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Introduction

This thesis presents the outcome of two research projects. The first of these dealt
with the classification of the irreducible highest weight representations of the simple
complex n-Lie algebra. The results of this project have been published in [3].

In the second project, it was investigated whether Kostant’s non-linear convexity
theorem for real semisimple groups can be generalized to a new setting arising from
the theory of semisimple symmetric spaces. As a result of our research, such a gen-
eralization was indeed found, and is presented as Theorem 4.10.1, the main result of
this thesis. The results of the second project were published earlier in [4].

The present thesis is organized in two parts which essentially contain the men-
tioned papers [3] and [4], respectively, together with self-contained introductions to
them. The first part is contained in Chapter 1, whereas the second part is contained
in Chapters 2, 3 and 4.

These two parts can be read independently. We will now outline their contents in
more detail.

Representations of the simple n-Lie algebra

The theory of n-Lie algebras was first developed in 1985 by Filippov in [16]. Subse-
quently, the interest in this type of algebras grew due to their importance in physics.
For instance, a metric 3-Lie algebra is used in the Lagrangian description of a certain
2 + 1 dimensional field theory, called the Bagger-Lambert-Gustavsson theory.

Let K be a field of characteristic zero. An n-Lie algebra over K is a natural
generalization of a Lie algebra, for which the Lie bracket is not a binary operation,
but an n-ary one (n ≥ 3). The n-bracket is n-linear, antisymmetric and satisfies a
generalized Jacobi identity.

Many of the classical concepts and theorems in the theory of Lie algebras have
very natural counterparts in the setting of n-Lie algebras. For example, Ling proved
in his PhD-thesis [43], that every semisimple n-Lie algebra is the direct sum of its
simple ideals. Moreover, he classified all simple n-Lie algebras, under the assump-
tion that the fieldK is algebraically closed. It turns out that, up to isomorphism, there
exists a unique simple n-Lie algebra, which has to be of dimension n+1. ForK = C,

1



a realization of the simple n-Lie algebra is given by Cn+1 with the bracket given by

[e1, . . . , êi, . . . , en+1] = (−1)n+i+1ei.

Here {e1, . . . , en+1} denotes the canonical basis of Cn+1 and êi means that the ele-
ments ei has been omitted from the n-bracket. We denote the given complex simple
n-Lie algebra by A and reserve the notation V for a generic n-Lie algebra.

To every n-Lie algebra V we can associate a Lie algebra (∧n−1V ), called the ba-
sic Lie algebra. For the simple n-Lie algebraA the basic Lie algebra is isomorphic to
the complex Lie algebra so(n+1). The importance of the basic Lie algebra becomes
obvious when studying representation theory of n-Lie algebras. Representations of
the n-Lie algebra V are in 1-1 correspondence with representations of its basic Lie
algebra ∧n−1V on which a certain ideal Q(V ) in the universal enveloping algebra of
the basic Lie algebra acts trivially. Furthermore, the concepts of irreducibility and
complete reducibility of modules stay true under this correspondence.

In [14] A. Dzhumadil’daev classified the finite-dimensional irreducible highest
weight representations of the simple complex n-Lie algebra A. In the first part of
this thesis we classify all irreducible highest-weight representations of A, finite- and
infinite-dimensional alike.

Let b be a Borel subalgebra of the Lie algebra so(n+1) and let λ ∈ (b/Rad(b))∗.
Denote by V (λ) the associated Verma module of the highest weight λ and by Z(λ)
its unique irreducible quotient, with highest weight λ. We give conditions on λ, such
that Z(λ) is an n-Lie algebra module for the simple n-Lie algebra A.

Theorem (1.3.2) Let n ≥ 3, n+1 = 2N and t ∈ {1, . . . , N}. Denote by π1, . . . , πN
the fundamental weights of so(2N). Then, Z(λ) is an irreducible representation of
the simple n-Lie algebra A if and only if λ has one of the following values

xπt t = 1,
(−1− x)πt−1 + xπt 1 < t < N − 1,
(−1− x)πt−1 + xπt + xπt+1 t = N − 1,
(−1− x)πt−1 + (−1 + x)πt t = N,

where x ∈ C.

Theorem (1.3.3) Let n ≥ 3, n + 1 = 2N + 1 and t ∈ {1, . . . , N}. Denote the
fundamental weights of so(2N + 1) by π1, . . . , πN . Then, Z(λ) is an irreducible
highest weight representation of the simple n-Lie algebra A if and only if λ has one
of the following values{

xπt t = 1,
(−1− x)πt−1 + xπt 1 < t ≤ N,

where x ∈ C.
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It is clear that for t = 1 and x a positive integer, Z(λ) is a finite-dimensional
module.

The proof of the theorem relies on the above mentioned correspondence between
representations of an n-Lie algebra and representations of its basic Lie algebra. The
techniques used are classical techniques in representation theory of semisimple Lie
algebras.

Chapter 1 is organized as follows. In Section 1.1 we begin with a short intro-
duction to the theory of n-Lie algebras. We introduce here the standard definitions
and results, define the basic Lie algebra associated to an n-Lie algebra and give its
construction in Subsection 1.1.2. In Subsection 1.1.3 we sketch the proof of the clas-
sification theorem of simple n-Lie algebras obtained in [43].

Section 1.2 is entirely devoted to the structure of the simple n-Lie algebra A. We
begin by presenting a different construction of this n-Lie algebra and we prove that
its basic Lie algebra is isomorphic to so(n + 1). In Subsection 1.2.1 we describe a
pictorial representation of the elements of the basic Lie algebra of the simple n-Lie
algebra.

In Section 1.3 we give the statements of our main theorem. Depending on the
parity of n+ 1 we obtain Theorem 1.3.2 or Theorem 1.3.3.

The strategy used to prove these theorems is explained in detail in Subsection
1.4.2, while the actual computations are done in Subsections 1.5.3 and 1.5.4. In
Subsection 1.5.5 we give a second method for obtaining the ’only if’-implication of
these theorems, by means of the pictorial representation mentioned above.

Finally, in Section 1.6, we give an application of our theorem. Namely, we clas-
sify the primitive ideals of the universal enveloping algebra of the simple n-Lie alge-
braA. Moreover, we show that the Joseph ideal constructed in [33] is such a primitive
ideal.

The convexity theorem

A well-known result of Schur, Horn and Thompson says that for the space of all
n-by-n Hermitian matrices with a given sequence (λ1, . . . , λn) of real eigenvalues, a
vector in Rn is the diagonal part of such a matrix if and only if this vector belongs to
the convex polytope with vertices given by the set {(λσ(1), . . . , λσ(n)) |σ ∈ Sn} of
all permutations of the eigenvalues. This result was generalized by Kostant in [37]
to the setting of connected real semisimple Lie groups, with finite center. Kostant’s
generalization is known in the literature as the linear convexity theorem of Kostant.

