on the K{type �. Notice also that when G=H is Rie-mannian we actually have that E��( ; �) itself is holomorphic on (a�qC )+. Indeed,the spherical functions are everywhere holomorphic, and the normalizing divisorc(�) has no zeros on this set. Thus, for this case one can take �0 = 1.



24 E. VAN DEN BAN ET AL.It follows from Thm. 12 and (26) that if we put�(�) = �0(���) (30)then � 7! �(�)F�f(�) is holomorphic on a neighborhood of (a�qC )�.4.4.3. Wave packets. For the �{spherical Fourier transform a `partial inversion for-mula' is given in [9] as follows. For a V(�){valued function ' on ia�q of suitable decayone can form a `wave packet', which is the superposition of normalized Eisensteinintegrals, with amplitudes given by ', that isJ�'(x) = Zia�q E��('(�); �)(x) d�:It is easily seen that the transformJ� is the transposed of F�. For Euclidean Fouriertransform (and more generally for the spherical Fourier transform on a Riemanniansymmetric space) this transform is also the inverse of F�; the inversion formulastates that J�F� is the identity operator (when measures are suitably normalized).In the non{Riemannian generality of G=H this cannot be expected, because of thepossible presence of discrete series. However we do haveTheorem 13, [9]. There exists an invariant di�erential operator D (depending on�) on G=H satisfying the following:(i) As an operator on C1c (G=H), D is injective and symmetric.(ii) J�F�f = f for all f 2 D(C1c (G=H;�)).From (24) one can derive that J�F�D = J���(D)F� = DJ�F�. Hence it followsfrom (ii) that D(J�F�f�f) = 0 for all f 2 C1c (G=H;�). Nevertheless, one cannotthen conclude from (i) that in fact J�F�f = f because J�F�f is not compactlysupported in general. The presence of D is important, for example it annihilates allthe discrete series in L2(G=H;�).The proof of Thm. 13 is very much inspired by Rosenberg's proof (see [28, Ch. IV,x7]) of the inversion formula for the spherical Fourier transform on G=K (in whichcase one can take D = 1). A key step in both proofs is the use of a `shift argument',originally used by Helgason for the proof of the Paley{Wiener theorem, where theintegration in J� (after use of (28)) is moved away from ia�q in the direction of(a�qC )�, using Cauchy's theorem. It can be seen that one only meets a �nite numberof singular hyperplanes in this shift. The purpose of the operator D is to removethese singularities (among other things this means that � should be a divisor in��(D)), so that no residues are present. The shift allows one to conclude thatJ�F�Df is compactly supported whenever f is, which is an important step in theproof of the theorem.Thm. 13 is crucial in the proof of Thm. 9. Via the isomorphism (22) one obtainswith J�_ an explicit formula for the restriction to H� of the isomorphism of H ontoL2mc(G=H).



BASIC HARMONIC ANALYSIS 254.5. A Paley{Wiener theorem for G=HLet �0 be the minimal polynomial satisfying the conclusion of Thm. 12, and as beforelet � be given by (30). We de�ne the pre{Paley{Wiener space, M� as the space ofV(�){valued meromorphic functions ' on a�qC , satisfying the following conditions:(i) '(s�) = C�(s; �)'(�), for all s 2Wq, � 2 a�qC .(ii) �(�)'(�) is holomorphic on a neighborhood of (a�qC )�.(iii) There exists a constant R > 0 and for every n 2 N a constant C > 0 suchthat k�(�)'(�)k � C(1 + j�j)�neRjRe�jfor all � 2 (a�qC )�.It can be seen that F� maps C1c (G=H;�) into M� (properties (i) and (ii) arestraightforward consequences of (29) and Thms. 11 and 12, whereas (iii) requires amore di�cult estimate for E��( ; �)). It follows from the Paley{Wiener theorem ofHelgason and Gangolli (see [28, Ch. IV, x7]), that when G=H is Riemannian and� the trivial K{type then F� is a surjection onto the pre{Paley{Wiener space, asde�ned above for this special case. However in general one has to require furtherconditions on a function ' 2 M� before it belongs to F�(C1c (G=H;�)). Briey put,the extra condition is that any existing relation between the normalized Eisensteinintegrals and their derivatives (with respect to �) should be reected by a similarcondition on '. More precisely, we require that:For all �nite collections of @1; : : : ; @k 2 S(a�q) (that is, constant coe�cient di�er-ential operators on a�q),  1; : : : ;  k 2 V(�) and �1; : : : ; �k 2 (a�qC )�, for which therelation kXi=1 @i��(�) h jE��( i;���)(x)i��=�i = 0 (31)holds for every  2 V(�), x 2 G=H, we also have the relationkXi=1 @i��(�) h'(�)j ii��=�i = 0: (32)The space of functions ' 2 M� satisfying this requirement is denoted PW�.It is clear from the de�nition (26) of F�f , that F�f belongs to this space forf 2 C1c (G=H;�).Theorem 14, [9]. The �{spherical Fourier transform F� maps C1c (G=H;�) intothe Paley{Wiener space PW�. Moreover(a) F� is injective.(b) If dim aq = 1 then F� is surjective.



