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0. INTRODUCTION

Let G be a real reductive Lie group (of Harish-Chandra’s class), 7 an in-
volution of G and H an open subgroup of the group G of fixed points for 7.
Then G has a 7-stable maximal compact subgroup K.

In harmonic analysis on the reductive symmetric space G/H a major role is
played by K-finite functions annihilated by a cofinite ideal of the centre 3 of
the universal enveloping algebra of G. Such functions naturally arise as matrix
coefficients of K-finite vectors and H-fixed distribution vectors of admissable
representations (cf. e.g. [15, 16, 2, 7, 14]). In this paper we study the asymptotic
behaviour of such functions, using the methods developed in Harish-Chandra
[9, 10] and Casselman-Milicic [4] (actually we allow the functions more
generally to be H-spherical from the right). As an application an analogue of
Harish-Chandra’s space of Schwartz functions is introduced. We prove that
a 3- and K-finite function belongs to this space if and only if it belongs to
L*(G/H) (Theorem 7.3). This generalizes a well known result of Harish-
Chandra [11]. A second application will be given elsewhere in joint work with
H. Schlichtkrull (cf. [3]). Via Flensted-Jensen’s duality (cf. [6]) a K-finite
eigenfunction f for the algebra D(G/H) of invariant differential operators on
G/H corresponds to a Hfinite eigenfunction f9 for D(G/K?) on a dual
Riemannian symmetric space G?/K“. The estimates for f obtained in the
present paper (note that f'is 3-finite since D(G/H) is a finite 3-module, cf. [2])
are a first step towards a new proof that the so called boundary value of f9¢
(originally defined as a hyperfunction, cf. [18]) is a distribution. This result,
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originally proved using hyperfunction methods (cf. [8]) is of importance for the
theory of the discrete series for G/H (cf. [14]).

A reductive group ‘G of Harish-Chandra’s class may be viewed as a reductive
symmetric space G/H: here G='G x'G, t(x, y)= (¥, %), H={(x, x); x€'G} and
the map G—'G, (x, y)~xy~! induces the identification G/H='G. If 'K is a
maximal compact subgroup of ‘G, then K='Kx'K is a t-stable maximal
compact subgroup of G, and 3-, K-finite functions on G/H correspond
bijectively to ‘3- and 'K x ‘K-finite functions on ‘G. In this situation (‘‘the group
case’’) the general study of these functions and the differential equations satis-
fied by them was started by Harish-Chandra in two unpublished papers [9, 10].
Later on the material was made more accessible by Casselman and Milicic [4].
They discovered that in suitable coordinates at infinity the equations become
a system of complex partial differential equations of the regular singular type.
In fact the singularities are of a very special type called simple, and the
equations can be treated by a several variable version of the classical Frobenius
method (cf. also [5]). A different approach to asymptotics was followed by
Wallach [20].

The methods of [9, 10] and [4] apply very well to our more general situation.
In all directions to infinity the asymptotic behaviour of 3- and K-finite
functions on G/H can be described by converging series expansions, similar to
those in the group case. There occurs a new phenomenon however which
we shall briefly describe. The space G/H admits a Cartan decomposition
G =Kcl(A™)H, where A~ is a Weyl chamber corresponding to a root system
X, of a vectorial subgroup A in the subgroup G, ={x€G; 0(x)=x}. A 3-
and K-finite function f satisfies so called radial differential equations on A~
(cf. § 3). However it does not admit a converging series expansion on the whole
of A~ . Instead A ~ is divided into finitely many Weyl chambers determined by
a root system X of A in G which contains X, as a subsystem. The function f
admits a converging series expansion on every such smaller chamber (cf. § 2 for
a detailed explanation of this phenomenon). Global estimates for f can be
obtained from information on the leading exponents of f along each of the
subchambers of A~ (cf. § 6).

As we indicated above, the main ideas of this paper stem from [9, 10] and
[4]. However, the present situation is sufficiently different from the group case
to justify a separate treatment. Often we refer to [4] when proofs would have
been essentially the same. On the other hand we have kept this paper as self-
contained as possible by not referring to [4] for notations or definitions.

Finally we should mention that for K-finite eigenfunctions of D(G/H)
related results have been obtained by Oshima-Matsuki [14]. Via Flensted-
Jensen’s duality they transfer the problem to the dual Riemannian symmetric
space G%/K? and then apply hyperfunction methods (cf. [18] for an intro-
duction to these methods).

1. SYMMETRIC SPACES OF CLASS #
If G is a group of class #, 7 an involution of G, H a closed subgroup with
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(G)°C HC G7, we call the homogeneous space G/H a symmetric space of the
Harish-Chandra class (class #). For the basic structure theory of groups of
class #, we refer the reader to [19, pp. 192-198].

PROPOSITION 1.1. Let G be a group of class #, t, H as above. Then G carries
a Cartan involution 6 with 0t=160. Moreover, [H: H°| < o and 6(H)=H.

PROOF. Let X(G) denote the space of continuous multiplicative homo-
morphisms G—R*=R\ {0}, and put
°%G= (] ker |y
X € X(G)

Let ¢ be the centre of the Lie algebra g of G, °g the Lie algebra of °G, and set
%=%Ne¢. Because 7 is an automorphism, it leaves °G invariant. The asso-
ciated infinitesimal involution, denoted by the same symbol 7, leaves Og, ¢ and
O¢ invariant. If we let b and q denote the +1 and —1 eigenspace of 7 in g
respectively, we have decompositions ¢= ¢,®Dc, and O¢ =°ch®°cq, where
¢p=cNh, ¢g=cNq, etc. Fix linear subspaces v, and v_ of ¢, and ¢4 such that

0
Cp= Ch®b+ s cq=0cq®b_,

and put v=v, @v_. Then ¢="%@v, and so V= exp v is a 7-stable maximal
closed vector subgroup of centre (G). On the other hand, since 7 leaves the
semisimple algebra g, = [g, g] invariant, there exists a 7-stable maximal compact
subalgebra f; of g, (cf. [1]). Moreover, there exists a unique maximal compact
subgroup K of G, whose Lie algebra contains f, (cf. [19, p. 197, Thm 12]).
Finally, there exists a unique Cartan involution 8 of G such that G?=K and
6(x)=x"" for xe V. We claim that 76 = 6z. In fact, 7(K) is a maximal compact
subgroup of G, whose Lie algebra 7(f) contains 7(f;)=f,. Hence, by the
uniqueness referred to above, 7(K) =K. The infinitesimal Cartan involution 6
leaves g; and ¢ invariant, so that p=g %= g7 ®¢ %= g;°@®v. Therefore pis
7-stable, hence exp p is, whence the claim.