Let G be a connected real semisimple Lie group with finite center (or more gen-
erally a reductive Lie group of the Harish-Chandra class), K a maximal compact
subgroup and G = KANP an associated Iwasawa decomposition. Let Ea : g → a
denote the projection associated with the corresponding infinitesimal Iwasawa de-
composition g = k⊕ a⊕ nP and let X ∈ a. The linear convexity theorem of Kostant
says that the image of the adjoint orbit Ad(K)X under Ea is a convex polytope in a.
More precisely, this convex polytope has vertices given by the orbit of X under the
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action of the Weyl group W (a) of the root system Σ(g, a). In formula,

Ea(Ad(K)X) = conv(W (a) ·X),

where ’conv’ indicates that the convex hull is taken.
The term ’linear’ is explained by the fact that it is the linear version of another

convexity theorem, called Kostant’s non-linear convexity theorem, in which the lin-
ear projection is replaced by the Iwasawa projection HP : G → a, defined by
HP (kan) = log a. Furthermore, the action is replaced by the action of K on G
by conjugation. Namely, for a = expX ∈ A, we have that

HP (Ad(K)a) = HP (aK) = conv(W (a) ·X).

Both convexity theorems of Kostant have been generalized to the framework of
symplectic geometry: see [2], [9], [23], [24], [35] for the linear convexity theorem
and [30], [44] for the non-linear one. The non-linear convexity theorem has also
been generalized to the setting of semisimple symmetric spaces in [5] and [48]. In
the second part of this thesis we present a remarkable further generalization of van
den Ban’s convexity theorem of [5].

Let θ : G → G be a Cartan involution on G associated to K. Furthermore, let
σ : G → G be an involution on G commuting θ and let H be an open subgroup
of the fixed point group Gσ. We may select A such that A is σ-stable and A ∩ H
is of smallest possible dimension. Our goal is to determine the image of aH under
the Iwasawa projection HP , where a ∈ A. This problem was studied in [5] under
the extra assumption that the minimal parabolic subgroup P := ZK(a)ANP is q-
extreme, i.e. NP ∩ H is of smallest possible dimension. We provide an answer
without imposing this extra assumption.

Thus, van den Ban’s convexity theorem is a particular case of our main theorem.
Kostant’s non-linear convexity theorem in turn arises as a particular case of van den
Ban’s result by taking σ = θ. Our result also implies Kostant’s result in a different
way, by viewing the group G as a symmetric space. This will be explained at a later
stage in this introduction.

We will now present the formulation of our main result in some detail. First of
all, the image HP (aH) is readily seen to be a∩ h-invariant and therefore completely
determined by its projection prqHP (aH) onto a ∩ q along a ∩ h (here q denotes
the −1-eigenspace of g for the infinitesimal involution σ). Moreover, it suffices to
describe the image for a ∈ exp(a ∩ q).

Theorem (4.10.1) Let G be a reductive Lie group of the Harish-Chandra class, σ an
involution on G and H an essentially connected open subgroup of Gσ. Let P be any
minimal parabolic subgroup containing A and a ∈ exp(a ∩ q). Then

prqHP (aH) = conv(WK∩H · log a) + Γ(P ),

where ’conv’ denotes the convex hull, Γ(P ) is a closed convex polyhedral cone and
WK∩H denotes the Weyl group NK∩H(a ∩ q)/ZK∩H(a ∩ q).
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Every semisimple Lie groupG can be realized as the semisimple symmetric space
G×G/diag(G×G). In this setting the considered minimal parabolic subgroups of
G × G are of the form P × Q, with P and Q minimal parabolic subgroups of G
containing A. Van den Ban’s condition on the parabolic subgroup amounts (in this
setting) to Q = P̄ = θ(P ). On the other hand, applying our theorem to the group,
seen as a semisimple symmetric space, with P = Q, we can recover the non-linear
convexity theorem of Kostant in a second way, as mentioned above.

The techniques used to prove the theorem are inspired by [26] and [13]. In [26]
Heckman uses these techniques to prove the linear convexity theorem of Kostant.
However, he obtains the non-linear convexity theorem from the linear one by a ho-
motopy argument.

The second part of the thesis is organized into three chapters.
The first of these chapters is Chapter 2 in which we give a brief introduction

to the subject. In Section 2.1 we discuss some structure theory of semisimple Lie
groups. We explain in this section both convexity theorems of Kostant and give
a few examples. In Section 2.2 we introduce parabolic subalgebras and parabolic
subgroups, while in Section 2.3 we define semisimple symmetric spaces. Chapter 2
ends with the definition of a reductive Lie group of the Harish-Chandra class and a
short motivation for using such Lie groups, see Section 2.4.

We begin Chapter 3 with the precise statement of Theorem 4.10.1 in Section 3.1.
The rest of this chapter is dedicated to the case of the semisimple symmetric space
G×G/diag(G×G) (the group case). Our detailed exposition of the group case starts
in Section 3.2 where we illustrate on a particular example how the polyhedral convex
cone Γ(P ) depends on the parabolic subgroup P . Namely, by choosing different
minimal parabolic subgroups of this semisimple symmetric space with the same split
component, we obtain different convex cones. Inspired by the independent proof of
van den Ban’s convexity result for the group case, see [5, Theorem A.1], we present in
Subsection 3.2.2 a computational proof for the case of the group. This proof amounts
to the use of the classical non-linear convexity theorem of Kostant and a well-known
result about the Iwasawa projection of unipotent radicals (Lemma 3.2.4). Conversely,
both these results can be obtained from our convexity theorem applied to the case of
the group. In Subsection 3.2.3 we show how to obtain Lemma 3.2.4 as a consequence
of Theorem 4.10.1.

The last chapter, Chapter 4, is entirely devoted to the proof of the convexity re-
sulted stated above. The proof is divided into a series of steps, each contained in a
section of this chapter. Each step proves a smaller result necessary for our argumen-
tation in the proof of the main theorem. A summary of the proof and the multiple
steps it involves is presented in Section 4.1. Finally, in Section 4.10, by induction
on the real rank of the Lie group G and some topological arguments, all these steps
contribute to our final reasoning and as such prove Theorem 4.10.1. We conclude the
thesis with an appendix, A, in which we prove a lemma (Lemma 4.2.10) concerning
the decomposition for nilpotent groups in terms of subgroups generated by roots.
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In the end, we wish to mention that our choice of notation differs from the first part
of the thesis (Chapter 1) to the second (Chapters 2, 3 and 4).
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Chapter 1

Highest weight representations of
the simple n-Lie algebra

This chapter contains the first part of this thesis. As mentioned in the introduction, we
classify here irreducible highest-weight representations of the simple complex n-Lie
algebra.