26 E. VAN DEN BAN ET AL.The injectivity of F� is an immediate corollary of Thm. 13: If F�f = 0 thenF�Df = ��(D)F�f = 0, hence Df = 0 by (ii), and hence f = 0 by (i). Theinjectivity of f 7! f^ asserted earlier (below Thm. 9) is a consequence, by densityof the K{�nite functions in C1c (G=H). The surjectivity statement in (b) is a by{product of the proof of Thm. 13.For the Riemannian symmetric spaces the surjectivity of F� (with an arbitraryK{type �) is a consequence of the Paley{Wiener theorem in [26], and for the groupG itself considered as a symmetric space it follows from the results in [15] and [1],as mentioned earlier. In [9] it is conjectured that F� is surjective for general G/Has well.We are now going to extend this theory to distributions, or more precisely, togeneralized functions. Let C�1c (G=H) denote the space of compactly supportedgeneralized functions on G=H: Multiplication with the invariant measure dx inducesan isomorphism of this locally convex space with the topological linear dual ofC1(G=H); i.e. with the space of compactly supported distributions on G=H: Ifu 2 C�1c (G=H); and f 2 C1(G=H); then we shall write accordingly:hu ; f i = ZG=H u(x) f(x) dx = udx(f):We have a natural embedding C1c (G=H) ! C�1c (G=H); accordingly there isa natural extension of the Fourier transform f 7! f^ to the space of compactlysupported generalized functions.Let C�1c (G=H;�) denote the space of compactly supported �{spherical gener-alized functions G=H ! V�: The �{spherical Fourier transform F� allows a naturalextension to the space C�1c (G=H;�) with values in the space of meromorphic func-tions a�qC ! V(�):A classical extension of the Paley{Wiener theorem for Rn states that the Fouriertransform maps the space C�1c (Rn) of compactly supported generalized functionsbijectively onto the space PW�(Rn) of entire functions on C n for which there existsR > 0 such that (2) holds for some N 2 Z (such functions are said to have slowgrowth of exponential type). We shall now state a conjectural analog of this resultfor C�1c (G=H;�).LetM�� be the pre{Paley{Wiener space of meromorphic functions ' : a�qC ! V(�)satisfying conditions (i) and (ii) of the de�nition ofM� and moreover the followingcondition:(iii)' There exist constants R;C > 0 and n 2 N such thatk�(�)'(�)k � C (1 + j�j)neRjRe�jfor all � in (a�qC )�:Furthermore, let PW�� be the space of functions  2 M�� satisfying the Paley{Wiener relations given in (32).