Finally, since 7 and # commute, G* and (G")° are 6-invariant, so that
G'=(G'NK) exp (pNHh) and (G)°=[(G")°NK] exp (pN}). It follows that
[H:H°1<[G":(G)°1=[G'NK:(G)°NK]< o (the latter by compactness of
K). 1t also follows that (G")°NK=(G'NK)°, hence H'NK =(HNK)", and
H=(HNK) exp (pNY). In particular H=0(H). O

From now on, let G be a group of class &, t an involution of G, and 6 a
commuting Cartan involution. In the sequel we shall use the notations of the
above proof without further comments. Moreover, we fix a bilinear form B on
g which is negative definite on f and positive definite on p, coincides with the
Killing form on g, and for which g, ¢, and ¢, are orthogonal. Then B is non-
degenerate and Ad(G)-invariant.

We conclude this section with recalling some known results on the structure
of G/H that are relevant for this paper.
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LEMMA 1.2. Themap ¢ : KX (pNq)X(pNHh)—G, (k, X,Y)~kexp Xexp Yis
a diffeomorphism.

PROOF. This follows easily from the corresponding result in the semisimple
case (i.e. g semisimple, cf. [6, proof of Theorem 4.1]). O

Let g, be the + 1 eigenspace of 76 in g. Then g, is a reductive subalgebra
with polar decomposition

g, =ENHD(MNa).

Select a maximal abelian subspace a,, of pNq. Then from the corresponding
result in the semisimple case one easily sees that the set =2 (g,a,,) of re-
stricted roots of a,, in g is a (possibly non-reduced) root system (cf. [17]).

Since 16=1 on a,,, every root space g% (@€ ) is t6-invariant, so that we
have a corresponding decomposition

g"=9% @g?
into +1 and —1 eigenspaces. Let
2, ={aeX; g% #0}.

Then X, =3(g,a,,), the restricted root system of a,, in g, . Of course a,,
may be central in g, , so that X, =@. We fix a choice 2| of positive roots for
X, (if ¥, =0, then 2} =0), and put

a,y={Hea,,; a(H)<O0 for all ke 2} },

A=exp (ap), A~ =exp (ay)-
Moreover, we write

ap,={Hea,,; a(H)#0 for all ae 2, },
and A’=exp (ap,). If Z, =0 this is to be interpreted as a,,=0a,,=0a,;-
LEMMA 1.3. For every XepNq there exists a unique Y ecl(a,,) such that
X =Ad(k)Y for some ke KNH".
PROOF. Without loss of generality we may assume that G =G, and then the
same proof as in [6, p. 118] applies. O
COROLLARY 1.4 (Cartan decomposition). For every x€G there exists a
unique a e€cl(A~) such that xe KaH°.

PROOF. This follows from a straightforward combination of Lemmas 1.2
and 1.3. O

Before stating the next result we introduce a few more notations. Let [ be the
centralizer of a,, in g. Since a,, is invariant under 7 and 6, so is [, and we have
the decomposition

(11) I=1kq®[kh®apq®[ph’
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where [, =[NfNgq, etc. For the rest of this section we fix a choice Z* of
positive roots for 2 such that ¥*NX, =" and put

n= Y g°

aez”

and i =0n. Then obviously
(1.2)  ¢=n®I(®n.

By the same proof as in [2, Lemma 3.4], we also have

(1'3) g=ﬁ®qu®apq®b'

Moreover, the maps aX[;,—f, (X,U)~»X+60X+U and @i x[,—h, (X,U)~
—X+1X+U are easily seen to be bijective. Using [2, Lemma 3.5], we now
obtain the following.

LEMMA 1.5 (Infinitesimal Cartan decomposition). Let §¢ be the orthocom-
plement of 1, in . Then for every ac A’ we have the direct sum decompo-
sition

8 =Ada ") t®a,,®p".

Let M be the centralizer of apq in KNH, and put d(M)={(m,m)e K x H®,
meM}.

LEMMA 1.6. The map (Kx H®)/d(M)x A~ -G given by
(1.9 ((k, h)d(M), a)~ kah "
is a diffeomorphism onto the open dense subset G'=KA~H° of G.

PROOF. From Lemmas 1.2 and 1.3 it easily follows that G’ equals the open
dense subset K exp (Ad(KNH’)a,,) exp (pNb) of G.

To see that (1.4) is injective, suppose that ke K, a,be A~, he H°. Then it
suffices to show that kah ~'=b implies k=he MNH® and a=b. Now this is
seen as follows. Write A~ !=h,h,, where h, e KN H°, h,eexp (pNHh). Then by
Lemma 1.2 we have kh; =1, hy=1, h{ 'ah,=b. Let Ad, be the adjoint repre-
sentation of G% =(KNH®) exp (pNyq) in g, . Then it follows that Ad, (k)
maps log (a) € a,, into a,,. But a,, is @ Weyl chamber for X, =2(g+,0p,) and
so, by standard semisimple theory applied to Ad, (G‘Zr ), it follows that k
centralizes a,,. Hence k=heMN H® and a=b.

Finally, fix ke K, he H°, ac A~, and consider the map

wiEXh Xa, =G, (X,Y, Z)~k exp (X)a exp (Z) exp (Y)h.

Then the differential dy(0) of w at (0,0,0) is given by
dy(O)(U, V, W) =d(A,0)e)Ad(@a YU+ V+ W),
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where A,, denotes left multiplication by ka, and g, right multiplication by 4 on
G. By Lemma 1.5 this differential is bijective. Consequently (1.4) has bijective
differential everywhere. O

2. SPHERICAL FUNCTIONS AND THE BASIC EQUATIONS

Let u = (u;, u,) be a smooth representation of Kx H in a finite dimensional
complex linear space E. If ve E, he H, we shall often write vuy(h~ 1) instead
of uy(h)v. A C=-function F: G— E such that for all xe G, k€ K, h € H we have

Flkxh) =, (K)F(X)uz(h)

is called u-spherical. The space of all such functions is denoted by C;(G).

If b is a real Lie algebra, then we denote the universal enveloping algebra of
its complexification b, by U(b). Similarly, we denote the symmetric algebra of
b, by S(b). Unless otherwise specified, U(g) acts on smooth functions on G via
the right regular reprfesentation R. The centre of U(g) is denoted by 3. A
function f on G is called 3-finite if the vector space {Zf; Ze 3} is finite
dimensional over C.

The subspace of 3-finite elements in C;7(G) is denoted by A,(G). As they
are annihilated by an elliptic differential operator with real analytic coefficients
(see for instance the argument in [19, p. 310]), the elements of 4,(G) are in
fact real analytic functions.