We start in Section 1.1 with a brief introduction to the theory of n-Lie algebras.
In the beginning of this section we recall the standard definitions and results. Next we
define the basic Lie algebra associated to an n-Lie algebra and give its construction in
Subsection 1.1.2. For the simple n-Lie algebra A the basic Lie algebra is isomorphic
to the complex algebra so(n+ 1).

In Section 1.3 we give the statements of our main theorem. Depending on the
parity of n + 1 we obtain Theorem 1.3.2 or Theorem 1.3.3. The strategy used to
prove these theorems is presented in Subsection 1.4.2, while the actual computations
are done in Subsections 1.5.3 and 1.5.4. In Subsection 1.5.5 we give a second method
of obtaining the ’only if’-implication of these theorems, by means of a pictorial rep-
resentation for the elements of the basic Lie algebra of the simple n-Lie algebra. This
pictorial representation is introduced in Subsection 1.2.1.

In the end of this chapter, Section 1.6, we give an application of our theorem: we
classify the primitive ideals of the universal enveloping algebra of the simple n-Lie
algebra A.

Throughout this chapter V denotes a finite-dimensional vector space over a field
K of characteristic zero.
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1.1 Introduction to n-Lie algebras

This section presents the standard definitions and results in the theory of n-Lie al-
gebras. Many of the classical notions and well-know results of the theory of Lie
algebras have a natural counterpart in the setting of n-Lie algebras. The theory pre-
sented here can be found in [16] and [43].

1.1.1 Definitions and notations

We start our exposition by a succinct recollection of the main definitions and results
for the theory of n-Lie algebras.

Definition 1.1.1. The vector space V together with a multi-linear, antisymmetric n-
ary operation [·, . . . , ·] : ×nV → V is called an n-Lie algebra, n ≥ 2, if the n-ary
bracket satisfies the equation

[[v1, . . . , vn], vn+1, . . . , v2n−1] =
n∑
i=1

[v1, . . . , [vi, vn+1, . . . , v2n−1], . . . , vn], (1.1)

where v1, . . . , v2n−1 ∈ V .

For n = 2 this equation is the classical Jacobi identity, thus 2-Lie algebras are the
same as Lie algebras. Henceforth we will always assume that n ≥ 3. However, we
advise the reader to keep in mind that in the present section we develop the theory of
n-Lie algebras in analogy with the classical theory of Lie algebras.

Example 1.1.2. The vector space Kn+1 endowed with the n-bracket

[e1, . . . , êi, . . . , en+1] = (−1)n+i+1ei,

is an n-Lie algebra. Here {e1, . . . , en+1} denotes the canonical basis of Kn+1 and êi
means that ei is omitted from the n-bracket. The importance of this example comes
from the fact that for K = C and n ≥ 3 every simple n-Lie algebra is isomorphic to
this one. Later on we will give an alternative construction of this n-Lie algebra.

Example 1.1.3. Let V = {f : Rn → R| f of class C∞}, n ≥ 3, and define the n-ary
bracket on V as

[f1, . . . , fn] =

∣∣∣∣∣∣∣
∂f1

∂x1
. . . ∂fn

∂x1
...

. . .
...

∂f1

∂xn
. . . ∂fn

∂xn

∣∣∣∣∣∣∣ .
The vector space V together with this operation forms an n-Lie algebra. We will call
this operation the Jacobian.
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Definition 1.1.4. A linear mapD : V → V is called a derivation of the n-Lie algebra
V if for all v1, . . . , vn ∈ V

D[v1, . . . , vn] =

n∑
i=1

[v1, . . . , D(vi), . . . , vn].

Consider the map ad : ∧n−1V → End(V ) defined on monomials v1 ∧ . . . ∧
vn−1 ∈ ∧n−1V by

ad(v1 ∧ . . . ∧ vn−1)(w) = [v1, . . . , vn−1, w] (1.2)

and extended linearly to sums. Equation (1.1) is equivalent to the map ad(v1 ∧ . . . ∧
vn−1) being a derivation of V , and hence we call it the generalized Jacobi identity.

Definition 1.1.5. A derivation D of the n-Lie algebra V is called an inner derivation
if it is in the image of ad : ∧n−1V → End(V ).

The space of all derivations of V , which we denote by Der(V ), is a Lie algebra
relative to the Lie bracket

[D1, D2] = D1D2 −D2D1.

Moreover, the space Inder(V ) of inner derivations of V is an ideal of Der(V ), see
Proposition 1.1.2 in [43].

Definition 1.1.6. Let V together with [·, . . . , ·] : ×nV → V be an n-Lie algebra. A
subspace V ′ ⊆ V together with the inherited operation is called a subalgebra of the
n-Lie algebra V if

[V ′, . . . , V ′] ⊆ V ′.

Example 1.1.7. Let us return to the Example 1.1.3 above, and denote by V ′ the
subset of V consisting of the polynomial functions in V . Then V ′ together with the
inherited operation forms a subalgebra of the n-Lie algebra V .

Definition 1.1.8. A subalgebra I ⊆ V of an n-Lie algebra V is called an ideal if

[V, . . . , V, I] ⊆ I.

An n-Lie algebra V is called simple if it is non-abelian, i.e. [V, . . . , V ] 6= {0}, and it
has no other ideals besides 0 and itself.

Example 1.1.9. As in Example 1.1.3 above, we define

V = {f : Rn → R| f of class C∞},

for n ≥ 3, and put the n-ary bracket on V to be the Jacobian. Denote by I the set of
functions in V which are flat at the origin, that is all partial derivatives at the origin
are zero. Then I is an ideal of V .

9



Definition 1.1.10. Let V1 and V2 be two n-Lie algebras overK, n ≥ 3, and τ : V1 →
V2 a linear map. The map τ is an n-Lie algebra homomorphism if

τ [v1, . . . , vn]1 = [τv1, . . . , τvn]2

and it is an isomorphism if in addition τ is a bijection.

Definition 1.1.11. Let V be an n-Lie algebra and M a vector space over K. A
representation of V on M is given by a map

ρ : ∧n−1V → End(M)

such that for all v1, . . . , v2n−2 ∈ V the following equality holds.

ρ([v1, . . . , vn] ∧ vn+1 ∧ . . . ∧ v2n−2) =

=
n∑
i=1

(−1)i+nρ(v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vn)ρ(vi ∧ vn+1 ∧ . . . ∧ v2n−2) (1.3)

Remark 1.1.12 (Alternative definition). The definition given above is equivalent to
the following definition of an n-Lie module, which is more commonly used in the
existing literature.

Let V be an n-Lie algebra with n-ary bracket denoted by

[·, . . . , ·]V : ×nV → V.