BASIC HARMONIC ANALYSIS 27It can be seen that F� maps C�1c (G=H;�) into PW�� (properties (i) and (ii) areobtained by the same arguments that were used to establish these facts for smoothu, and (iii)' follows from the estimates for the derivatives of E��( ; �) obtained in[4]). In analogy with Thm. 14 we now have:Theorem 15, [6]. The �{spherical Fourier transform F� maps C�1c (G=H;�) intothe Paley{Wiener space PW��. Moreover(a) F� is injective.(b) If dim aq = 1 then F� is surjective.Moreover, we conjecture that the surjectivity of F� holds in general. When G=His Riemannian the surjectivity is established in [18].4.6. A multiplier theoremA linear operator M : C1c (K;G=H)! C1c (K;G=H)is called a multiplier if it is equivariant for the actions of g, K and D (G=H) on thisspace, and has a continuous restriction to C1c (G=H)� for each � 2 K^. If M is amultiplier, then it can be seen from the Fourier theory discussed in Sect. 4.4 that foralmost every principal series representation � = ��;� there exists an endomorphism	� of the space Vo� such that(Mf)^(�) = f^(�) �	�: (33)Moreover, 	� will respect the eigenspace decomposition of Vo� for D (G=H).Simple examples of multipliers are the elements of D (G=H). If M is given bysuch an operator D 2 D (G=H), then (33) can be written as follows:(Mf)^(�)v = �(D)(�)f^(�)v;for any spherical vector v 2 Vo� of type � 2 b�C . Of course an operator M thusde�ned extends to C1c (G=H), but this will not be the case in general.In [6] we give a simple construction of a large algebra of multipliers, containing thealgebra D (G=H): The result is stated below. The existence of these multipliers is ageneralization of Arthur's result [1, Thm. III.4.2] for the group case. Arthur's proofrests on his Paley{Wiener theorem (the generalization of which was conjectured inSect. 4.5); a simpler construction using the correspondence ' 7! 'r in Prop. 4 waslater given in [16]. Our construction for the general case is similar in that it alsouses this correspondence.Let b be a �{invariant maximally split Cartan subspace of q; and recall from Sect.4.2 that PW(br)W is the space ofW{invariant entire rapidly decreasing functions ofexponential type on b�C . Let PW�(br)W be the space ofW{invariant entire functionswith slow growth of exponential type on b�C (see Sect. 4.5).



28 E. VAN DEN BAN ET AL.Theorem 16, [6]. For every  2 PW�(br)W there exists a unique linear operatorM : C1c (K;G=H)! C1c (K;G=H)such that for any � 2 GĤ and any spherical vector v 2 Vo� of type � 2 b�C we have(M f)^(�)v =  (�)f^(�)v; f 2 C1c (K;G=H): (34)If D 2 D (G=H); then M�(D) = DjC1c (K;G=H): Moreover, the map  7! M isan algebra homomorphism from PW�(br)W into the algebra of multipliers. Finally,for every  2 PW�(br)W the equation (34) holds more generally with v a sphericalvector of type � in V�.Indication of the proof. The uniqueness ofM follows easily from the abstract Plan-cherel theory discussed in Sect. 3.2. The existence is established as follows.Let  2 PW�(br)W be given, and let F 2 C�1c (Gd=Kd) be the Kd{invariantgeneralized function such thatZGd=Kd F (x)'�(x) dx =  (�)for all � 2 b�C . Then for f 2 C1c (K;G=H) it is easily seen that the convolutionproduct fr � F (x) = ZGd=Kd fr(y)F (y�1x) dy; x 2 Gd=Kd; (35)is smooth and Hd{�nite, and that Prop. 4 allows us to de�neM f 2 C1c (K;G=H)by (M f)r = fr � F:By [21, Cor. II.4] there exists a natural isomorphism of algebras D 7! Dr fromD (G=H) onto D (Gd=Kd), such that (Df)r = Drfr for all f 2 C1c (K;G=H).Moreover, we have �r(Dr) = �(D), where �r : D (Gd=Kd)! S(br)W is the Harish{Chandra isomorphism. Let now D 2 D (G=H); and let F be associated to  = �(D)as above. Then for all g 2 C1(Gd=Kd) we have g�F = Drg: It follows from this that(M�(D)f)r = fr � F = Drfr = (Df)r ; for f 2 C1c (K;G=H): Hence