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Abstract
A survey of joint work with Henrik Schlichtkrull on the induction of

certain relations among (partial) Eisenstein integrals for the minimal prin-
cipal series of a reductive symmetric space is given. The application of this
principle of induction to the proof of the Fourier inversion formula in [11]
and to the proof of the Paley-Wiener theorem in [15] is explained. Finally,
the relation with the Plancherel decomposition is discussed.

1 Introduction

Let X = G/H be a reductive symmetric space, with G a real reductive group
of the Harish-Chandra class and H an open subgroup of the group Gσ of fixed
points for an involution σ of G. Thus, Gσ

e ⊂ H ⊂ Gσ, with Gσ
e the identity

component of Gσ.
There exists a Cartan involution θ of G that commutes with σ. The associ-

ated maximal compact subgroup K: = Gθ is invariant under σ.
There are two important classes of examples of reductive symmetric spaces.

The first class, with H compact, consists of the Riemannian symmetric spaces.
Here we take θ = σ and K = H. The second consists of the real reductive
groups of the Harish-Chandra class. Given such a group 8G, let G = 8G × 8G,
let σ:G → G, (x, y) 7→ (y, x), and let H = Gσ = diag (8G). Then X equals
8G, equipped with the left times right action of G. We may take θ = 8θ × 8θ,
with 8θ a Cartan involution of 8G. Accordingly, K = 8K × 8K, with 8K maximal
compact in 8G.

We are interested in the analysis of K-finite functions on X. For this it is
convenient to fix a finite-dimensional unitary representation (τ, Vτ ) of K and
to consider the space

C∞(X : τ):= [C∞(X)⊗ Vτ ]K (1.1)

of smooth τ -spherical functions on X. Alternatively, we view C∞(X : τ) as the
space of smooth functions f : X → Vτ transforming according to the rule f(kx) =
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τ(k)f(x), for x ∈ X and k ∈ K. The subspace of compactly supported functions
in (1.1) is denoted by C∞

c (X : τ).
As usual, we denote Lie groups by capital Roman letters, and the associated

Lie algebras by the corresponding German lowercase letters. The involutions σ
and θ of G give rise to involutions of the Lie algebra g, which are denoted by
the same symbols. Accordingly, we write

g = k⊕ p = h⊕ q

for the decompositions of g into the +1 and −1 eigenspaces for θ and σ, respec-
tively. Let aq be a maximal abelian subspace of p ∩ q. The set Σ = Σ(g, aq) of
restricted roots of aq in g is a (possibly non-reduced) root system. Let Σ+ be a
positive system, a+

q the associated positive chamber, A+
q : = exp a+

q , and ∆ the
associated collection of simple roots. The Weyl group W of Σ is canonically
isomorphic with NK(aq)/ZK(aq). Each subset F ⊂ ∆ determines a standard
parabolic subgroup PF of G as follows. Let aFq be the intersection of the
root hyperplanes kerα, for α ∈ F, and let M1F be the centralizer of aFq in G.
Moreover, let

nF =
⊕

α∈Σ+\ZF

gα, and NF : = exp nF .

Then PF = M1FNF . Let M1F = MFAF according to the Langlands decompo-
sition of PF ; then aFq is the intersection of aF , the Lie algebra of AF , with q.
In particular, aq is the intersection of a: = a∅ with q. The group MF is a re-
ductive group of the Harish-Chandra class; accordingly, the homogeneous space
XF : = MF /MF ∩H belongs to the class of symmetric spaces considered.

Since σ and θ commute, the composition σθ is an involution of G. Its deriva-
tive restricts to the identity on aq; therefore, the involution σθ leaves each of
the standard parabolic subgroups PF invariant. Let Pσ denote the collection
of σθ-stable parabolic subgroups of G containing Aq. Then W acts on Pσ in a
natural way. Each element of Pσ is W -conjugate to a unique standard parabolic
subgroup PF . Finally, each minimal element of Pσ is W -conjugate to P∅.

In this article we will discuss relations of a certain type between (par-
tial) normalized Eisenstein integrals for P∅. These Eisenstein integrals, denoted
E◦(λ : · ), are essentially sums of matrix coefficients of induced representations
of the form IndG

P∅
(ξ ⊗ λ ⊗ 1), with ξ an irreducible finite-dimensional unitary

representation of M∅ and with λ ∈ a∗qC. These induced representations form the
minimal principal series of X. Induction of relations describes how relations of a
certain type between the Eisenstein integrals E◦(λ) (or more generally between
partial Eisenstein integrals) are induced by similar relations between the similar
integrals for XF .

In terms of the mentioned Eisenstein integrals we define a Fourier transform
F∅. Applied to a function f ∈ C∞

c (X : τ) the Fourier transform gives an element
of M(a∗qC)⊗ ◦C, where M(a∗qC) denotes the space of meromorphic functions on
a∗qC and where ◦C = ◦C(τ) is a certain finite-dimensional Hilbert space. It is
a main result of [9] that the Fourier transform F∅ is injective on C∞

c (X : τ).
Accordingly, two natural problems arise.
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(a) To retrieve f from its Fourier transform F∅f ; this is the problem of
Fourier inversion.

(b) To characterize the image of F∅(C∞
c (X : τ)) in a way that generalizes the

Paley-Wiener theorem of J. Arthur, [1].

In the answers to these related questions, given in [11] and [15], respectively,
the principle of induction of relations plays a fundamental role.

2 Eisenstein integrals

As said, Eisenstein integrals for P∅ are essentially sums of K-finite matrix coef-
ficients of principal series representations of the form IndG

P∅
(ξ ⊗ λ⊗ 1). We will

now give their precise definition. To keep the exposition as light as possible, we
make the following

Simplifying assumption The manifold G/H has precisely one open P∅-orbit.

This assumption is only made for purposes of exposition, it is not necessary for
the development of the theory. In the general situation, there are finitely many
open P∅-orbits, naturally parametrized by W/WK∩H , where WK∩H denotes the
subgroup of W consisting of elements that are contained in the natural image
of NK(aq)∩H. The simplifying assumption is satisfied in the Riemannian case
as well as in case of the group.

We define ◦C = ◦C(τ) by

◦C: = C∞(X∅ : τ∅),

the space of smooth τ∅-spherical functions X∅ → Vτ ; here τ∅: = τ |K∩M∅ . By
compactness of X∅, it follows that ◦C is finite-dimensional. Moreover, ◦C =
L2(X∅ : τ∅).

Given F ⊂ ∆ we define ρF ∈ a∗Fq by ρF = 1
2tr (ad( · )|nF ). In particular, we

put ρ = ρ∅. Let ψ ∈ ◦C and λ ∈ a∗qC. We define the function ψλ:G→ Vτ by

ψλ(x) = aλ+ρψ(m) for x ∈ manH, (m,a, n) ∈M∅ ×A∅ ×N∅,

= 0 for x ∈ G \ P∅H.