An n-Lie module structure on a vector space M for the n-Lie algebra V is defined
by an n-Lie algebra structure on the direct sum V ⊕M

[·, . . . , ·] : ×n(V ⊕M)→ V ⊕M,

such that the following conditions are satisfied:

i) V is a subalgebra of V ⊕M , i.e. for v1, . . . , vn ∈ V

[v1, . . . , vn] = [v1, . . . , vn]V ,

ii) M is an abelian ideal, i.e. for m1,m2 ∈M and x1, . . . , xn−1 ∈ V ⊕M

[x1, . . . , xn−1,m1] ∈M and [x1, . . . , xn−2,m1,m2] = 0.

The equivalence between this definition and Definition 1.1.11 above is obtained
by defining the representation ρ : ∧n−1V → End(M) via the equality

ρ(v1 ∧ . . . ∧ vn−1)(m) = [v1, . . . , vn−1,m].

Example 1.1.13. Any ideal I of the n-Lie algebra V is an n-Lie module of V , where
ρ(v1 ∧ . . . ∧ vn−1)(i) = [v1, . . . , vn−1, i].
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Definition 1.1.14. A linear subspaceN of an n-Lie moduleM is called a submodule
if for all l ∈ N and v1, . . . , vn−1 ∈ V

ρ(v1 ∧ . . . ∧ vn−1)(l) ∈ N.

Any module M of V has two trivial submodules: 0 and M . If these are the only
submodules that M possesses, we call M irreducible. If, on the other hand, M is
decomposable as a direct sum of irreducible submodules, thenM is called completely
reducible.

1.1.2 The basic Lie algebra

To an n-Lie algebra V we can associate a Lie algebra, called the basic Lie algebra of
V . This construction goes as follows.

The map ad, defined by Equation (1.2), extends to a map

∇ : ∧n−1V → End(∧mV ) for 1 ≤ m ≤ dimV

defined on monomials as

∇(a1∧...∧an−1)(b1 ∧ . . . ∧ bm) =
m∑
i=1

b1 ∧ . . . ∧ [a1, . . . , an−1, bi] ∧ . . . ∧ bm

and extended linearly to sums of monomials.
We define a bilinear operation on ∧n−1V . On monomials a = a1 ∧ . . . ∧ an−1

and b = b1 ∧ . . . ∧ bn−1 we set

[a, b] =
1

2
(∇ab−∇ba)

and extend it bilinearly to sums.

Proposition 1.1.15. The bracket [· , · ], defined above, endows ∧n−1V with a Lie
algebra structure. Moreover, ad : ∧n−1V → Inder(V ) is a surjective Lie algebra
homomorphism.

Proof. The skew-symmetry of the bracket is obvious, and so is the surjectivity of
ad, thus we need to prove that the Jacobi identity holds and that ∇ is a Lie algebra
homomorphism. In order to do this, we first show that

∇∇ab = ∇a∇b −∇b∇a = [∇a,∇b].

Since both the left-hand-side and the right-hand-side of the equation are derivations
of the exterior algebra (∧•V,∧) it suffices to show the equality for some arbitrary
c ∈ V .

∇∇abc = ∇∇a1∧...∧an−1b1∧...∧bn−1(c)
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= ∇∑n−1
i=1 b1∧...∧[a1,...,an−1,bi]∧...∧bn−1

(c)

=
n−1∑
i=1

[b1, . . . , [a1, . . . , an−1, bi], . . . , bn−1, c]

= [a1, . . . , an−1, [b1, . . . , bn−1, c]]− [b1, . . . , bn−1, [a1, . . . , an−1, c]]

= (∇a∇b −∇b∇a)(c).

Hence, as a consequence of the above, we obtain

∇[a,b] = ∇ 1
2

(∇ab−∇ba)

=
1

2
(∇∇ab −∇∇ba)

= ∇a∇b −∇b∇a
= [∇a,∇b]. (1.4)

The Jacobi identity now follows easily. Namely, for a, b, c ∈ ∧n−1V we have

[a, [b, c]] =
1

2
(∇a∇[b,c] −∇[b,c]∇a)

=
1

2
(∇a(∇b∇c −∇c∇b)− (∇b∇c −∇c∇b)∇a)

=
1

2
(∇a∇b∇c −∇a∇c∇b −∇b∇c∇a −∇c∇b∇a)+

+
1

2
(∇b∇a∇c −∇b∇a∇c) +

1

2
(∇c∇a∇b −∇c∇a∇b)

=
1

2
(∇[a,b]∇c −∇c∇[a,b]) +

1

2
(∇b∇[a,c] −∇[a,c]∇b)

= [[a, b], c] + [b, [a, c]].

Remark 1.1.16. In general the operation ∇ : ∧n−1V → End(∧n−1V ) is not skew-
symmetric, i.e. for a, b ∈ ∧n−1V

∇ab 6= −∇ba.

As an example, consider the subalgebra spanned by {1, x, y, z, x2} inside C∞(R3),
see Example 1.1.3. Then

∇x∧y(z ∧ x2) = [x, y, z] ∧ x2 + z ∧ [x, y, x2] = 1 ∧ x2 + z ∧ ∂x
2

∂z
= 1 ∧ x2

while

∇z∧x2(x ∧ y) = −[x, x2, z] ∧ y + x ∧ [x2, y, z] = −∂x
2

∂y
∧ y + x ∧ ∂x

2

∂x
= 0.

Thus,
∇x∧y(z ∧ x2) 6= −∇z∧x2(x ∧ y).
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Definition 1.1.17. An n-Lie algebra V , such that ∇ : ∧n−1V → End(∧n−1V ) is
skew-symmetric, is called∇-skew-symmetric (for short∇-skew).

Proposition 1.1.18. The map ∇ : ∧n−1V → End(∧n−1V ) is a Lie algebra rep-
resentation of the basic Lie algebra on itself. Moreover, for each v ∈ ∧n−1V the
endomorphism∇v is a derivation of the basic Lie algebra.

Proof. For the first assertion of the proposition we have to show that for any a, b ∈
∧n−1V

∇[a,b] = [∇a,∇b].
By Equation (1.4) above, this holds.

For the second assertion of the proposition let v, a, b ∈ ∧n−1V . We want to show
that

∇v[a, b] = [∇va, b] + [a,∇vb].
By using again some of the computations in the proof of Proposition 1.1.15 above,
we obtain:

[∇va, b] + [a,∇vb] =

1

2
(∇∇vab−∇b∇va+∇a∇vb−∇∇vba) =

1

2
(∇v∇ab−∇a∇vb−∇b∇va+∇a∇vb−∇v∇ba+∇b∇va) =

1

2
(∇v∇ab−∇v∇ba) = ∇v[a, b].

Corollary 1.1.19. Let V be an n-Lie algebra and ∧n−1V its basic Lie algebra. The
operations

∇ : ∧n−1V → End(∧n−1V )

and
ad : ∧n−1V → End(∧n−1V )

give two possibly different representations (by derivations) of ∧n−1V on itself. Here
ad is defined in the usual way, namely for a, b ∈ ∧n−1V

ad(a)(b) = [a, b].