M�(D) = D:It is easily seen that the map  7! M is additive and multiplicative. Hence,if  2 PW�(br)W and D 2 D (G=H); then M �D = M �M�(D) = M �(D) =M�(D) �M = D �M ; and one readily checks that M is a multiplier.Finally (34) is seen by an argument similar to the proof of Thm. 5. �Remark. It follows from the injectivity statements in Theorem 14 that M isalready uniquely determined by the requirement that equation (34) should hold forall principal series representations � = ��;�, where � 2Mf̂u and � 2 ia�q.The multipliers of Thm. 16 do actually extend to the space C�1(K;G=H) ofK{�nite generalized functions on G=H. Let this space be equipped with the directsum of the usual strong dual topologies on the subspaces C�1(G=H)�; � 2 K^:



BASIC HARMONIC ANALYSIS 29Theorem 17, [6]. Let  2 PW�(br)W . Then the operator M of Theorem 16extends to a continuous linear operatorM : C�1(K;G=H)! C�1(K;G=H):This extension is equivariant for the actions of g, K and D (G=H) and preserves thesubspace C�1c (K;G=H) of compactly supported generalized functions. Moreover,for any � 2 GĤ and any spherical vector v 2 V� of type � 2 b�C we have(M f)^(�)v =  (�)f^(�)v; f 2 C�1c (K;G=H): (36)Finally, if  2 PW(br)W then M maps C�1(K;G=H) into C1(K;G=H).Remark. Notice that (36) for f 2 C�1c (K;G=H) is an equation of elements inH�1� . Notice also that the existence statement in Thm. 5 can be obtained from the�nal statement of Thm. 17, by applying M to the K{isotypical component P�� oftype � of the Dirac function � supported at the origin.Let � 2 K^ and  2 PW�(br)W be given. We shall now discuss the relation ofthe multiplier M to the �{spherical Fourier transform F�. We �rst note that theconstruction of M is easily extended to �{spherical functions f 2 C1c (G=H;�):The partial holomorphic extension ' 7! 'r makes sense for vector valued functions,and so does the convolution product in (35). We denote the resulting linear operatorC1c (G=H;�) ! C1c (G=H;�) by M� . It is easily seen that we have the followingrelation between the operators M and M� :� � (M�_ 
 IV�) =M � �;where � : C1c (G=H;�_) 
 V� ! C1c (G=H)� as earlier is the contraction isomor-phism.Since b is maximally split, we may as well assume that aq = b\p: Put bk = b\ k;then (9) becomes br = aq � ibk:Via this direct sum decomposition we identify a�q and br�k := ib�k with subspaces ofbr�:Let � 2Mf̂u, and recall from Sect. 4.3 that j�(�; �) for generic � 2 a�qC is a linearbijection of the space V (�) onto the space V�;� = (H�1�;� )H . Via j� we transfer theD (G=H){module structure of V�;� to V (�): Thus for every D 2 D (G=H) we de�ne��(D;�) 2 End(V (�)) by Dj�(�; �) = j�(�; �)��(D;�) (37)



30 E. VAN DEN BAN ET AL.for generic �. It is known that ��(D;�) is in fact an End(V (�)){valued polynomialin � (cf. [4, Sect. 4]). It allows an eigenspace decomposition which is independentof �: More precisely, if � 2 br�k ; de�neV (�)� = f� 2 V (�) j ��(D;�)� = �(D; � + �)�; D 2 D (G=H); � 2 a�qC g(as before � denotes the Harish{Chandra isomorphism from D (G=H) onto S(br)W ).Then for �1; �2 2 br�k with V (�)�1 6= 0 we have V (�)�1 = V (�)�2 if and only if �1and �2 are conjugate under the centralizer WM of aq in W: Moreover, let N (�)denote the set of � 2 br�k =WM for which V (�)� 6= 0: Then we have the direct sumdecomposition V (�) = L�2N (�)V (�)�(for details, see [4]). Notice that it follows from the above that j�(�; �) maps V (�)�onto the space of D (G=H){spherical vectors of type � + � in V�;�, for generic �.We now de�ne, for a givenWM{invariant complex function  on b�C an endomor-phism M( ; �; �) of V (�) byM( ; �; �) =  (� + �) I on V (�)� (38)for � 2 a�qC . It follows that we have(M f)^(�; �) = f^(�; �) �M( ; �; �)for all � 2 Mf̂u, � 2 ia�q.Recall the orthogonal decomposition (19) of V(�). According to this decomposi-tion we de�ne for each � 2 br�k a subspace V(�)� of V(�) byV(�)� = L�"�HomM\K(V�;H�) 