A function Fe C;(G) belongs to A,(G) iff it is annihilated by a cofinite
ideal I in 3. We write 4,(G, I) for the space of FeA,(G) satisfying

R,F=0 (Zel).

Here we have used the notation R,= R(u) for the infinitesimal right regular
action of an element u € U(g).

For the sake of completeness we list the following lemma which is proved
along the same lines as [2, Cor. 3.10], involving a finite basis of 3/I over C
(cf. [19, p. 308, Thm. 8]). Let aC [ be a Cartan subalgebra containing a,,,
@ =3(g,0.), Po=2(I0a.), and let W(P), W(P,) be the Weyl groups of @ and
@, respectively.

LEMMA 2.1. Let I be a cofinite ideal in 3. Then

dim A,(G, I)<dim (3/1) dim (W[W(P): W(P,)].

Before proceeding we briefly discuss how spherical functions arise in
representation theory. Let 7 be an admissible representation of finite length of
G in a Fréchet space V. Let the space V* of C®-vectors in V be equipped with
the topology induced by the collection of seminorms

N, 42 v= p(n(a)v),

where p ranges over a complete set of seminorms for V, and ae€ U(g). As a
locally convex space V* is isomorphic to the closed subspace

T={feC”(G,V); f(x)=n(x)f(e)}
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of the Fréchet space C*(G, V); this follows by a straightforward application of
the Banach-Steinhaus theorem. Hence V* is Fréchet. The topological dual
V~= of ¥* is a G-module in a natural way; we let (V' ~*) denote the sub-
space of H-fixed elements in V'~ .

Given pe (V=) ue Vg (the K-finite vectors in V), we may form the
(C*-) matrix coefficient

Q.1)  mx)=m,,(x)=p(rx""u) (xeG).

Now let ¥C K be the set of K-types occurring in u, V the (finite dimensional)
span of all K-isotopic vectors in Vj with K-type contained in ¥, and let
Py: V-V, be the projection along the other K-types. Let E be the linear dual
of Vy, uy the contragredient of the representation of K in V4. Then the
function F=F,, ,: G—E defined by:

Fx)=gon(x~")oPy; (xeG)
is (u;, 1)-spherical. Viewing u as an element of E, we have
(22) m(p,u(x) = <ll, F(p,l?(x)> (XG G)'

The annihilator J of ¥* in 3 is a cofinite ideal because 7 has finite length. Let
u~u" denote the principal anti-automorphism of U(g). Then obviously
Fe A,(G,J"), where = (up,1).

COROLLARY 2.2. Let n be an admissible representation of finite length of G
in a Fréchet space V. Then dim (V™ *)"< .

PROOF. Select a finite set S of generators for the (g, K)-module Vy and let ¢
be the (finite) set of K-types occurring in the elements of S. Then the linear map
(V‘°°)”—>A,,(G, JY), ¢~F,, is injective, and the result follows from
Lemma 2.1. ]

In the above we have seen how matrix coefficients may be expressed in terms
of (uy, 1)-spherical functions. We now return to the more general situation of
a fixed smooth representation u=(u;,u,) of KX H in a finite dimensional
complex linear space E.

In view of the Cartan decomposition G =Kcl(A~)H, a function Fe Cr(G)
is determined by its restriction Res (F) to A~. Let M be the centralizer of 4
in KNH, and put

(2.3)  EM={ueE;u,(mu=uuy(m) for all me M}.

Then obviously the restriction map Res maps C7(G) injectively into
C*(A~, EM).

Let now Fe A,(G, I), I being a cofinite ideal in 3. Following a method of
Harish-Chandra (cf. [10]), we shall associate to F a system of first order
differential equations along 4 ~. Using substitutions of variables as in [4], we
then obtain systems with simple singularities (in the sense of [4, Appendix]),
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which enable us to obtain series expansions for Res (F). There is a complication
however which does not occur in [4]. Though the differential equations have
no singularities on A, the series expansions for Res (F) do not converge in
the whole of 4 7; in general they break down along root hyperplanes ker «,
aeX\ X,. The explanation for this phenomenon is that the regions of
convergence are determined by the singularities of the equations in the com-
plexification of the group A. Each root contributes to these singularities.

Let & be the collection of systems P of positive roots for 2 with PNZ, =
=Xt If Pe &P, we set

,q(P)={H€a,,; a(H)<O0 for all aeP},
and A~ (P)=exp a,,(P). Then
A )= U cia=(P)).

Pe?

Each chamber 4~ (P), Pe % will be a region of convergence of a series
expansion for Res (F). In the course of this paper we will see that the expan-
sions for F|A~(P), Pe & together completely determine the asymptotics of F.
This being said let us fix a particular element Z* of & and concentrate on the
behaviour of F along A~ (Z*).

Let A be the set of simple roots in £ *. Then 4 is a basis for (a,,M g;)* over
RR. Select a basis A for (a,,N¢)* over R. Identifying (a,,MNg;)* and (ay,Nec)*
with subspaces of a,’,"q via B, we put:

A=4UA,.

Let {H,; 1€ A} be the basis of a,, which is dual to the basis A of a,,. Then
H,ea,,Ng, for aed and H,eaq,,Nc for 1eA..
As in [2], let # " be the algebra of functions A’—R generated by

fi@=@"-a" """, gi@=-a"%),

ff@=@f+a b, g@=-a""f)
(@eZt;BeX™, g? #0). Here we have used the notation

a’=e’ log a’

for yeap,, ae A. Moreover, let # be the ring generated by 1 and F+.

Let 3(I) denote the centre of U(l) and let v,=1, vy,...,v,€3(l) be as in
[2, Lemma 3.7]. Moreover, fix D; =1, D,,...,D;€ 3 such that their canonical
images generate 3/I over C. Then by [2, Lemma 3.8] there exist finitely many
elements f};e %, EiL.e UY), nlje U(h) (AeA, 1<ik<s, 1<j,1=<r), such that

(2.4)  HDj= Y fH (@&} Dyvinkl; mod I
k1

for all ae A’. Here we have used the notation

(2.5) Y*=Ad(x~ )Y (xeG,YeU(g),
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which is the technically more convenient notation of [4], but inconsistent with
the notation in [2].

The centralizer L of a,, in G is of class #, hence centralizes 3(f) (cf. [19,
p. 286, Theorem 13]). Therefore M centralizes 3 and 3(I). Consequently, if
Fe A,(G,I) then the functions

(2.6)  @;;=Res (R(D;v)F)

(1<i<s, 1<j<r) map A into EM. By (2.4) it follows that

@7 RE)P;@= L fi@m ) Pu@uanf)),

for allae A’. Now let & : A’—(EM)* be the vector valued function with entries

®;; (1=i=<s, 1=j=<r). Then by (2.7) there exist elements
G,e¥®End¢ {(EM)*} (AeA)

such that the real analytic map & : A—(E™)* satisfies the differential equations
RH)P=G,-® (LeA)

on A'.
As in [4] we view A as embedded in C”' under the map

Ma)=(a*; 1eA).