These two representations coincide if and only if V is ∇-skew.

The basic Lie algebra ∧n−1V of the n-Lie algebra V is an important tool in
the theory of n-Lie algebras. It allows us to study several concepts in n-Lie theory
by relating them to their Lie counterpart. In particular, we will study irreducible
representations of the n-Lie algebra V by viewing them as irreducible representations
of the basic Lie algebra ∧n−1V with some special property.

Let M be an n-Lie module of the n-Lie algebra V . Our aim in what follows is to
obtain on M a Lie module structure for the basic Lie algebra ∧n−1V .
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Proposition 1.1.20. Let ρ : ∧n−1V → End(M) be a representation of V on M .
Then ρ is a Lie algebra representation of the basic Lie algebra ∧n−1V on M .

Proof. We have to check that ρ respects the Lie bracket on ∧n−1V . Namely, that for
all v1, . . . , vn−1, w1, . . . , wn−1 ∈ V and m ∈M the following equality holds

ρ([v1 ∧ . . . ∧ vn−1, w1 ∧ . . . ∧ wn−1])(m) =

ρ(v1 ∧ . . . ∧ vn−1)ρ(w1 ∧ . . . ∧ wn−1)(m)−
ρ(w1 ∧ . . . ∧ wn−1)ρ(v1 ∧ . . . ∧ vn−1)(m).

Thus, we compute

ρ([v1 ∧ . . . ∧ vn−1, w1 ∧ . . . ∧ wn−1])(m) =

=
1

2
ρ(

n−1∑
i=1

w1 ∧ . . . ∧ [v1, . . . , vn−1, wi] ∧ . . . ∧ wn−1

−
n−1∑
i=1

v1 ∧ . . . ∧ [w1, . . . , wn−1, vi] ∧ . . . ∧ vn−1)(m)

=
1

2
(
n−1∑
i=1

ρ(w1 ∧ . . . ∧ [v1, . . . , vn−1, wi] ∧ . . . ∧ wn−1)(m)

−
n−1∑
i=1

ρ(v1 ∧ . . . ∧ [w1, . . . , wn−1, vi] ∧ . . . ∧ vn−1)(m))

=
1

2
(ρ(v1 ∧ . . . ∧ vn−1)ρ(w1 ∧ . . . ∧ wn−1)(m)

− ρ(w1 ∧ . . . ∧ wn−1)ρ(v1 ∧ . . . ∧ vn−1)(m))

− 1

2
(ρ(w1 ∧ . . . ∧ wn−1)ρ(v1 ∧ . . . ∧ vn−1)(m)

− ρ(v1 ∧ . . . ∧ vn−1)ρ(w1 ∧ . . . ∧ wn−1)(m))

=ρ(v1 ∧ . . . ∧ vn−1)ρ(w1 ∧ . . . ∧ wn−1)(m)

− ρ(w1 ∧ . . . ∧ wn−1)ρ(v1 ∧ . . . ∧ vn−1)(m).

The converse of Proposition 1.1.20 above does not hold in general, as a Lie mod-
ule M of the basic Lie algebra ∧n−1V is not necessarily an n-Lie module of the
n-Lie algebra V ; for this we need Equation (1.3) to hold. We state this as a corollary.

Corollary 1.1.21. There is a 1-1 correspondence between representations of the n-
Lie algebra V and representations of its basic Lie algebra ∧n−1V for which the
condition given by Equation (1.3) is satisfied.

A consequence of this corollary is given in the proposition below. According to
this proposition we may study irreducibility/complete reducibility of n-Lie modules
of V by viewing them as Lie modules of the basic Lie algebra ∧n−1V .
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Proposition 1.1.22 ([14, Proposition 2.1]). Let M be an n-Lie module of the n-Lie
algebra V . Then M is irreducible if and only if M is irreducible as a Lie module
of ∧n−1V . Similarly, the module M is completely reducible if and only if M is
completely reducible as a Lie module of the basic Lie algebra ∧n−1V .

Representations of the Lie algebra ∧n−1V are in 1-1 correspondence with repre-
sentations of the universal enveloping algebra U(∧n−1V ). In the associative algebra
U(∧n−1V ) consider the elements

xv1,...,v2n−2 =[v1, . . . , vn] ∧ vn+1 ∧ . . . ∧ v2n−2−
n∑
i=1

(−1)i+n(v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vn)(vi ∧ vn+1 ∧ . . . ∧ v2n−2),

(1.5)

where v̂i means that the element vi has been omitted. Define

R := Span{xv1,...,v2n−2 |v1, . . . , v2n−2 ∈ V }, (1.6)

and consider the two sided ideal generated by R in U(∧n−1V )

Q(V ) := U(∧n−1V )RU(∧n−1V ).

Let ρ : ∧n−1V → End(M) be a representation of the n-Lie algebra V . The in-
duced representation of the universal enveloping algebra will be denoted by the same
symbol:

ρ : U(∧n−1V )→ End(M).

Then, by Equation (1.3)
Q(V ) ⊆ ker ρ.

Moreover, representations of U(∧n−1V ) for which the ideal Q(V ) acts trivially are
representations of the n-Lie algebra V . Thus, we have a 1-1 correspondence between
representations of V and representations of U(∧n−1V ) which contain Q(V ) in their
kernel. Therefore, we define the universal enveloping algebra of the n-Lie algebra V
as follows.

Definition 1.1.23. The universal enveloping algebra of the n-Lie algebra V is de-
fined as

U(V ) := U(∧n−1V )/Q(V ).

The argument above leads us to conclude:

Theorem 1.1.24. Representations of the n-Lie algebra V are the same as represen-
tations of the associative algebra U(V ).
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The representation of the basic Lie algebra ∧n−1V on itself

∇ : ∧n−1V → End(∧n−1V )

acts by derivations. We can extend this action to an action

∇ : ∧n−1V → End(⊗k ∧n−1 V )

by defining it to be zero for k = 0 and

∇v(v1 ⊗ . . .⊗ vk) =

k∑
i=1

v1 ⊗ . . .⊗∇v(vi)⊗ . . .⊗ vk

for k > 0. Here v, v1, . . . , vk ∈ ∧n−1V .
Since ∇ acts by derivations on the Lie algebra ∧n−1V , a simple computation

shows that the ideal in the tensor algebra T (∧n−1V ), generated by elements of the
form v1⊗ v2− v2⊗ v1− [v1, v2], will be invariant under the action of∇. This means
that ∇ can be extended by derivations to a representation of the basic Lie algebra on
its universal enveloping algebra U(∧n−1V ). This extension will be denoted by the
same symbol

∇ : ∧n−1V → End(U(∧n−1V )).

Lemma 1.1.25. The set R defined in (1.6) is invariant under the∇-action of ∧n−1V
on U(∧n−1V ).