We equip g with a non-degenerate Ad(G)-invariant bilinear form B that is
negative definite on k and positive definite on p and for which h and q are
orthogonal. Then B induces a positive definite inner product 〈 · , · 〉 on a∗q
which is extended to a complex bilinear form on a∗qC. For R ∈ R, we define

a∗q(P∅, R):= {ν ∈ a∗qC | 〈Re ν , α〉 < R, ∀α ∈ Σ+}. (2.1)

For λ ∈ −ρ + a∗qC(P∅, 0) we define the Eisenstein integral E(ψ : λ : · ), also
denoted E(P∅ : ψ : λ : · ), by

E(ψ : λ : x) =
∫

K
τ(k)ψλ(k−1x) dk, (2.2)

for x ∈ X. The following result is due to [3], Prop. 10.3.
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Proposition 2.1. The integral (2.2) is absolutely convergent for λ ∈ −ρ +
a∗q(P∅, 0) and defines a holomorphic function of λ with values in C∞(X : τ).
Moreover, it extends to a meromorphic function of λ ∈ a∗qC with values in the
space C∞(X : τ). The singular locus of this meromorphic extension is a locally
finite union of hyperplanes of the form λ0 + (α⊥)C, with λ0 ∈ a∗qC and α ∈ Σ.

For generic λ ∈ a∗qC with 〈Reλ− ρ , α〉 > 0 for all α ∈ Σ+ we have that

lim
a→∞
a∈A+

q

a−λ+ρE(ψ : λ : a) = [C(1:λ)ψ](e)

with C(1 : λ) = CP∅|P∅(1 : λ) ∈ End(◦C) a meromorphic function of λ that
extends meromorphically to all of a∗qC; see [3], Sect. 14. Since the function λ 7→
detC(1 : λ) is not identically zero, we may define the normalized Eisenstein
integral

E◦(ψ : λ : x):= E(C(1 : λ)−1ψ : λ : x),

see [3], Sect. 16, and [8], Sect. 5, for details. The definition generalizes that of
Harish-Chandra, [28], p. 135, in the case of the group.

The normalized Eisenstein integral E◦(ψ : λ) is a meromorphic function of
λ ∈ a∗qC with values in C∞(X : τ). Its asymptotic behavior is described by the
following theorem. Given a ∈ Aq we write z(a) for the point in C∆ with
components z(a)α = a−α, for α ∈ ∆. Let D ⊂ C denote the complex unit disc.
Then z maps A+

q into D∆. If Ω is a complex analytic manifold, then by O(Ω)
we denote the algebra of holomorphic functions on Ω. Let V ∅

τ denote the space
of M∅ ∩K ∩H-fixed elements in Vτ .

Proposition 2.2. There exists a unique meromorphic function λ 7→ Φλ with
values in O(D∆) ⊗ End(V ∅

τ ) and, for s ∈ W, unique meromorphic End(◦C)-
valued meromorphic functions a∗qC 3 λ 7→ C◦(s : λ) such that, for all ψ ∈ ◦C,

E◦(ψ : λ : a) =
∑
s∈W

asλ−ρΦsλ(z(a)) [C◦(s : λ)ψ](e), (2.3)

for a ∈ A+
q , as a meromorphic identity in the variable λ ∈ a∗qC. The meromorphic

functions λ 7→ Φλ and λ 7→ C◦(s : λ), for s ∈ W, all have a singular locus that
is a locally finite union of hyperplanes of the form λ0 + (α⊥)C, with λ0 ∈ a∗qC

and α ∈ Σ.

For a proof of this result, we refer the reader to [7], Sect. 11, and [12],
Sect. 14. From the above result it follows in particular that λ 7→ E◦(ψ : λ) is
a meromorphic C∞(X : τ)-valued function with singularities along hyperplanes
of the form λ0 + (α⊥)C, with λ0 ∈ a∗qC and α ∈ Σ.

We note that it follows from the definition of the normalized Eisenstein
integral that

C◦(1 : λ) = I ◦C ,

as a meromorphic identity in the variable λ ∈ a∗qC. Besides in the expansion
(2.3) the normalized c-functions C◦(s : · ) also appear in the following functional
equation for the Eisenstein integral

E◦(sλ : x)C◦(s : λ) = E◦(λ : x), (2.4)
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for every x ∈ X, as an identity of meromorphic functions in the variable λ ∈ a∗qC.
The following result is crucial for the further development of the theory.

Theorem 2.3. (Maass-Selberg relations) For each s ∈W,

C◦(s : −λ̄)∗C◦(s : λ) = I◦C ,

as a meromorphic identity in the variable λ ∈ a∗qC.

In the case of the group, the terminology Maass-Selberg relations was in-
troduced by Harish-Chandra, because of striking analogies with the theory of
automorphic forms. In the mentioned setting of the group Harish-Chandra
derived the relations for the c-functions associated with arbitrary parabolic
subgroups, see [31]. In the present setting the above result is due to [3], Thm.
16.3, see also [4]. The result has been generalized to c-functions associated
with arbitrary σθ-stable parabolic subgroups by P. Delorme [24], see also [19].
It plays a crucial role in Delorme’s proof of the Plancherel formula, see [25], as
well as in the proof of the Plancherel formula by myself and Schlichtkrull, see
[13] and [14]. Recently the last mentioned authors have been able to obtain the
Maass-Selberg relations for arbitrary parabolic subgroups from those for the
minimal one, see [13]. The proof in the latter paper is thus independent from
the one by Delorme.

From the Maass-Selberg relations, combined with the information that the
singular locus of the meromorphic c-functions is a locally finite union of trans-
lates of root hyperplanes, the following result is an easy consequence.

Corollary 2.4. Let s ∈ W. The normalized c-function C◦(s : · ) is regular on
ia∗q. Moreover, for λ ∈ ia∗q, the endomorphism C◦(s : λ) ∈ End(◦C) is unitary.

From this result and an asymptotic analysis involving induction with respect
to the split rank of X, i.e., dim aq, it can be shown that the normalized Eisenstein
integrals are regular for imaginary values of λ. This is the main motivation for
their definition.

Theorem 2.5. (Regularity theorem) Let ψ ∈ ◦C. The Eisenstein integral
E◦(ψ : λ) is meromorphic in λ ∈ a∗qC with a singular locus disjoint from ia∗q.

The above result is due to [8], p. 537, Thm. 2. A different proof of the
regularity theorem has been given by [5]. The latter approach was generalized
to arbitrary σθ-stable parabolic subgroups by J. Carmona and P. Delorme,
yielding the regularity theorem for Eisenstein integrals as a consequence of the
Maass-Selberg relations in that setting; see [19], Thm. 3 (i).