Under this map the differential operators R(H,) (4 € A) correspond to z,3/9z;
in C'. If yeZA, then the character e”:a—a’ corresponds to a rational
function on C/. Identifying y € ZA with the element (yy; @€ 4) of Z4cz”
determined by y=Y _, 7., and using the multi-index notation

z! — H (zl)l,l

AeA

for zeC4, te 74, we have
a’=Aa)’.

Consequently the elements of & can be viewed as rational functions on C#. If
ael, , we put

(2.8) Y%?={zeC4; =1},
and if feZ, g# #0, we put
Y# ={zeC"; 7%= —1}.
Moreover, let Y, =U{Y%;a2eXt}, Y_=U{Y?;Be> " g% #0} and
(2.9) Y=Y UY_.

Then the elements of & are regular on C”\ Y. Being real analytic on A4, the
map & extends to a holomorphic (EM)*-valued map on an open neighbour-
hood Q of A(4) in C. We conclude that it satisfies the system of differential
equations
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a
2.10) z,— D=G,;-D (AeA)
9z;

on Q\Y.

The system (2.10) has simple singularities (in the sense of [4, Appendix])
along the coordinate hyperplanes z; =0 (1€ A), so that we may apply the
theory described in [4, Appendix]. Put

D={zeC; |z|]<1}.

Then obviously A(4~(Z*))cD?xC*\4CC”\ Y, so that a result analogous
to [4, Lemma 5.1] holds. To formulate it, we need some definitions and
notations. If me N1 (N={0,1,...}), se C*4, we put

log™A(a) = AHA {A(log @)}™,
Aa)= AH exp (s;A(log a)),

for ae A. Two elements s,7e€ C* are called integrally equivalent iff s—tezZ4.

LEMMA 2.3. Let Fe A, (G, I). Then there exist
(i) a finite set S of mutually integrally inequivalent elements of C, and
(ii) for each seS a finite collection Fj,, (meN?) of non-trivial holo-
morphic EM-valued functions on D?xC"\? such that on each of the coor-
dinate hyperplanes z, =0 (1€ A) at least one of them is not identically zero,
such that

F= Y (Fsm°MA° log"a
on A= (Z).
This S and the F ,, are unique.

Let c z¥ (summation over N“) be the power series expansion of
k “s+k,m
F ,,. Then the series expansion

Q.11) F= ¥ ¢, ph'log"h

of F converges absolutely on 4~ (X *). Any series expansion like (2.11) which
converges absolutely to F on a non-empty open subset of A7 (2 ") must be
identical to (2.11). If ¢, ,,#0 for some m e N, then ¢ is called a X * -exponent
of F. On C” we define the < 4-order by

s< 4t iff t—se N4,

for s5,te C. The < ,-minimal elements in the set of X *-exponents of F are
called the X *-leading exponents of F. Given a X *-leading exponent teC’,
the corresponding character 1': A—C* is called a X *-leading character, and

Fi= Y ¢, ,A" log™k

is called the corresponding X *-leading term of F.
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In Section 3 we shall develop the theory of radial components associated with
the Cartan decomposition (Cor. 1.4) in order to limit the possible X~ *-leading
terms of F. Let o be the injective algebra homomorphism of 3 into 3(I),
determined by

2.12) Z-0d(Z)enU(g),

for Ze 3 (oo is the map denoted by 4 in [2, Lemma 3.6]). If I is a cofinite
ideal in 3, then 3(I)a(Z) is a cofinite ideal in 3(l) (cf. [2, Lemma 3.7]). Under
left multiplication the space U= 3([)/3(I)a(]) is an a,,-module; by exponen-
tiation it becomes an A4-module. Being finite dimensional, the A-module U
splits into a finite direct sum of generalized A-weight spaces. A character
w:A—C* is said to lie 2 *-shifted over the cofinite ideal 7 in 3 if it is a
generalized A-weight for the A-module 3(1)/3()a(l).

REMARK. Here we do not follow the terminology of [4]. The reason is that we
wish to make the dependence on the choice 2'* € & explicit. If I is a cofinite
ideal in 3, then to each Pe & corresponds the set X(P, I) of characters lying
P-shifted over I. The sets X(P, I), Pe &, are mutually different, but related by
certain ‘‘p-shifts’’. We discuss this in Section 4.

THEOREM 2.4. Let I be a cofinite ideal in 3, Fe A,(G,I). Then all .
leading characters lie X * -shifted over I.

We postpone the proof of this theorem to the next section.

In particular, the set of X *-leading characters is finite, so that with essen-
tially the same proof we have the following analogue of [4, Theorem 5.6].
Viewing C4 as a subspace of C”, we call two elements s,7e C" A-integrally
equivalent if s—¢eZ4. Moreover, we define the map g:A—>C“ by

a(a)=(a% aed).

THEOREM 2.5. Let F be a 3-finite u-spherical function on G. Then there exist
() a finite set S, of mutually A-integrally inequivalent elements of C*, and
(i) for each se€S, a finite set of non-trivial holomorphic functions

F2,: DA—EM (m e N") such that on each coordinate hyperplane z,=0 (a € A)

at least one of them is not identically zero, such that

(2.13) F= ¥ (F,°e)}° log"l

on A=(Z ).

This S, and the F2, are unique.

REMARK 2.6. As in [4] the set S, can be characterized as follows. For each
class Q of A-integrally equivalent X *-leading exponents we define the element
s(Q)eC” by

s(Q),=min {z;; te 2}.
Then S, is the set of all s(£2).

235



s

REMARK 2.7. Using arguments involving monodromy as in [4, Appendix] one
can actually show that the functions Ff,nOg (and hence equation 2.13) admit
real analytic extensions to the bigger Weyl chamber A ~. This is a consequence
of the fact that the system (2.10) is regular at points of a(A4 ™).

3. RADIAL COMPONENTS AND LEADING CHARACTERS

In this section we develop the theory of the u-radial component of a
differential operator in order to prove Theorem 2.4. We start with a result
related to the infinitesimal Cartan decomposition (see Lemma 1.5). Let & be
the ring of functions A’—R generated by 1, a® (¢ € 4) and

(1-a*)"!' (eeZ?),
(1+a*)~' (Bext, ¢ #0).

Moreover, let #* be the ideal in & generated by the functions a%, ae 4.

LEMMA 3.1. Let X,eq% or X,e€g* (¢€X™"). Then there exist fi,fre R,
such that for all ae A’ we have

G X =f@X,+0X,) + (@) (X + TX,).