Proof. Since ∇ : ∧n−1V → End(U(∧n−1V )) acts by derivations on the universal
enveloping algebra U(∧n−1V ), we have that for a, b ∈ U(∧n−1V ) and v ∈ ∧n−1V

∇v(a · b) = ∇va · b+ a · ∇vb.

Let xv1,...,v2n−2 be an element of R and w = w1 ∧ . . . ∧ wn−1 ∈ ∧n−1V . Then a
straightforward computation shows that

∇wxv1,...,v2n−2 =
2n−2∑
i=1

xv1,...,[w1,...,wn−1,vi],...,v2n−2
.

As a corollary of this lemma we obtain:

Proposition 1.1.26. If the n-Lie algebra V is ∇-skew, then the left ideal generated
by R equals the right ideal generated by R and equals the two sided ideal Q(V ), i.e.

U(∧n−1V ) ·R = R · U(∧n−1V ) = Q(V ).
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Proof. Let v, w ∈ ∧n−1V . Then, by the∇-skew-symmetry of the n-Lie algebra V

∇vw = ad(v)(w) = [v, w].

Moreover, the map ad : ∧n−1V → End(∧n−1V ) extends by derivations to a map
ad : ∧n−1V → End(U(∧n−1V )) given by the commutator. Namely, for v ∈ ∧n−1V
and a ∈ U(∧n−1V )

[v, a] = va− av.

By Lemma 1.1.25 above, we know that R is invariant under the∇-action of the basic
Lie algebra ∧n−1V on the universal enveloping algebra U(∧n−1V ). Hence, for all
v ∈ ∧n−1V and r ∈ R the following holds

vr − rv ∈ R.

Since a generic element in U(∧n−1V ) is a sum of elements of the form v1 . . . vk, by
induction on k we can easily show that U(∧n−1V ) ·R ⊆ R ·U(∧n−1V ) and that the
converse inclusion also holds. Thus, we obtain equality.

Let I be a left ideal of the universal enveloping algebra of the basic Lie algebra
U(∧n−1V ). Then U(∧n−1V ) acts on U(∧n−1V )/I . Our aim is to determine con-
ditions on I such that U(∧n−1V )/I is an n-Lie module of V . By Theorem 1.1.24
above, we know that a representation of the n-Lie algebra V is a representation of
the universal enveloping algebra U(V ) and that the converse also holds.

Lemma 1.1.27. Q(V ) ⊆ I if and only if the action of U(∧n−1V ) on U(∧n−1V )/I
factors through an action of U(V ) on U(∧n−1V )/I .

Proof. Let ρ : U(∧n−1V ) → End(U(∧n−1V )/I) be the representation, given by
left multiplication

ρ(u)(x) = u · x.

Then, obviously, kerρ ⊆ I .
Assume that U(V ) acts on U(∧n−1V )/I . Then, Q(V ) ⊆ kerρ ⊆ I .
Conversely, assume that Q(V ) ⊆ I . We want to show that Q(V ) is contained in

kerρ. Let q ∈ Q(V ) and [u] ∈ U(∧n−1V )/I , where u ∈ U(∧n−1V ). Then

ρ(q)([u]) = ρ(q · u)(1) ∈ ρ(Q(V ))(1) ⊆ ρ(I)(1) = I.

Thus ρ(q)([u]) = 0 and we are done.

If V is ∇-skew, then by Proposition 1.1.26 and Lemma 1.1.27 above we obtain
the following condition on I which insures that U(∧n−1V )/I is an n-Lie module of
V .

Proposition 1.1.28. Let V be ∇-skew-symmetric. The representation of U(∧n−1V )
on U(∧n−1V )/I factors through a representation of U(V ) on U(∧n−1V )/I if and
only if R ⊆ I .
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1.1.3 Classification of semisimple n-Lie algebras

In this subsection we give the classification of the simple, and hence the semisimple
n-Lie algebras. The theory presented in this subsection is contained in [43].

We begin with the definition of a semisimple n-Lie algebra.
Let I be an ideal of the n-Lie algebra V and write

I(0) := I and I(k+1) := [I(k), . . . , I(k)]. (1.7)

Definition 1.1.29. An ideal I ⊆ V is called solvable if there exists k ≥ 0 such that

I(k+1) = {0}.

Remark 1.1.30. Solvability of ideals as defined above, is also know in the literature
as solvability in the sense of Filippov. According to how many slots of the n-ary
operation [·, . . . , ·] : ×nV → V are occupied by elements of the derived series
(Equation (1.7)), one can define the notion of k-solvability of an ideal I (see for
instance [34]). However, for simplicity, we will only be concerned with ideals which
are solvable in the sense of Filippov.

Of course, the sum of two ideals is again an ideal, and moreover, the sum of two
solvable ideals is again a solvable ideal (see [43, Proposition 2.2]). Hence, by finite-
dimensionality of V , there exists a maximal solvable ideal I ⊆ V , also known as the
radical of the n-Lie algebra V .

Definition 1.1.31. An n-Lie algebra V is said to be semisimple if it has no nonzero
solvable ideals.

In the case of Lie algebras, we know that a semisimple Lie algebra is the direct
sum of its simple ideals. The same holds for n-Lie algebras, as has been shown in
[43].

Theorem 1.1.32. An n-Lie algebra V is semisimple if and only if V is a direct sum
of simple ideals.

Proof. We present a sketch of the proof. For details we refer the reader to [43],
Theorem 2.7.

Assume that V is a direct sum of simple ideals

V = V1 ⊕ . . .⊕ Vk.

Assume there exists I a nonzero solvable ideal of V . We may as well assume that I
is the radical of V . Then, by Theorem 2.5 in [43], it follows that

I = I1 ⊕ . . .⊕ Ik,

where Ii = I ∩ Vi is the radical of the simple ideal Vi. We obtain that Ii = {0} for
every 1 ≥ i ≥ k and thus, I = {0}.
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For the converse implication, assume that the n-Lie algebra V is semisimple.
Denote by Rad the radical of the Lie algebra Der(V ) and letM := [Rad,Der(V )] ⊆
Rad. Since Rad is a solvable ideal, M is solvable as well.

Consider the ideal M(V ) of the n-Lie algebra V :

M(V ) := {D1 . . . Dk(v)|D1, . . . , Dk ∈M and v ∈ V }.

It is proven in [43] thatM(V ) is a proper solvable ideal of V . Since V is semisimple,
we obtain that M(V ) = {0} and therefore M = {0}. Thus,

Rad = Z(Der(V )).

Here Z(Der(V )) denotes the center of the Lie algebra Der(V ). It follows that the
Lie algebra Der(V ) is reductive. Lemma 1.1.4 in [43] tells us that if a derivation D
of V commutes with every inner derivation of V , then D = 0 and it commutes with
every derivation of V . By application of this lemma, we obtain that Z(Der(V )) = 0
and therefore Der(V ) is in fact semisimple.