 V (�)� :Then V(�)� only depends on the WM{conjugacy class of � and writing N (�) =[�"�N (�) we have the following �nite direct sum of non{trivial vector spaces:V(�) = L�2N (�)V(�)� : (39)The maps ��(�) : D (G=H) ! End(V (�)) and ��(�) : D (G=H) ! End(V(�)) areclosely related; in fact it follows from [4, Sect. 4] that ��(D;�) corresponds to thedirect sum of the maps I 
 ��(D;�) in the decomposition (19), or equivalently,to the direct sum of the maps �(D; � + �)IV(�)� in the decomposition (39), for allD 2 D (G=H), � 2 a�qC .Let M�( ; �) 2 End(V(�)) be de�ned by the requirementM�( ; �) = I 
M( ; �; �) on HomM\K(H�; V�) 
 V (�)



BASIC HARMONIC ANALYSIS 31in the direct sum decomposition (19). We shall view M�( ) as a multiplicationoperator on V(�){valued functions on a�qC . It follows from the remarks made abovethat F�(M� f) = M�( _)F�f (40)for all f 2 C1c (G=H;�).If the surjectivity conjectures for F� stated in Sect. 4.5 are valid for G=H, thenit follows from (40) that multiplication by M�( ) leaves the spaces PW� and PW��invariant. This is indeed true in general:Proposition 18, [6]. Let  2 PW�(br)W : Then multiplication by M�( ) leavesthe spaces PW� and PW�� invariant. Moreover, if  2 PW(br)W then multiplicationby M�( ) maps PW�� to PW� :References1. J. Arthur, A Paley{Wiener theorem for real reductive groups, Acta Math. 150 (1983), 1-89.2. E. P. van den Ban, Invariant di�erential operators on a semisimple symmetric space and �nitemultiplicities in a Plancherel formula, Ark. f�or Mat. 25 (1987), 175-187.3. E. P. van den Ban, The principal series for a reductive symmetric space I. H{�xed distributionvectors, Ann. sci. �Ec. Norm. Sup. 4, 21 (1988), 359{412.4. E. P. van den Ban,The principal series for a reductive symmetric space II. Eisenstein integrals,J. Funct. Anal. 109 (1992), 331-441.5. E. P. van den Ban, The action of intertwining operators on H-�xed generalized vectors in theminimal principal series of a reductive symmetric space, in preparation.6. E. P. van den Ban, M. Flensted{Jensen and H. Schlichtkrull, Multipliers on semisimple sym-metric spaces, in preparation.7. E. P. van den Ban and H. Schlichtkrull,Asymptotic expansions and boundary values of eigen-functions on Riemannian symmetric spaces, J. reine und angew. Math. 380 (1987), 108{165.8. E. P. van den Ban and H. Schlichtkrull, Multiplicities in the Plancherel decomposition for asemisimple symmetric space, Contemporary Math. 145, 163-180.9. E. P. van den Ban and H. Schlichtkrull, The most continuous part of the Plancherel decom-position for a reductive symmetric space, in preparation.10. M. Berger, Les espaces sym�etriques non compacts, Ann. Sci. �Ecole Norm. Sup. 74 (1957),85{177.11. F. Bien, D{modules and spherical representations, Princeton U. P., Princeton, N. J., 1990.12. N. Bopp and P. Harinck, Formule de Plancherel pour GL(n;R)=U(p; q):, J. reine und angew.Math. 428 (1992), 45-95.13. J.-L. Brylinski and P. Delorme, Vecteurs distributions H{invariants pour les s�eries princi-pales g�eneralis�ees d'espaces sym�etriques r�eductifs et prolongement m�eromorphe d'integralesd'Eisenstein, Invent. math. (1992), 619{664.14. O. Campoli,The complex Fourier transform for rank{1 semisimple Lie groups, Thesis, RutgersUniversity (1976).15. J. Carmona and P. Delorme,Base m�eromorphe de vecteurs distributions H{invariants pour less�eries principales g�eneralis�ees d'espaces sym�etriques r�eductifs. Equation fonctionelle, preprint(1992).16. P. Delorme, Multipliers for the convolution algebra of left and right K{�nite compactly sup-ported smooth functions on a semi{simple Lie group, Invent. Math. 75 (1984), 9-23.
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