PROOF. First recall that we use the notation (2.5). If X, €%, then 6X,=1X,
so that (3.1) holds with f;=a%(1—-a**)"!, f,= —a**(1-a*¥)~'. On the other
hand, if X,eg*, then 6X,= —1X, and (3.1) holds with f, =a%(1+a%*)~!,
fr=a**(1+a**)~". In both cases it is clear that f;, e R *. O

After this, we are prepared for the radial decomposition of differential
operators. As in [4], we define trilinear maps
B, : Ula,,) X U(t) x U(h)— U(g)

(aeA) by B,(H, X,Y)=X"HY. Now let m be the centralizer of a,, in fN}.
Then m is the Lie algebra of M. If Ue U(m) then obviously B,(H, XU, Y)=
=B,(H, X,UY), so that B, induces the linear map

I, Ula,e) @ U(H) ® yimy U(h) = Ulg)
determined by I',(HR®X®Y)=X"HY for ae A, Hea,,, Xe U(f), Ye U(H).
Let «« denote U(a,,)® U(H)® ymU(h), viewed as a linear space.
LEMMA 3.2. Ifae€ A’ then the map I,: A — U(g) is a linear isomorphism. For
each D e U(g) there exists a unique IT(D) € R QA such that, for all ac A’
(3.2) TI,dID))=D.
PROOF. Since m=1I,, we have h=h@®m, and the first assertion follows

from the infinitesimal Cartan decomposition (see Lemma 1.5) and the Poincaré-
Birkhoff-Witt theorem.
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The uniqueness part of the last assertion will follow from (3.2) and the first
assertion. Therefore it suffices to prove the existence part. We proceed by
induction on the degree deg (D) of D. If deg (D) =0 the assertion is trivial, so
let m>0 and assume that the assertion has been proved already for deg (D) < m.
Let De U(g),, (the subalgebra of elements of degree <m). By the direct sum
decomposition

(3.3)  g=n®l;®Day®H

(cf. also (1.3)) and the Poincaré-Birkhoff-Witt theorem, there exists a
Dy e U(1;)U(a,y)U(h) such that

D—-DyenlU(g), ;.

Since A centralizes U(Iy), the assertion is true for Dy, so that we may restrict
ourselves to the case Dy=0. Without loss of generality we may even assume
that D=X,V, where X,eq% or X,eg* (e¢eZ*), and VeU(g),,_,. By
Lemma 3.1 there exist f, f,€ # " such that

Xa =f| (a)(Xa + GXa)a +f2(a)(Xa + TXa);
for all ae A’. Hence

D=f(a)(Xo+0X)V+L(@{ V(Xo+1Xo) + V},

where V=[X,+1X,, V1€ U(g),,_,, so that the assertion follows if we apply
the induction hypothesis to ¥ and V. d

In a natural way # @ may be viewed as a M-module, the multiplication
being given by

M(fQHRX® ym) Y)=f @HRAdMX® ymyAd(m)Y,

if meM, feR, He Ula,y), Xe U(f), YeU(h). Viewing U(g) as a M-module
for the adjoint action, we now have the analogue of [4, Proposition 2.5]. We
omit the proof, which is essentially the same.

PROPOSITION 3.3.  The linear map IT: U(g)— R R is a M-module homo-
morphism.

The filtration by degree on U(a,,) naturally induces a filtration on # ® ./,
which we call the a,,-filtration. The corresponding degree is called the

apg-degree.

LEMMA 3.4.  If XenU(q),, (meN), then I[I(X) e R * ® and I1(X) has a,,-
degree <m.

PROOF. This is easily verified in the course of the proof of Lemma 3.2. [
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By the definition (2.3) of EM we have

u (X2 (Y Yu =y (X (ZY) ),
for Xe U(f), YeU(h), Ze U(m) and ueEM. Therefore the bilinear map
U(f) x U(I))-*HomC(EM, E) given by (X, Y) - u;(X)uy(Y") naturally induces a
linear map ¢,: U(f)® U(m)U(b)—*Homc(EM, E), determined by
EXR®Y)=m(X)u(Y"),
for Xe U(f), Ye U(h). We now define the linear map
11,: U(g)~ 2 @ U(a,,) @ Hom(EY, E)
by
1, =(101&¢&,)°11.

The elements of %@U(a,,,,)@Homc(EM, E) may be viewed as differential
operators on A’, mapping C*(4’, EM) into C*(A4", E), in the following way. If
feR, HeU(a,,), Te Hom¢(EM, E), then for Fe C*(A’, EM) we have

(f®HQT)F=fRy(T°F).
Thus, if X € U(g), then IT,(X) may be viewed as a differential operator on 4’,
called the u-radial component of X. We now have the following analogue of
[4, Theorem 3.1], the proof being essentially the same.
PROPOSITION 3.5. If Fe C7(G) and X € U(g), then
Res (RxF)=1I1,(X) Res (F).
We also have the following analogue of [4, Proposition 3.2], which is an
immediate consequence of Proposition 3.3 and the definition of EM,
LEMMA 3.6. The map IT, maps U(g)™ into # ® U(a,,) @End(EM).
Let 9 denote # ®U(apq)®Endc(EM), viewed as a subalgebra of the
algebra of differential operators mapping C*(A4’, EM) into itself.
PROPOSITION 3.7. The map I1,: U(g)— D is an algebra homomorphism.

PROOF. If X,YeU(g)”, FeCJ(G), then RyFe C7(G), so that by Propo-
sition 3.5 we have

Res (RyRyF)=1I1,(X) Res (RyF)=1I1,(X)I,(Y) Res (F).

Hence I1,(XY)=11,(X)I1,(Y) on Res (C7(G)). Using Lemma 1.6, we may
now complete the proof just as in [4, Theorem 3.3]. O

Since L is of class &€ (cf. [19, p. 286, Thm. 13]), its subgroup M centralizes
3(1), so that 3(I)C U(g)™. By Lemma 3.6 it follows that /7, maps 3(I) into 9.
Moreover, we have the following.
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PROPOSITION 3.8.  The map I1,: 3(1)— D is an algebra homomorphism.

PROOF. Let X,Ye3(l). Then by (1.1) and the Poincaré-Birkhoff-Witt
theorem X can be written as a sum ¥, U;H;V;, and Y as a sum ¥, U,H,V,,
where U;, U;e U(1y), H;, H;je U(a,,) and V;, V.e U(l;). Hence

,0M,(Y)= ¥ AQH@uUuy(V)(1®H;@u(T)uy(V}))
(3.4) = zj 1@ H;H;@u(U; U (Vy V)
= ¥ IQHH@uU; UV, Vil).