Let I be an ideal in Der(V ) such that

Der(V ) = I ⊕ Inder(V ).

We apply again Lemma 1.1.4 in [43] and obtain that Der(V ) = Inder(V ).
Now the n-Lie algebra V is a completely reducible Der(V )-module. Hence, it

is a direct sum of irreducible submodules. These submodules are exactly the simple
ideals we are looking for.

Theorem 1.1.33. Assume the fieldK is algebraically closed. Let V be a simple n-Lie
algebra over K. Then V is of dimension n + 1. Moreover, up to isomorphism there
exists a unique simple n-Lie algebra.

Remark 1.1.34. For K = C a realization of the simple n-Lie algebra is given by the
vector space Cn+1 with the product as explained in Example 1.1.2.

Proof. For completeness of our presentation, we sketch here the proof given in [43].
For details, the reader is advised to check [43].

V is a simple n-Lie algebra. Hence, by the proof of Theorem 1.1.32, we know
that Inder(V ) = Der(V ) is a semisimple Lie algebra, that acts faithfully and irre-
ducibly on V . We denote the Lie algebra Inder(V ) by L. Moreover, by Proposition
1.1.15 and its proof, the map ad : ∧n−1V → L is a surjective Lie algebra homomor-
phism, such that the map

(v1, . . . , vn) 7→ ad(v1 ∧ . . . ∧ vn−1).vn

is alternating.
Such a triple (L, V, ad), with the properties mentioned above is called a good

triple. It is shown in [43] that there is a 1-1 correspondence between the set of simple
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n-Lie algebras and the set of good triples (L, V, ad). Thus, determining the simple
n-Lie algebras, now translates into determining the set of good triples.

This can be done by showing that each simple component of the semisimple Lie
algebra L has a simple root α with a the property that λ+ − λ− − α is a root of the
Lie algebra L. Here, λ+ is a maximal weight of the irreducible representation V and
λ− is a minimal weight of V obtained by applying the longest Weyl group element to
λ+. The number of irreducible representations V of L, with the property mentioned
above, is shown in [43] to be finite. All good triples (L, V, ad) will be found among
them. Assuming that L is semisimple, but not simple, with the property above, leads
to the conclusion that L ∼= so(4,K) and that V is 4 dimensional, with 3-Lie bracket
given by the vector product.

It remains to investigate the case whereL is a simple Lie algebra with the property
that for some simple root α

λ+ − λ− − α

is again a root. This is done in [43] by first determining all the possible pairs (L, λ+).
Then, a case by case study completes the proof of the theorem.

Remark 1.1.35. From now on we will restrict our attention to complex n-Lie alge-
bras, i.e. we assume that K = C. The simple n-Lie algebra will be denoted by A,
while a generic n-Lie algebra will be denoted as before by V .

1.2 The simple n-Lie algebra

In this section we give a different description of the simple complex n-Lie algebra
Cn+1 and compute its basic Lie algebra.

LetA denote an (n+1)-dimensional complex vector space and 〈·, ·〉 : A×A→ C
a non-degenerate symmetric bilinear form on A. We extend this bilinear form to a
bilinear form on ∧kA (1 ≤ k ≤ n+ 1) which we denote the same

〈v, w〉 := det(〈vi, wj〉i,j),

where v = v1 ∧ . . . ∧ vk, w = w1 ∧ . . . ∧ wk ∈ ∧kA. Fix ω ∈ ∧n+1A such that

〈ω, ω〉 = 1.

On the exterior algebra of A we define the Hodge star operator

∗ : ∧kA→ ∧n+1−kA

by
v ∧ ∗w := 〈v, w〉ω.

Here v and w are as before k-vectors in ∧kA.
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Proposition 1.2.1. The vector spaceA together with the operation [·, . . . , ·] : ×nA→
A given by

[v1, . . . , vn] = ∗(v1 ∧ . . . ∧ vn)

is an n-Lie algebra.

Proof. We will show that on a well-chosen basis of A this operation coincides with
the one of Example 1.1.2.

Let {e1, . . . , en+1} ⊂ A be a basis of A such that for any 1 ≤ i, j ≤ n+ 1

〈ei, ej〉 = δi,j .

Then e1∧ . . .∧ en+1 = ±ω ∈ ∧n+1A. In case e1∧ . . .∧ en+1 = −ω we interchange
e1 and e2. Hence, {e1, . . . , en+1} is an orthonormal oriented basis of A. Now the
conclusion follows directly.

On A, fix the basis used in the proof of the proposition above: {e1, . . . , en+1} ⊂
A is orthonormal and oriented. Then, {ei ∧ ej | 1 ≤ i < j ≤ n + 1} is a basis for
∧2A. For a basis element e1 ∧ . . . ∧ êi ∧ . . . ∧ êj ∧ . . . ∧ en+1 (1 ≤ i < j ≤ n+ 1)
of the basic Lie algebra ∧n−1A we have

∗(e1 ∧ . . . ∧ êi ∧ . . . ∧ êj ∧ . . . ∧ en+1) = (−1)i+j+1ei ∧ ej .

Observe that ∗2 = id.
On ∧2A we define:

∇v1∧v2(w1 ∧ w2) = ∗∇∗(v1∧v2) ∗ (w1 ∧ w2).

A straightforward computation shows that

∇v1∧v2(w1 ∧ w2) = 〈v1, w1〉v2 ∧ w2 + 〈v1, w2〉w1 ∧ v2

+ 〈v2, w1〉w2 ∧ v1 + 〈v2, w2〉v1 ∧ w1. (1.8)

As a consequence of Equation (1.8) we obtain:

Corollary 1.2.2. The simple n-Lie algebra A is∇-skew.

We define the Lie bracket on ∧2A by [v, w] = ∗[∗v, ∗w]. Then, on basis elements
of ∧2A the Lie bracket is given by

[ei ∧ ej , ek ∧ el] = δi,kej ∧ el + δi,lek ∧ ej + δj,kel ∧ ei + δj,lei ∧ ek.

Let {ei,j := Eij − Eji|1 ≤ i < j ≤ n + 1} be a basis of the complex Lie algebra
so(n+ 1).

Proposition 1.2.3. The map ϕ : ∧2A→ so(n+ 1) given by

ei ∧ ej 7→ (−1)i+j+1ei,j

is an isomorphism of Lie algebras.
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Hence, we conclude

Corollary 1.2.4. The map ϕ ◦ ? : ∧n−1A→ so(n+ 1) given by

e1 ∧ . . . ∧ êi ∧ . . . ∧ êj ∧ . . . ∧ en+1 7→ ei,j

is an isomorphism of Lie algebras.