3 Fourier inversion

The regularity theorem allows us to define a Fourier transform that is regular for
imaginary values of the spectral parameter λ. For its definition it is convenient
to define E◦(λ : x) ∈ Hom(◦C, Vτ ) by

E◦(λ : x)ψ: = E◦(ψ : λ : x).
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In addition, we define the dualized Eisenstein integral by conjugation,

E∗(λ : x):= E◦(−λ̄ : x)∗ ∈ Hom(Vτ ,
◦C), (3.1)

for x ∈ X, as a meromorphic function of λ ∈ a∗qC. We now define the (most-
continuous) Fourier transform F∅f of a function f ∈ C∞

c (X : τ) to be the
meromorphic function in M(a∗qC)⊗ ◦C given by

F∅f(λ):=
∫

X
E∗(λ : x)f(x) dx, (λ ∈ a∗qC). (3.2)

It follows from (2.4) combined with the definition of E∗(λ : x) and the Maass-
Selberg relations that, for each s ∈W,

F∅f(sλ) = C◦(s : λ)F∅f(λ). (3.3)

It follows from the regularity theorem that the Fourier transform F∅f is a
regular function on ia∗q. The following theorem is one of the main results of [9],
see loc. cit., Thm. 15.1.

Theorem 3.1. The Fourier transform F∅ is injective on C∞
c (X : τ).

There exists a notion of Schwartz space C(X : τ), which is the proper
generalization of Harish-Chandra’s Schwartz space for the group, see [3], Sect.
17. It has the property that F∅ extends to a continuous linear map from C(X : τ)
into the Euclidean Schwartz space S(ia∗q) ⊗ ◦C, see [8], p. 573, Cor. 4. We
emphasize that the extended Fourier transform is in general not injective on
the Schwartz space. More precisely, there is a continuous linear wave packet
transform J∅: S(ia∗q)⊗ ◦C → C(X : τ), defined by the formula

J∅ϕ(x) =
∫

ia∗q

E◦(λ : x)ϕ(λ) dλ, (x ∈ X), (3.4)

for ϕ ∈ S(ia∗q) ⊗ ◦C, see [5], Thm. 1. Here dλ denotes Lebesgue measure on
ia∗q, suitably normalized. Furthermore, in [9], Sect. 14, it is shown that there
exists an invariant differential operatorD on X, depending on τ, whose principal
symbol is sufficiently generic, such that

DJ∅F∅ = D (3.5)

on the Schwartz space C(X : τ). The idea is that D annihilates the contribu-
tions of the discrete and intermediate series to the Plancherel decomposition
of L2(X : τ). Accordingly, J∅F∅ corresponds to the projection onto the most
continuous part of this decomposition at the K-type τ.

By an application of Holmgren’s uniqueness theorem the above men-
tioned genericity of the principal symbol of the differential operator D implies
that it is injective on C∞

c (X : τ), see [6], Thm. 2. The injectivity of F∅ asserted
in Theorem 3.1 follows from the injectivity of D on C∞

c (X : τ) combined with
(3.5).
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In the case of the group Theorem 3.1 is a straightforward consequence of
the subrepresentation theorem of [21]. For indeed, if f belongs to the kernel of
F∅, then by the subrepresentation theorem, f is annihilated when integrated
against any K-finite matrix coefficient. This is not a valid argument in the
general setting. A priori there might be a K-finite right H-fixed generalized
matrix coefficient that cannot be produced from the Eisenstein integrals of the
minimal principal series.

We shall now describe the solution to the problem of Fourier inversion men-
tioned in the introduction. For this we need the concept of partial Eisenstein
integral. It follows from the simplifying assumption made in the beginning of
Section 2 that

X+: = KA+
q H (3.6)

is an open dense subset of X. In the situation without the simplifying assump-
tion the definition of X+ should be adapted by replacing the set on the right-
hand side of (3.6) by a finite disjoint union of open sets of the form KA+

q vH,
with v running through a set W ⊂ NK(aq) of representatives for W/WK∩H .

In the obvious manner we define C∞(X+ : τ) as the space of τ -spherical
smooth functions X+ → Vτ . Via restriction, the space (1.1) may naturally be
identified with the subspace of functions in C∞(X+ : τ) that extend smoothly
to the full space X.

For s ∈W and ψ ∈ ◦C we define the partial Eisenstein integral E+,s(λ : · )ψ
to be the meromorphic function of λ ∈ a∗qC with values in C∞(X+ : τ), given by

E+,s(λ : kaH)ψ = asλ−ρ τ(k) Φsλ(a) [C◦(s : λ)ψ](e), (a ∈ A+
q , k ∈ K),

for generic λ ∈ a∗qC; here Φλ is as in Proposition 2.2. We agree to write E+ =
E+,1. Then, clearly,

E+,s(λ : x)ψ = E+(sλ : x)C◦(s : λ)ψ, (ψ ∈ ◦C),

for s ∈ W, x ∈ X+ and generic λ ∈ a∗qC. The following result describes the
singular set of the functions involved in the formulation of the inversion theorem.
We use the notation (2.1).

Proposition 3.2. The functions λ 7→ E∗(λ : · ) and λ 7→ E+(λ : · ) are mero-
morphic functions on a∗qC with a singular set consisting of a locally finite union
of hyperplanes of the form λ0 + (α⊥)C, with λ0 ∈ a∗q (real) and with α ∈ Σ. For
every R ∈ R the set a∗q(P,R) meets only finitely many of these hyperplanes.

A proof of this proposition can be found in [11], Sect. 3. Let H be the
collection of singular hyperplanes of λ 7→ E∗(λ : · ). Then in view of (3.2) the
Fourier transform F∅f is meromorphic on a∗qC with singular locus contained in
∪H, for every f ∈ C∞

c (X : τ).
The solution to the inversion problem is provided by the following theorem.

A sketch of proof will be given in Section 5.
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Theorem 3.3. (Fourier inversion theorem) There exists a constant R < 0
such that the functions λ 7→ E+(λ : · ) and λ 7→ E∗(λ : · ) are holomorphic in the
region a∗q(P∅, R). Moreover, let η ∈ a∗q(P∅, R). Then, for every f ∈ C∞(X : τ),

f(x) = |W |
∫

η+ia∗q

E+(λ : x)F∅f(λ) dλ, for x ∈ X+. (3.7)

The integral converges absolutely, with local uniformity in x, since the par-
tial Eisenstein integral grows at most of order (1+‖λ‖)N along η+ia∗q, for some
N ∈ N, whereas the Fourier transform decreases faster than CN (1 + ‖λ‖)−N ,
for any N ∈ N. Moreover, by Cauchy’s integral theorem, the integral on the
right-hand side of (3.7) is independent of η in the mentioned region. Details can
be found in [11]. The proof of Theorem 3.3, given in the same paper, involves
shifting η to 0. If no singularities would be encountered during the shift, then
in view of (3.3) the integral would become equal to J∅F∅f. However, in general
singularities are encountered, due to the presence of representations from the
discrete and intermediate series for X. This results in residues that can be han-
dled by a calculus that we developed in [10]. These residues can be encoded
in terms of the concept of Laurent functional, introduced in the next section.
Their contribution to the Fourier inversion can be analyzed by means of the
principle of induction of relations, also discussed in the next section.