On the other hand, since Y e 3(l), we have XY=Y, U;H,V; Y=Y, U H;YV;=
=Y, UHUHV;V;= Y, (U;U)HH)V;V;), from which we infer that
IT(XY) equals (3.4). Hence the proposition. O

LEMMA 3.9. If XenU(g), (meN), then I1,(X) lies in #*Q@U(a,,)®
®Homc(EM, E) and its degree as a differential operator is <m.

PROOF. The degree of the differential operator IT,(X) is less than or equal to
the a,,-degree of I7(X). Hence the assertion is an immediate consequence of
Lemma 3.4. O

COROLLARY 3.10. If Ze3, then I1,(Z)-11,(a(Z)) lies in R * @ U(a,)®
®End(EM).

PROOF. This follows immediately from Propositions 3.7,8, Lemma 3.9 and
definition (2.12) of o. O

THEOREM 3.11. Let Fe A,(G, 1), te C" a X *-leading exponent of F, and F,
the corresponding leading term. Then for Z € I, we have:

11,(0(2))F,=0.

For a proof the reader is referred to the proof of the analogous [4,
Theorem 5.2].

PROOF OF THEOREM 2.4. The proof is essentially identical to the proof of [4,
Proposition 5.4]. Proposition 3.8 and Theorem 3.11 have to be used instead of
[4, Proposition 3.6 and Theorem 5.2]. d

4. RELATIONS BETWEEN THE P-SHIFTED CHARACTERS

Let I be a cofinite ideal in 3. If Pe &, we let X(P, I) denote the set of
A-characters lying P-shifted over 7 (for the definition see the remark preceding
Theorem 2.4). In this section we discuss the relations between the sets X(P, I),
for different Pe &.
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Let op be the homomorphism 3— 3(1) defined as in (2.12), with 27t re-
placed by P. Thus, writing

nP)= Y g°

aeP

we have
Z-0p(Z)en(P)U(g)

for Ze 3. Let Tp be the automorphism of U(I) determined by
Tp(X)=X+3tr(@d(X)|n(P)), Xel.

Being an automorphism, Tp leaves 3(I) invariant and maps the ideal Ip=
=3(Nop(I) of 3(I) onto the ideal I=3(1)Tpop(/). Now the map

u=Tpoop

is Harish-Chandra’s isomorphism of 3 into 3(I), hence independent of P (cf.
[19, p. 228]).

Therefore the ideal I is independent of the choice of Pe &#. We denote the
set of generalized A-weights of 3(1)/I by X(I).

Define the element gp of a,,; by

op(X) = $tr(ad(X)|n(P)),
and let e2° denote the positive character of 4 given by

a~a? =exp (op log a).
PROPOSITION 4.1. Let I be a cofinite ideal in 3, P€ &. Then the set X(P, I)
of characters lying P-shifted over I is given by

X(P, I)=e-X(I).
PROOF. If Hea,,, then it easily follows from the definition of T, that for
Z e U(1) we have

Tp(HZ)=(H+0p(H))Tp(Z).

Hence v is a generalized a,,-weight of 3(0)/Ip iff v—op is a generalized a,,-
weight of 3([)/I. The assertion now follows by exponentiation. O

5. ASYMPTOTIC BEHAVIOUR ALONG THE WALLS

In this section we study the asymptotic behaviour of a 3-finite u-spherical
function F: G—E along the walls of A~ (X2 "), following the methods of [4].

Recall that 4 is the set of simple roots for the fixed choice Z* from #. To
a subset @ of 4 we associate the wall

Ag(Zt)={aeA; a"=1(ae0), a“<l(aed\ O)}.
Thus A5 (Z*)=A"(2") and we have the disjoint union
dA~ )= U 45E™).

eca
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Moreover, we write

A7(0,2")={acA; a°<1(a€B), a"<l(aed\ O)}.
So A7(4,Z")=cl(A™(2*)), and we have the disjoint union
A~ 6,2Y)= | 4zC).

Yce
We now fix a subset @ of A and describe the grouping of terms procedure
of [4], which will provide us with the expansion along A5(Z ™).
Using the notations of Section 2, we have

A7(6,Z)=2((0,11°x(0,1)2 19 x (0, 00) 1\ 4).
Following [4], we view C"\® as embedded in C*, and let
prA\@:CA—’CA\Q

denote the projection map. A notion of (4 \ @)-integral equivalence in C*\©
is defined by
s~ \0 tiff t-sez4\®

and the (4 \ @)-order on C*\€ is defined by
S<\o tiff t—seNA\O,

The set prs\ o(S,) splits into a finite number of ~ 4\ g-equivalence classes.
To each such a class Q we associate the element o(2) of C*\® defined by

0(Q),=min {f,; teQ} (yeA\O).

Obviously o(2)= 4\ ¢ for all 1eQ. Let S;\ o be the set of all o(RQ), 2 as
above. Then the elements of S\ g are mutually (4 \ ©)-integrally inequivalent.
If AeA, we view log z; as a multivalued holomorphic function on (C*)".
Moreover, for me N4, se C1 we define
log”z= ]I (log z;)™,
AeA
S

2= ]I exp (s; log z;).
AeA

For s€Sy\ 9, me N\, we define

Fia®= T FA, .2 log"z,
Ln

the sum being taken over ne N® and over all teS, with pr,\ o(f) (4\ ©)-
integrally equivalent to s. Obviously 1—se C®xN4\®, so that st',}@ is well
defined on (0,1)®xD4\® and extends holomorphically to any simply con-
nected open subset of (D*)®x D4\® containing (0, 1)® x D4\®. By the above
and Theorem 2.5 (ii) it is now straightforward to check the following.

LEMMA 5.1.  There exist a finite set S,\ o of mutually (A\ ©)-integrally
inequivalent elements of C"\® and for each s€S;\o a finite set F2\®
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(m e N1\®) of non-trivial holomorphic funictions defined on a neighbour-
hood of (0,1)®xD4\® in (D*)®xD*\®, such that the following conditions
are fulfilled.

() If seSs\e, YEA\O, then there exists a meN"\® such that FA)\°
does not vanish identically on the coordinate hyperplane z,=0.

@ii) On A= (Z*) we have:

F= Y (F2r®oa))* log"A.

We also have the following analogues of [4, Lemma 6.1, Theorem 6.2]. We
omit the proofs, since they are essentially the same.

LEMMA 5.2. There exists an open subset C(©) of (C*)®xD*\® containing
(0, 11° x D2 \®, such that the functions F2,)© extend to holomorphic functions
C(@)—~EM.