4 Laurent functionals and induction of relations

For the formulation of the principle of induction of relations it is convenient to
introduce the following concept of Laurent functional.

Let V be a finite-dimensional real linear space and let X be a finite subset
of V ∗ \ {0}. Given a point a ∈ VC we define the polynomial function πa on VC

by
πa: =

∏
ξ∈X

(ξ − ξ(a)).

We denote the ring of germs of meromorphic functions at a by M(VC, a), and
the subring of germs of holomorphic functions by Oa. In addition, we define the
subring

M(VC, a,X):= ∪N∈N π−N
a Oa.

We now define an X-Laurent functional at a ∈ VC to be any linear functional
L ∈ M(VC, a,X)∗ such that for every N ∈ N there exists a uN in S(V ), the
symmetric algebra of VC, such that

L = eva ◦uN ◦πN
a on π−N

a Oa. (4.1)

Here S(V ) is identified with the algebra of translation invariant holomorphic
differential operators on VC and eva denotes evaluation of a function at the point
a. Finally, the space of all Laurent functionals on VC, relative to X, is defined
by

M(VC, X)∗laur: =
⊕
a∈VC

M(VC, X, a)∗laur. (4.2)
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Given a Laurent functional L from the space on the left-hand side of (4.2), the
finite set of a ∈ VC for which the component La is non-zero, is called the support
of L and denoted by suppL. Accordingly,

L =
∑

a∈ suppL
La.

Let now M(VC, X) be the space of meromorphic functions ϕ on VC with the
property that the germ ϕa belongs to M(VC, a,X), for every a ∈ VC. Then the
natural bilinear map (L, ϕ) 7→ Lϕ,M(VC, X)∗laur ×M(VC, X) → C, defined by

Lϕ =
∑

a∈ suppL
Laϕa, (4.3)

induces a linear embedding of M(VC, X)∗laur into the dual space M(VC, X)∗.
More details concerning Laurent functionals can be found in [12], Sect. 10.

We end this section with the formulation of the principle of induction of
relations for the partial Eisenstein integrals E+,s(λ : · ). In the proof of the
Paley-Wiener theorem, the use of this principle replaces the use in [1] of a
lifting principle due to W. Casselman, the proof of which has not appeared in
the literature. Our induction principle does not seem to imply Casselman’s
lifting principle for the group. However, it does imply a version of the lifting
principle for normalized Eisenstein integrals, see [12], Thm. 16.10.

Let F ⊂ ∆ be a subset of simple roots, let ΣF : = Σ ∩ ZF be the associated
subsystem of Σ, and WF its Weyl group. Then ΣF and WF are the analogues
of Σ and W for the symmetric space XF = MF /MF ∩H. Let WF ⊂W be the
set of minimal length coset representatives for W/WF . Then the multiplication
map of W induces a bijection WF ×WF →W.

The group WF equals the centralizer of aFq in W. The orthocomplement
∗aFq of aFq in aq is the analogue of aq for the space XF . Let KF = K ∩MF

and τF : = τ |KF
. For t ∈WF we denote by

E+,t(XF : µ : m) ∈ Hom(◦C(τ), Vτ ), (µ ∈ ∗a∗FqC, m ∈ XF+),

the analogue for the pair XF , τF of the partial Eisenstein integral E+,t(X : λ : x).
Here we note that the space ◦C(τ) for X coincides with the similar space ◦C(τF )
for XF .

Theorem 4.1. (Induction of relations) Let, for each t ∈ WF , a Laurent
functional Lt ∈M(∗a∗FqC,ΣF )∗laur ⊗ ◦C be given and assume that∑

t∈WF

Lt[E+,t(XF : · : m)] = 0, (m ∈ XF+). (4.4)

Then for each s ∈ WF the following meromorphic identity in the variable ν ∈
a∗FqC is valid, ∑

t∈WF

Lt[E+,st(X : · + ν : x)] = 0, (x ∈ X+). (4.5)

Conversely, if (4.5) holds for a fixed s ∈ WF and all ν in a non-empty open
subset of a∗FqC, then (4.4) holds.
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This result is proved in our paper [12], Thm. 16.1. The proof relies on a
more general vanishing theorem, see [12], Thm. 12.10. This vanishing the-
orem asserts that a suitably restricted meromorphic family a∗FqC 3 ν 7→ fν ∈
C∞(X+ : τ) of eigenfunctions for D(X) is completely determined by the coef-
ficient of aν−ρF in its asymptotic expansion towards infinity along A+

Fq, the
positive chamber determined by PF . In particular, if the mentioned coefficient
is zero, then fν = 0 for all ν; whence the name vanishing theorem. Part of
the mentioned restriction on families in the vanishing theorem is a so called
asymptotic globality condition. It requires that certain asymptotic coeffi-
cients in the expansions of fν along certain codimension one walls should have
smooth behavior as functions in the variables transversal to these walls. The
precise condition is given in [12], Def. 9.5.

Let fs
ν , for s ∈ WF , denote the expression on the left-hand side of (4.5).

Then the sum fν =
∑

s∈W F fs
ν defines a family for which the vanishing theorem

holds; the summation over WF is needed for the family to satisfy the asymp-
totic globality condition. The expression on the left-hand side of (4.4) is the
coefficient of aν−ρF of the asymptotic expansion of fν along A+

Fq. Its vanishing
implies that f = 0. From the fact that the sets of the asymptotic exponents of
fs

ν along A+
Fq are mutually disjoint for distinct s ∈ WF and generic ν ∈ a∗FqC,

it follows that each individual function fs
ν vanishes. This implies the validity

of (4.5).
For the proof of the converse statement it is first shown that the vanishing

of an individual term fs
ν implies that of fν . Here the condition of asymptotic

globality once more plays an essential role. The validity of (4.4) then follows
by taking the coefficient of aν−ρF in the asymptotic expansion along A+

Fq.

5 Induction of relations and the inversion formula

In this section we shall discuss the role of induction of relations, as formulated
in Theorem 4.1, in the proof of the inversion formula. Details can be found in
[11].

Sketch of proof of Theorem 3.3 Let us denote the integral on the right-hand
side of (3.7) by Tη(F∅f)(x). The main difficulty in the proof is to show that the
function TηF∅f ∈ C∞(X+ : τ) extends smoothly from X+ to X. By applying
a Paley-Wiener shift argument, with η → ∞ in −a∗+q , it then follows that
TηF∅f ∈ C∞

c (X : τ). There exists a differential operator D as in (3.5), such that
DTηF∅f is free of singularities during a shift of the integral with η moving to 0.
In view of Cauchy’s theorem this leads toDTηF∅f = DT0F∅f = DJ∅F∅f = Df.
From the injectivity of D on C∞

c (X : τ) we then obtain (3.7).
The most difficult part of the proof concerns the smooth extension of TηF∅f.

This involves a shift of integration applied to Tη(F∅f)(x) with η moving to 0.
According to the residue calculus developed in [10], the process of picking up
residues is governed by any choice of a so-called residue weight on Σ. We fix
such a weight, which is by definition a map t:Pσ → [0, 1] with the property
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that, for every Q ∈ Pσ, ∑
P∈Pσ

aPq=aQq

t(P ) = 1.

Moreover, we choose t to be W -invariant and even. The latter condition means
that t(P ) = t(P̄ ) for all P ∈ Pσ. The encountered residues can be encoded by
means of a finite set of Laurent functionals Rt

F ∈M(∗a∗FqC,ΣF )∗laur, for F ⊂ ∆,
depending only on the root system Σ, the choice of the residue weight t and the
locally finite union of hyperplanes which forms the union of the singular sets of
λ 7→ E+(λ : · ) and λ 7→ E∗(λ : · ).

The shift results in the formula

Tη(F∅f)(x) = (5.1)

= |W |
∑
F⊂∆

t(PF )
∫

εF +ia∗Fq

Rt
F

 ∑
s∈W F

E+,s(ν + · : x)F∅f(ν + · )

 dµF (ν).

where εF is any choice of elements sufficiently close to zero in a∗+Fq, the positive
chamber associated with PF . Moreover, dµF is the translate by εF of suitably
normalized Lebesgue measure on ia∗Fq.

From the fact that the singular set of the integrand is real in the sense
of Proposition 3.2, it follows that the Laurent functionals Rt

F are real in the
following sense. Their support is a set of real points a ∈ ∗a∗Fq and at each such
point the functional is defined by a string {uN} ⊂ S(∗a∗Fq) as in (4.1) with uN

real for all N.
We now define the kernel functions

KF (ν : x : y):= Rt
F

 ∑
s∈W F

E+,s(ν + · : x)E∗(ν + · : y)

 . (5.2)

Then by using the definition (3.2) of F∅, we may rewrite the equation (5.1) as

Tη(F∅f)(x) = |W |
∑
F⊂∆

t(PF )
∫

εF +ia∗Fq

[∫
X
Kt

F (ν : x : y)f(y) dy
]
dµF (ν).

(5.3)
For fixed generic ν, the kernel functions Kt

F (ν : · : · ) ∈ C∞(X+ × X : τ ⊗ τ∗)
are spherical and D(X)-finite in both variables. It follows that they belong to a
tensor product of the form 1Eν⊗ 2Eν , with 1Eν and 2Eν finite-dimensional sub-
spaces of C∞(X+ : τ) and C∞(X+ : τ∗), respectively. Let jE′

ν be the subspace
of functions in jEν extending smoothly to X, for j = 1, 2. Then by the symme-
try formulated in Proposition 5.1 below it follows that the kernel Kt

F (ν : · : · )
belongs to 1Eν ⊗ 2E′

ν ∩ 1E′
ν ⊗ 2Eν = 1E′

ν ⊗ 2E′
ν . This shows that the kernel

functions extend smoothly to X×X and finishes the proof. �

Proposition 5.1. Let x, y ∈ X+. Then

Kt
F (ν : x : y) = Kt

F (−ν̄ : y : x)∗ (5.4)

as a meromorphic identity in the variable ν ∈ a∗qC.
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Before giving a sketch of the proof we observe that, due to the fact that Rt
F

is scalar and real in the sense mentioned in the proof of Theorem 3.3 above, the
adjoint of the kernel is given by

Kt
F (−ν̄ : y : x)∗ = Rt

F

 ∑
s∈W F

E◦(ν − · : x)E∗
+,s(ν − · : y)

 , (5.5)

where the dual partial Eisenstein integrals are defined by

E∗
+,s(λ : x):= E+,s(−λ̄ : x)∗.

Sketch of proof of Proposition 5.1 The final part of the proof of Theorem
3.3 can be modified in such a way that (5.4) is only needed for F ⊂ ∆ with
F 6= ∆. The validity of (5.4) for F = ∆ is derived in the course of the modified
argument. For details, we refer the reader to [11], Sect. 9.

Thus, we may restrict ourselves to proving (5.4) for F ( ∆. This in turn
is achieved by using induction of relations in order to reduce to the lower di-
mensional space XF . More precisely, the residue weight t naturally induces a
residue weight ∗t on ΣF , the analogue of Σ for XF . The set F is a simple system
for ΣF . Let K

∗t
F (XF : · : · ) be the analogue of Kt

∆ for the space XF . Then by
induction, K

∗t
F (XF : · : · ) is a smooth function on XF × XF and satisfies the

symmetry condition

K
∗t
F (XF : m : m′) = K

∗t
F (XF : m′ : m)∗, (5.6)

for m,m′ ∈ XF . Here we have suppressed the analogue of the parameter ν,
which is zero dimensional in the present setting.

The residue calculus behaves well with respect to induction. In particular,
let R∗t

F ∈ M(∗a∗Fq,ΣF )∗laur be the analogue of Rt
∆ for the data XF ,ΣF , F,

∗t.

Then R∗t
F = Rt

F ; for obvious reasons, we have called this result transivity of
residues, see [10], Sect. 3.6. Using (5.2) and (5.5) for K

∗t
F (XF ), taking into

account that (WF )F = {1}, we thus see that (5.6) is equivalent to

Rt
F

(
E+(XF : · : m)E∗(XF : · : m′)

)
= Rt

F

(
E◦(XF : − · : m)E∗

+(XF : − · : m′)
)
, (5.7)

where E∗
+: = E∗

+,1. In view of (5.2) and (5.5), the relation (5.4) can now be
derived from (5.7), by applying induction of relations, first with respect to the
variable x and then a second time with respect to the variable y. For details we
refer the reader to [11], Sect. 8. �

6 Arthur-Campoli relations

In this section we describe the so called Arthur-Campoli relations, needed for
the formulation of the Paley-Wiener theorem in the next section. We start with
the definition of an Arthur-Campoli functional.
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Definition 6.1. An Arthur-Campoli functional for X, τ is a Laurent func-
tional L ∈M(a∗qC,Σ)∗laur ⊗ ◦C(τ) with the property that

LE∗( · : x) = 0 for all x ∈ X.

The linear space of such functionals is denoted by AC (X : τ).

From the principle of induction of relations as formulated in Theorem 4.1,
the following result follows in a straightforward manner. See [15] for details.

Lemma 6.2. (Induction of AC relations) Let F ⊂ ∆ and L ∈ AC (XF : τF ).
Then for generic ν ∈ a∗FqC, the Laurent functional

Lν :ϕ 7→ L[ϕ(ν + · )]

belongs to AC (X : τ).

In this result, ‘generic’ can be made more precise as follows. There exists a
locally finite collection HS of hyperplanes in a∗FqC, specified explicitly in terms
of the support S of L, such that the statement is valid for ν ∈ a∗FqC \ ∪HS .