THEOREM 5.3. Let F: G—E be a 3-finite u-spherical function. Then for any
set @©C A, we have

F= Y (F{)®oa)i® log"h

on A~ (©,XZ"). Here the summation extends over s€ S\ ¢ and finitely many
meN\8,

6. LEADING CHARACTERS AND GLOBAL ESTIMATES

Using the results of the preceding sections we are now able to describe the
connections between leading characters and the global growth of 3-finite
u-spherical functions on G/H. Our results will be analogous to those of [4]. In
fact they can be considered as more general, since every group of class # can
be viewed as a symmetric space of class o (see also the introduction).

From now on, we will restrict ourselves to right H-invariant u-spherical
functions. Here u is a smooth representation of K in a finite dimensional
complex linear space E. We equip E with an inner product such that u is
unitary, and let |-| denote the corresponding norm. If Fe A,(G/H), then

| Flkah)| = | F(a)|,

for he H, ke K, ac A. Thus by the Cartan decomposition (Corollary 1.4), we
see that | F| can be estimated once its behaviour on c/(A ™) is known. As we
saw in the preceding sections, we cannot associate leading characters to F on
the whole of A~ . However, for each Pe & we defined a finite set of P-leading
characters, connected with the asymptotic behaviour of F on A~ (P). As
we will see, these govern the behaviour of F on the closed Weyl chamber
cl(A™(P)).
In view of the union

cda)= U =Py,

Pe#
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this enables us to connect global estimates for F with estimates of the P-leading
characters for every Pe &.

We start with some notations. If Pe &, we define the ordering <, on
positive characters of 4 by

x1=<p X2 iff x;(@)<x,(a) for all ae A~ (P).

Put:
Ay={ae€A; a®=1 for all aeA}.

With the notations of Section 1, we have that

(6.1) G/H=A,x°G/°GNH).

Also, A,Ccl(A™(P)), so that x;<p x, implies that y; =y, on 4,. We put
x1<p X2 iff x1(@)<x(a) for all aecl(A~(P))\ Ay,.

We now have the analogue of [4, Theorem 7.1]. We omit the proof, which is
essentially the same.

THEOREM 6.1. Let F be a 3-finite u-spherical function on G/H, let Pe @,
and let w be a positive character of A. Then the following conditions are
equivalent.

(i) for every P-leading character v of F, we have

V=p w;
(ii) there exist M=0 and m=0 such that
| Fl@)| =Mw(a)(1 + |log a|)™

Sor all aecl(A~(P)).
A character { of A, is called the Ay-character of the u-spherical function
F:G/H-E if

Flax)={(a)F(x) (xeG,acAy).
From the uniqueness statement in Theorem 2.5 we immediately obtain:

LEMMA 6.2. Let F be a 3-finite u-spherical function on G/H with the A ,-
character {. Then the expansion of F in A~ (X ") has the form

F=Y (F{p°a)A° log",
where the restrictions of 1°, s€ Sy, to A, are equal to {, and where me N".
We now come to results concerning L”-integrability. We could set up the
theory for u-spherical functions with a unitary 4 4-character (see also [4]). But

because of the decomposition (6.1) and the above lemma, we may as well
assume that

G=G.
So let this be assumed from now on.

243



Given Pe &, we define the positive character dp of A by

dp(a)=det (Ad(a)|n(P)) (acA).

Thus, writing m(a)=dim g* for ¢ €2, we have

sp@= T @)™ (aeA).

aeP

A function f on A with values in a normed linear space is said to vanish at
infinity in A ~(P) if for every >0 there exists a 0<e<1 such that | f(@)| <n
for all ae A~ (P) with dp(a)<e.

THEOREM 6.3. Let F be a 3-finite u-spherical function on G/H, let P€ & and
let w be a positive character of A. Then the following conditions are equivalent:
(i) for every P-leading character v of F we have

|V| < p W;
(ii) the function w~ 'F vanishes at infinity in A~ (P).
PROOF. Without loss of generality, we may assume that P=2", and use the
notations and results of Sections 2, 3, 5. It is then easy to see how to transfer
the proof of [4, Theorem 7.4] to the present case, using dy+ instead of the
function ¢ defined there.
Recalling Lemma 1.2, we define the function ¢ =g,y from G into [0, ) by
a(k exp X exp Y)=|X|=[-BX,6X)]*
for ke K, XepNgq, YepNh. Then o is left K- and right H-invariant, and
a(kah) = |log a|,
for keK, ae A, he H (see also [2]).
THEOREM 6.4. Let F be a 3-finite u-spherical function on G/H and let

1<p< . Then the following conditions are equivalent:
(i) for each Pe & and every P-leading character v of F, we have

62  I<p "
(i) for every 1=0 the function (1 + 0)'F is LP-integrable;
(iii) F is LP-integrable.

PROOF. If aeZ, we let

m,(@)=dim (%), m_(a)=dim (g%).

Thus m(a)=m () +m_(a). Now let

(6.3) D(a) = H |a_a—0a|m*(a)|a_a+aa|”’ (a)'

aez’
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Then by [7, Theorem 2.6] we can fix normalizations of Haar measures dx on
G/H and da on A, such that for fe L'(G/H) we have

{ fxdx= |  f(kaH) D(a) dk da.

G/H Kxcl(A )

Therefore (1+0)/F is LP-integrable on G iff for each Pe # we have

(6.4) [ (1+]log a|)”|F(@)|"D(a) da< oo.
cl(A ™ (P))

Consequently it suffices to prove for a fixed Pe & the equivalence of the
following statements:

(i)’ every P-leading character v of F satisfies (6.2),

(i)’ the estimate (6.4) holds for all /=0,

(iii)’ the estimate (6.4) holds for /=0.
Moreover, it is immediate that (6.3) remains valid if we replace ~* by P, so
that we may restrict ourselves to proving the equivalence of (i)’-(iii)’ for
pP=x",

Put 6 =05+, suppose (i)’ and fix /=0. In the notations of Section 3 we have
A=A4. As in [4, proof of Theorem 7.5] we can find a positive character w on
A such that for every X *-leading character v of F we have

v|<s+w and w<5+0"P.
z

Moreover, one easily checks that there exist constants M,, M, >0 such that for
all aecl(A~(Z %)) we have

1+ |log a| <=M,(1+ |log d(a)))

and
D(a)<M,d(a) ™.

Using Theorem 6.1 we infer that the integral at the left of (6.4) may be esti-
mated upon a positive constant times

I w@?(1+|log 6@))'*™Pé(a)~ 'da,

(A" (Z))

which is finite because w?d " '< 5+ 1.
The implication (ii)’= (iii)’ is obvious. For the remaining implication suppose
that (iii)’ holds. Fix 0<e&<1 and put

A 0, 2")={aeA;a"<¢e (aed)}.