7 The Paley-Wiener theorem

In this section we shall formulate the Paley-Wiener theorem, and indicate how
induction of relations enters its proof. Our first objective is to define a space of
Paley-Wiener functions. The first step is to define a suitable space of meromor-
phic functions that takes the singularities of the Fourier transform into account.

Let H = H(X, τ) be the smallest collection of hyperplanes of the form
λ0 + (α⊥)C, with λ0 ∈ a∗q and α ∈ Σ, such that the C∞(X) ⊗ Hom(Vτ ,

◦C(τ))-
valued meromorphic function λ 7→ E∗(λ : · ) is regular on a∗qC \ ∪H. By the
requirement of minimality, the collection H has the properties of Proposition
3.2.

If H ∈ H we select αH ∈ Σ and sH ∈ R such that H is given by the
equation 〈λ , αH〉 = sH . Let d(H) denote the order of the singularity of λ 7→
E∗(λ) along H. Thus, d(H) is the smallest natural number for which λ 7→
(〈λ , αH〉 − sH)d(H)E∗(λ) is regular at the points of H that are not contained
in any hyperplane from H \ {H}.

If ω ⊂ a∗qC is a bounded subset, then in view of the mentioned properties of
H we may define a polynomial function πω: a∗qC → C by

πω(λ) =
∏

H∈H,H∩ω 6=∅

(〈λ , αH〉 − sH)d(H).

We define M(a∗qC,H, d) to be the space of meromorphic functions ϕ: a∗qC → C
such that, for every bounded open set ω ⊂ a∗qC, the function πωϕ is regular on
ω. Taking into account that the αH and sH are real for H ∈ H, we readily
see that for each function ϕ ∈ M(a∗qC,H, d) and every bounded open subset
ω ⊂ a∗qC, the function πωϕ is in fact regular on ω + ia∗q.
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In view of the definitions just given, the function λ 7→ E∗(λ : x) belongs to
the space M(a∗qC,H, d)⊗Hom(Vτ ,

◦C(τ)), for every x ∈ X. Moreover, F∅ maps
C∞

c (X : τ) into M(a∗qC,H, d)⊗ ◦C(τ).
It follows from Proposition 3.2 that the setH0 of H ∈ H having empty inter-

section with cl a∗q(P∅, 0) is finite. We define the polynomial function π: a∗qC → C
by

π(λ) =
∏

H∈H0

(〈λ , αH〉 − sH)d(H).

Then there exists a constant ε > 0 such that λ 7→ π(λ)E∗(λ) is regular on
a∗q(P∅, ε). It follows that for every f ∈ C∞

c (X : τ) the ◦C(τ)-valued meromorphic
function λ 7→ π(λ)F∅f(λ) is regular on a∗q(P∅, ε).

We now define P(a∗qC,H, d) as the subspace of M(a∗qC,H, d) consisting of
functions ϕ which satisfy the following condition of decay in the imaginary
directions

sup
λ∈ω+ia∗q

(1 + |λ|)n |πω(λ)ϕ(λ)| <∞,

for every compact set ω ⊂ a∗q and all n ∈ N. Equipped with the suggested semi-
norms, the space P(a∗qC,H, d) is a Fréchet space. Moreover, via (4.3) the space of
Laurent functionals M(a∗qC,Σ)∗laur naturally embeds into the continuous linear
dual of P(a∗qC,H, d). It follows that the following subspace of P(a∗qC,H, d)⊗◦C(τ)
is closed, hence Fréchet,

PAC (X : τ):= {ϕ ∈ P(a∗qC,H, d)⊗ ◦C(τ) | Lϕ = 0, ∀ L ∈ AC (X : τ)}.

Finally, we define the Paley-Wiener space by incorporating a condition of ex-
ponential growth along a closed cone.

Definition 7.1. The Paley-Wiener space PW (X : τ) is defined to be the
space of functions ϕ ∈ PAC (X : τ) for which there exists a constant M > 0
such that, for all n ∈ N,

sup
λ∈ cl a∗q(P∅,0)

(1 + |λ|)n e−M |Re λ| ‖π(λ)ϕ(λ)‖ <∞.

The subspace of functions satisfying this estimate with a fixed M > 0 and all
n ∈ N is denoted by PWM (X : τ).

By using Euclidean Fourier analysis, it can be shown that PWM (X : τ) is a
closed subspace of PAC (X : τ), for each M > 0, hence a Fréchet space for the
restriction topology. For details we refer the reader to [15]. Accordingly, for
M < M ′ we have a continuous linear embedding of PWM (X : τ) onto a closed
subspace of PWM ′(X : τ). The space PW (X : τ), being the union of the spaces
PWM (X : τ), is equipped with the associated direct limit topology. Thus, it
becomes a strict LF-space.

For M > 0 we denote by BM the closed ball in aq of center 0 and radius
M. Moreover, we denote by C∞

M (X : τ) the space of functions in C∞(X : τ) with
compact support contained in K expBMH.
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Theorem 7.2. (Paley-Wiener theorem) The Fourier transform F∅ is a
topological linear isomorphism from C∞

c (X : τ) onto PW (X : τ). More precisely,
for each M > 0 it maps C∞

M (X : τ) homeomorphically onto PWM (X : τ).

In the Riemannian case H = K and τ = 1, this result is equivalent to
the Paley-Wiener theorem of S. Helgason and R. Gangolli, see [32], Thm. IV,
7.1. In the case of the group our Paley-Wiener theorem can be shown to be
equivalent to the one of J. Arthur, [1], which in turn generalizes the result of
O.A. Campoli, [16], for groups of split rank one. Arthur’s proof relies on Harish-
Chandra’s Plancherel theorem and the lifting principle mentioned in Section 5,
due to W. Casselman. It also makes use of ideas from the residue calculus
appearing in the work of R.P. Langlands, [33]. In [22], P. Delorme used a
different method to obtain a Paley-Wiener theorem for semisimple groups with
one conjugacy class of Cartan subgroups, with explicit symmetry conditions
instead of the Arthur-Campoli relations. This work in turn generalized work of
Zhelobenko, [38], for the complex groups.

We conjectured the present Paley-Wiener theorem in slightly different but
equivalent form in [9], where we proved it under the assumption that dim aq = 1.
The proof of Theorem 7.2 is given in the paper [15]. It relies on the inversion
theorem, Theorem 3.3, and on the principle of induction of relations, see The-
orem 4.1. In particular, our proof is independent of the theory of the discrete
series and the existing proofs of the Plancherel theorem (in [25], [13] and [14]).
The precise relation with the Plancherel decomposition will be described in
Section 8.

In the following sketch we will indicate the main ideas of our proof of the
Paley-Wiener theorem.

Sketch of proof of Theorem 7.2 As usual, the proof that F∅ maps C∞
M (X : τ)

continuously into PWM (X : τ) is rather straightforward. For details, see [9].
The injectivity of F∅ was already asserted in Theorem 3.1. By the open mapping
theorem for Fréchet spaces, it remains to establish the surjectivity of F∅. Let
ϕ ∈ PWM (X : τ). In view of the inversion theorem the only possible candidate
for a function f ∈ C∞

M (X : τ) with Fourier transform equal to ϕ is given by the
formula

f(x) = |W |
∫

η+ia∗q

E+(λ : x)ϕ(λ) dλ,

for x ∈ X+ and for η ∈ a∗q sufficiently P̄∅-dominant. The problem with this
formula is that it only defines a smooth function f on the open dense subset
X+ of X. By a standard shift argument of Paley-Wiener type, with η moving to
infinity in −a∗+q , it follows that the support of f is contained in K expBMH.
Therefore, it suffices to show that the function f has a smooth extension to all
of X. This is the central theme of the proof.

We will actually show that f has a smooth extension under the weaker
assumption that ϕ ∈ PAC (X : τ). As in the proof of Theorem 3.3 the idea is to
write the integral differently by application of a contour shift, with η moving to
0, and by organizing the residual integrals according to the calculus described
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in the mentioned proof. This leads to the formula

f(x) =
∑
F⊂∆

T t
Fϕ(x), (x ∈ X+), (7.1)

with

T t
Fϕ(x):= |W | t(PF )

∫
εF +ia∗Fq

Rt
F

 ∑
s∈W F

E+,s(ν + · : x)ϕ(ν + · )

 dµF (ν).

(7.2)
The problem now is to show that each of the individual terms TFϕ extends
smoothly to all of X. This is done by writing TFϕ as a superposition of certain
generalized Eisenstein integrals.

These were defined in [11] by using the symmetry property of the kernels
Kt

F , as formulated in Proposition 5.1. As in the proof of Theorem 3.3 let
K

∗t
F (XF ) ∈ C∞(XF × XF ) ⊗ End(Vτ ) be the analogue for XF and τF of the

kernel Kt
∆ for X and τ. We recall that K

∗t
F (XF ) does not depend on a spectral

parameter, since the analogue of a∆q for XF is the zero space. We define the
following subspace of C∞(XF : τF ),

AF = A∗t(XF : τF ):= span {K∗t
F (XF : · : m′)u | m′ ∈ XF+, u ∈ Vτ}.

Being annihilated by a cofinite ideal of D(XF ), this space is finite-dimensional.
It can be shown thatAF is the discrete series subspace L2

d(XF : τF ) of L2(XF : τF ),
see [13], Lemma 12.6 and Thm. 21.2, but this fact is not needed for the proof
of the Paley-Wiener theorem.

For ψ ∈ AF we define the generalized Eisenstein integral E◦
F (ψ : ν) as

a meromorphic C∞(X : τ)-valued function of ν ∈ a∗FqC, as follows. If

ψ =
∑

i

K
∗t
F (XF : · : m′

i)ui, (7.3)

with m′
i ∈ XF+ and ui ∈ Vτ , then

E◦
F (ψ : ν : x):=

∑
i

Rt
F [E◦(ν − · : x)E∗

+(XF : − · : m′
i)ui]. (7.4)

It follows by induction of relations, Theorem 4.1, that the expression (7.4) is
independent of the particular representation of ψ ∈ AF given in (7.3). It also
follows by induction of relations, combined with the symmetry of the kernel
K

∗t
F , that for ψ ∈ AF given by (7.3),

E◦
F (ψ : ν : x) =

∑
i

Rt
F [

∑
s∈W F

E+,s(ν + · : x)E∗(XF : · : m′
i)ui], (7.5)

for generic ν ∈ a∗FqC and all x ∈ X+. Let

TF (XF : · ) = T
∗t
F (XF : · ) : C∞

c (XF : τF ) → AF
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be the analogue for XF of the operator T t
∆ occurring in (7.1). Then it follows

from (7.4) and (7.5), essentially by integration with respect to the variable m′

that, for all f ∈ C∞
c (XF : τF ),

|WF |−1 E◦
F (TF (XF : f) : ν : x) = Rt

F [
∑

s∈W F

E+,s(ν + · : x)F∅(XF : f)( · )].

(7.6)
Here F∅(XF : · ) denotes the analogue of F∅ for XF .

The next step in the proof of the Paley-Wiener theorem consists of the
following result, which follows from the Arthur-Campoli relations and their
inductive property described in Lemma 6.2, essentially by application of linear
algebra.

Proposition 7.3. Let F ⊂ ∆. There exists a finite-dimensional complex linear
subspace V ⊂ C∞

c (XF : τF ) and a Laurent functional L′ ∈ M(∗a∗FqC,ΣF )∗laur ⊗
Hom(◦C(τ), V ) such that, for generic ν ∈ a∗FqC, the map ϕ 7→ fν,ϕ, PAC (X : τ) →
V, defined by

fν,ϕ = L′[ϕ(ν + · )],

has the following property, for all x ∈ X+,

Rt
F

 ∑
s∈W F

E+,s(ν + · : x)ϕ(ν + · )


= Rt

F

 ∑
s∈W F

E+,s(ν + · : x)F∅(XF : fν,ϕ)( · )

 .
The final step in the proof is the following result, which follows by combining

Proposition 7.3 with (7.6).

Proposition 7.4. There exists a LF ∈ M(∗a∗FqC,ΣF )∗laur ⊗ Hom(◦C(τ),AF )
such that

Rt
F

 ∑
s∈W F

E+,s(ν + · : x)ϕ(ν + · )

 = E◦
F (LF [ϕ(ν + · )] : ν : x),

for all ϕ ∈ PAC (X : τ), x ∈ X+ and generic ν ∈ a∗FqC.

It follows from combining this proposition with (7.2) that, for ϕ ∈ PAC (X : τ),

TFϕ(x) = |W | t(PF )
∫

εF +ia∗Fq

E◦
F (LF [ϕ(ν + · )] : ν : x) dµF (ν), (7.7)

for all x ∈ X+. From this expression it is readily seen that TF extends to a
continuous linear map PAC (X : τ) → C∞(X : τ). �
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8 Relation with the Plancherel decomposition

In this section we briefly discuss the relation between the Paley-Wiener theorem
and the Plancherel theorem, obtained by P. Delorme [25] and, independently, by
H. Schlichtkrull and myself in [13] and [14]. Earlier, a Plancherel theorem had
been announced by T. Oshima, [34], p. 32, but the details have not appeared.
For the case of the group, the Plancherel theorem is due to Harish-Chandra,
[29], [30], [31]. For the case of a complex reductive group modulo a real form,
the Plancherel theorem has been obtained by P. Harinck, [27].

The starting point of our proof of the Plancherel theorem is the Fourier
inversion formula

f(x) = |W |
∑
F⊂∆

t(PF )
∫

εF +ia∗Fq

∫
X
Kt

F (ν : x : y)f(y) dy dµF (ν), (x ∈ X),

(8.1)
which follows from Theorem 3.3 and (5.3). The crucial part of the proof of
the Plancherel theorem consists of showing that this formula, which is valid for
εF sufficiently close to zero in a∗+Fq, remains valid with εF = 0 for all F ⊂ ∆.
This in turn is achieved by showing that the kernel functions Kt

F are regular
for ν ∈ ia∗Fq.