There exists a constant 0< C< 1 such that
D@)=Céa)~', acA (0,2").

Combined with the estimate in (iii)’, this implies that

{ |F@)]|Péa) ‘da<oo.

A, 0,21

Now the proof of the implication (ii)= (i) in [4, Theorem 7.5] applies here too
and gives us (i)’ (]
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7. SCHWARTZ FUNCTIONS ON G/H

In this section we assume that G="G, so that A,={1}. Given 1 =p< o we
define the space €”(G/H) as the space of functions fe C*(G/H) for which all
the seminorms

N, =QQ+0) LS| Lrc/m)

(r=0, ue U(g)) are bounded. By the classical Sobolev inequalities the space
€P(G/H), equipped with the topology induced by the above seminorms, is a
Fréchet space. We call €(G/H)= €%(G/H) the space of rapidly decreasing, or
Schwartz functions on G/H. In the group case our definition coincides with
Harish-Chandra’s definition of Schwartz space (cf. [19, p. 348]). We leave it
to the reader to check that by slightly modified proofs, we have the following
analogues of [2, Lemmas 1.1, 1.2].

LEMMA 7.1. Let 1<p<o. Then CZ(G/H) is dense in €P(G/H).

LEMMA 7.2. Let 1<p<oo. Then the algebra D(G/H) maps €°(G/H) con-
tinuously into itself.

The main result of this section is the following generalization of a well known
result of Harish-Chandra (cf. [11, Lemma 43]).

THEOREM 7.3. Let G be a group of class # with G="G, and let [ be a
3-finite and K-finite function on G/H. Fix 1<p<o. Then f belongs to
LP(G/H) if and only if it belongs to €°(G/H).

For the proof of this theorem we need a few lemmas. Let £ and & * be as
in Lemma 3.1. One easily verifies that the following result can be proved in the
same fashion as Lemma 3.1. Recall that we use the notation (2.5).

LEMMA 7.4. Let X,€g¢% or X,eg% (@€X"). Then there exist f,,,e R~
such that
60X, =/1(@)(Xo+0X,) + (@Ko +TXp)* ', a€A™.

LEMMA 7.5. Let De U(g). Then there exist finitely many f;€ ®, X;e U(),
H;e U(a,,), YieU(b) (1=i<), such that for all ae A~ we have

D= Y f(@Yf HX.

I<i<l]

PROOF. The proof goes by induction on deg (D), in the same fashion as the
proof of Lemma 3.2. Here one has to use the decomposition

= i@ 0, D, ®F

instead of (3.3), and Lemma 7.4 instead of Lemma 3.1. (]
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LEMMA 7.6. Let F be a 3-finite u-spherical function G/H—E, and let
u € U(g). Then there exists a 3-finite spherical function F on G/H with values
in a finite dimensional vector space E such that the following conditions are
Sulfilled.

(i) There exists a ¢ e Homc(E, E) such that L,F=¢oF.

(ii) For each Pe & and every P-leading exponent t of F there exists a
P-leading exponent t of F with tet+ NP.

REMARK. Observe that ¢+ NP implies A'<p A’.

PROOF. Let U be the finite dimensional linear subspace of U(g) spanned by
the elements Ad(k)u, ke K. Let t denote the adjoint representation of K
restricted to U, and let 7* be the contragredient representation of K in U *. Fix
a basis {u;; 1<j=<J} of U and let {u*} be the dual basis of U *. Finally, put
E=U*®EFE and define F: G/H—E by:

(7.1)  Fx= 1 ) ) uf@L, F(x).
<js
Then the annihilator of Fin 3 annihilates F too, so that Fis 3-finite. Moreover,
one easily checks that F is 7*@u-spherical. Since (i) is evident, it remains to
prove (ii).
Without loss of generality we may assume that P=X*. By the results of
Section 2, F has a unique series expansion

(7.2) F= Y cs,mils IOgmil

which converges absolutely on 4~ (2 *). Here ¢ ,,€E, se C4, me N4 (recall
that A4 =A4). We call se C* an exponent of F if ¢, #0 for some me N4, and
denote the set of exponents by & (F). Being 3-finite and spherical, F also has
a unique absolutely converging series expansion

(1.3)  F= ¥ W*®di,)A* log"i

hsm

on A~ (X"). Here d!,€E, seC%, meN4, 1<j<J. Clearly
sF)= U ¢&F),

1<j<J

where &;(F) is the set of se€ C4 such that d?,,#0 for some m e N4. From (7.1)
and (7.3) it is immediate that

(7.4 L, F= Y d{,\" log"i

on A7(X"), for each 1<j<J. Now fix j. Then by Lemma 7.5 there exist
fie R, X;e U(Y), H;e U(a,,) (1<i<I), such that

u- T fi@HXey" U@
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for all ae A~ (Z *). Since F is right H-invariant it now follows that

L, Fa)= ¥ fiauX;)L(H;)Fa)

for all ae A~ (2 *). From the definition of # it easily follows that there exist
holomorphic functions ¢;: D4—C such that f=¢;°4 on A~ (Z*). Moreover,
via A, the differential operators H; correspond to polynomials in the differ-
ential operators z,8/8z, (@ € A) on C4. Since the expansion (7.2) arises from
power series expansions in (z,), it now follows that we may find an absolutely
converging series expansion for L(u;)F on A~ (2 *) by formally applying the
expansion for the differential operator X;¢;° Au(X;')L(H;) to the expansion
(7.2) for F. By uniqueness this must give the expansion (7.4). Now, if a €4,
let e, € C? be defined by (eq)p=0if B#a, =1if f=a. Then obviously

d
2y — (z° log™z) =5,2° log™z+ m,z° log™ %z,

02,
for a€4. We infer that &;(F)C &(F)+MNA4. Hence EF)CEWF)+NZ* and
(ii) follows from the definition of leading exponent. O

PROOF OF THEOREM 7.3. Fix re N,u e U(g). We must show that
(1+0)'L,feL”(G/H).

Now let V be the finite dimensional span of the functions L, f, k € K. Via the
left regular representation K acts on V. Let u be the contragredient repre-
sentation of K on the linear dual E of V, and define the function F: G—E by
F(x)v=v(x), for xe G, ve V. Then Fe A,(G/H). Moreover, let 7€ E* be the
element which canonically corresponds to fe V. Then f=noF. Hence L, f=
=noL,F and it suffices to show that

(1+0)'L,FeL’(G/H, E).

Now select F: G- U*®E as in Lemma 7.6. Then for some M>0 we have
|L,F(x)| <M| F(x)| (xe G/H). Therefore it suffices to show that

(1+0) FelL?(G/H, E).

Now this follows immediately from Theorem 6.4 and Lemma 7.6. (|
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