The regularity is achieved in a long inductive argument in [13]. It is in this
argument that we need the theory of the discrete series for X initiated by M.
Flensted-Jensen [26] and further developed in the fundamental paper [35] by T.
Oshima and T. Matsuki. Of the latter paper two results on the discrete series
are indispensable. The crucial results needed are the necessity and sufficiency of
the rank condition for the discrete series to be non-empty as well as the fact that
representations from the discrete series have real and regular D(X)-characters;
see [13] for details.

In the course of the inductive argument, it is is shown that Kt
F is indepen-

dent of the choice of the residue weight t; moreover, AF = L2
d(XF : τF ) and the

generalized Eisenstein integral E◦
F is independent of t as well. It is then shown

that
KF (ν : x : y) = |WF |−1E◦

F (ν : x)E∗
F (ν : y), (8.2)

with E∗
F (ν : y):= E◦

F (−ν̄ : y)∗.At this point we note that if we define the Fourier
transform FF :C∞

c (X : τF ) →M(a∗FqC)⊗AF as F∅ in (3.2) with E∗
F in place of

E∗, then (8.1) becomes

f(x) =
∑
F⊂∆

[W : WF ] t(PF )
∫

εF +ia∗Fq

E◦
F (FF f(ν) : ν : x) dµF (ν). (8.3)

The relation of this formula with (7.1) and (7.7) for ϕ = F∅f is given by

E◦
F (FF f(ν) : ν : x) = |WF |−1E◦

F (LF [F∅f ](ν + · ) : ν : x),

for every x ∈ X, as an identity of meromorphic functions in the variable ν ∈
a∗FqC. From taking coefficients of aν−ρF in the asymptotic expansions of both
members along MFA

+
Fq it follows that

FF f(ν) = |WF |−1 LF [F∅f ](ν + · ),
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for every f ∈ C∞
c (X : τ), as an identity of meromorphic functions in the vari-

able ν ∈ a∗FqC. This in turn leads to the meromorphic identity E∗
F (ν : x) =

|WF |−1 LF [E∗(ν + · : x)], for all x ∈ X.
In view of (8.2), the regularity result for the kernel is reduced to the similar

result for the generalized Eisenstein integral E◦
F (ν : · ), namely its regularity

for ν ∈ ia∗Fq. This is the analogue of Theorem 2.5. By the work of J. Carmona
on the theory of the constant term for X, which in turn generalizes Harish-
Chandra’s work [29] for the case of the group, we can define generalized c-
functions, which are the analogues of the c-functions in Proposition 2.2. A key
step in the proof of the regularity theorem is then to prove the Maass-Selberg
relations for these generalized c-functions, see Theorem 2.3. It should be said
that at the time of the announcement of our proof of the Plancherel theorem
we had to rely on the Maass-Selberg relations proved by Delorme in [24]. Since
then we have found a way to derive the generalized Maass-Selberg relations from
those associated with a minimal σθ-stable parabolic subgroup, as formulated
in Theorem 2.3; see [13], Thm. 18.3.

From the regularity theorem it follows that (8.3) holds with εF = 0. Defining
the wave packet transform JF as J∅ in (3.4) with E◦

F instead of E◦ we now
obtain that

f =
∑
F⊂∆

[W : WF ] t(PF )JFFF f. (8.4)

In [13] we establish uniform tempered estimates for the generalized Eisenstein
integrals. These allow to show that the formula (8.4) extends continuously
to the Schwartz space C(X : τ). It can be shown that JF ◦FF depends on F
through its class for the equivalence relation ∼ on the powerset 2∆ defined by
F ∼ F ′ ⇐⇒ ∃w ∈ W : w(aFq) = aF ′q. By a simple counting argument it then
follows that

I =
∑

[F ]∈2∆/∼

[W : W ∗
F ] JFFF on C(X : τ); (8.5)

here W ∗
F denotes the normalizer of aFq in W. In particular, in this Plancherel

formula for τ -spherical functions the residue weight t has disappeared.
In [14] it is shown that the Eisenstein integrals E◦

F (ν), for ν ∈ a∗FqC, are
essentially sums of generalized matrix coefficients of parabolically induced rep-
resentations of the form IndG

PF
(σ⊗ν⊗1) with σ a discrete series representation

of XF = MF /MF ∩H. Here a key role is played by the automatic continuity
theorem due to W. Casselman and N. Wallach, [20] and [37]. This allows
to conclude that (8.5) is the τ -spherical part of the Plancherel formula in the
sense of representation theory. Moreover, the Eisenstein integrals E◦

F (ν) and
the associated Fourier and wave packet transforms can be identified with those
introduced in [19] by Carmona and Delorme.
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(1996), 225-243.

[6] E. P. van den Ban and H. Schlichtkrull, Convexity for invariant differ-
ential operators on a semisimple symmetric space. Compos. Math. 89
(1993), 301-313.

[7] E. P. van den Ban and H. Schlichtkrull, Expansions for Eisenstein inte-
grals on semisimple symmetric spaces. Ark. Mat. 35 (1997), 59-86.

[8] E. P. van den Ban and H. Schlichtkrull, Fourier transforms on a semisim-
ple symmetric space. Invent. Math. 130 (1997), 517-574.

[9] E. P. van den Ban and H. Schlichtkrull, The most continuous part of the
Plancherel decomposition for a reductive symmetric space. Annals Math.
145 (1997), 267-364.

[10] E. P. van den Ban and H. Schlichtkrull, A residue calculus for root sys-
tems. Compositio Math. 123 (2000), 27-72.

[11] E. P. van den Ban and H. Schlichtkrull, Fourier inversion on a reductive
symmetric space. Acta Math. 182 (1999), 25-85.

[12] E. P. van den Ban and H. Schlichtkrull, Analytic families of eigenfunc-
tions on a reductive symmetric space. Represent. Theory 5 (2001), 615-
712.

[13] E. P. van den Ban and H. Schlichtkrull, The Plancherel decomposition
for a reductive symmetric space, I. Spherical functions.
arXiv.math.RT/0107063.

[14] E. P. van den Ban and H. Schlichtkrull, The Plancherel decomposition
for a reductive symmetric space, II. Representation theory.
arXiv.math.RT/0111304.

[15] E. P. van den Ban and H. Schlichtkrull, A Paley-Wiener theorem for
reductive symmetric spaces. arXiv.math.RT/0302232.

[16] O. A. Campoli, Paley-Wiener type theorems for rank-1 semisimple Lie
groups, Rev. Union Mat. Argent. 29 (1980), 197-221.



Eisenstein integrals and induction of relations 21

[17] J. Carmona, Terme constant des fonctions tempérées sur un espace
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