We use Corollary 1.2.4 above to express the generators of the ideal Q(A) ⊆
U(∧n−1A) in terms of the basis for so(n+ 1)

{ei,j |1 ≤ i < j ≤ n+ 1} ⊂ so(n+ 1).

Let v1, . . . , v2n−2 be elements of the orthonormal basis of A, namely

{v1, . . . , v2n−2} ⊂ {e1, . . . , en+1},

and use the map ϕ◦? to identify e1∧ . . .∧ êi∧ . . .∧ êj∧ . . .∧en+1 and ei,j . Equation
(1.5) now becomes:

xi,k,l,m =

{
ei,kel,m − ei,lek,m + ei,mek,l if i, k, l,m are all distinct,
0 otherwise,

where i < k < l < m ∈ {1, . . . , n+1}. Here, xi,k,l,m is just a short-hand notation of
the generator denoted before by xa1,...,a2n−2 . For the detailed computation, we refer
the reader to [14]. Later on we will need these elements expressed also in terms of
the basis of ∧2A given by {ei ∧ ej | 1 ≤ i < j ≤ n+ 1}.

Remark 1.2.5. We will see later on, that the ordering on the indices can be dropped.
Although it is not necessary, we will still assume them to be ordered.

A simple computation shows that for distinct indices i, k, l,m

xi,k,l,m = (−1)i+k+l+m((ei∧ek)(el∧em)−(ei∧el)(ek∧em)+(ei∧em)(ek∧el)).

1.2.1 A graphical interpretation of the generators of R

In order to understand the relations which generateQ(A) better, we want to represent
them graphically. On the basis {ei,j |1 ≤ i < j ≤ n+ 1} of so(n+ 1) we define the
lexicographical order:

ei1,j1 ≤ ei2,j2 ⇐⇒ i1 < i2 or (i1 = i2 and j1 ≤ j2).

If ei1,j1 ≤ ei2,j2 , we say that (i1, j1) ≤ (i2, j2). We always assume that i < j,
unless otherwise mentioned. If i > j, we can interchange them by the following
rule: ei,j = −ej,i. Taking into account that two basis elements of so(n + 1), which
are not in lexicographical order, can be reordered using the Lie bracket at the ex-
pense of some term of degree one less, it becomes easy to give a PBW-basis of
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the algebra U(∧n−1A), the universal enveloping algebra of the basic Lie algebra
∧n−1A ' so(n+ 1). Let

Uk = {e ∈ U |e = ei1,j1ei2,j2 . . . eik,jk , where (i1, j1) ≤ (i2, j2) ≤ . . . ≤ (ik, jk)},

i.e. all simple elements of degree k. Then a Poincare-Birkhoff-Witt basis is given by⋃
k Uk.

Any simple element of degree 1, i.e. some ei,j , can be represented as n + 1
ordered points with an oriented arrow going from the i’th point to the j’th. (Recall
that both i and j range from 1 to n+ 1.)

Changing the orientation of the arrow is the same as changing the order of i and
j, thus it results in a minus sign in front of the diagram. Some arbitrary product in
U(∧n−1A) can be represented similarly as n+ 1 ordered points with arcs connecting
them. Multiple arcs between the same two points are allowed, each of these arcs
having its own number above it. This number stands for the position the basis element
occupies in the product. Multiplication of such elements can be translated, in the
language of diagrams, as overlapping, where the numbers above the arrows in the
second diagram have to be shifted by a number equal to the number of arrows in the
first diagram.

In U(∧n−1A) the following commutation relations hold.

For instance, the last diagram represents the commutation relation ej,kei,k =
ei,kej,k + ej,i for i < j < k.

In view of these relations, every diagram can be rewritten in a way such that
all products are in lexicographic order. Hence, we can drop the numbers above the
arrows in a diagram.

The generators xi,j,k,l of Q(A) tell us that in any diagram intersections can be
resolved. Hence, we represent xi,j,k,l graphically as:
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.

Although this graphical interpretation does not supply much insight just yet, it
will become very useful further on.

1.3 Infinite-dimensional irreducible highest weight repre-
sentations of A

Theorem 1.1 in [14], classifies the finite-dimensional irreducible highest weight rep-
resentations of the simple n-Lie algebra A. We recover this result by classifying the
infinite-dimensional highest weight irreducible representations of A.

Definition 1.3.1. A module of the n-Lie algebra V is called a highest weight module,
if it is a highest weight module of the basic Lie algebra ∧n−1V .

Let b be a Borel subalgebra of the Lie algebra so(n+1) and let λ ∈ (b/Rad(b))∗.
Denote by V (λ) the associated Verma module of the highest weight λ. Denote by
Z(λ) the unique irreducible quotient of V (λ), with highest weight λ. The main result
of this chapter, contained in the two theorems below, gives conditions on λ, such that
Z(λ) becomes an n-Lie algebra module for the simple n-Lie algebra A.

Theorem 1.3.2. Let n ≥ 3, n+ 1 = 2N and t ∈ {1, . . . , N}. Denote by π1, . . . , πN
the fundamental weights of so(2N). Then, Z(λ) is an irreducible representation of
the simple n-Lie algebra A if and only if λ has one of the following values

xπt t = 1,
(−1− x)πt−1 + xπt 1 < t < N − 1,
(−1− x)πt−1 + xπt + xπt+1 t = N − 1,
(−1− x)πt−1 + (−1 + x)πt t = N,

where x ∈ C.

Theorem 1.3.3. Let n ≥ 3, n + 1 = 2N + 1 and t ∈ {1, . . . , N}. Denote the
fundamental weights of so(2N + 1) by π1, . . . , πN . Then, Z(λ) is an irreducible
highest weight representation of the simple n-Lie algebra A if and only if λ has one
of the following values{

xπt t = 1,
(−1− x)πt−1 + xπt 1 < t ≤ N,

where x ∈ C.

The strategy used to prove these theorems is explained in Subsection 1.4.2 below,
while the actual computations can be found in Section 1.5.
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1.4 Main idea of the proof

Our main goal for this section is to describe the strategy we will use to prove Theo-
rems 1.3.2 and 1.3.3 above. We will find irreducible, highest weight representations
of the simple n-Lie algebra A. Once this is done, it will be easy, by looking at the
highest weight, to figure out which of these representations are finite dimensional and
which are not.

The main algebraic object we will work with is the simple Lie algebra so(n+ 1)
(respectively the semi-simple one, in the case of so(4)). Its universal enveloping
algebra will be denoted as before by U(so(n + 1)). Let h be a Cartan subalgebra
of so(n + 1) and Φ the corresponding root system. We denote by Φ+ a choice of
positive roots of Φ and by Φ− the corresponding choice of negative ones. Fix λ in
h∗. Consider the left ideal of U(so(n+ 1)), I(λ), generated by all xα, with α ∈ Φ+

and all h− λ(h)1, where h ∈ H . Then

V (λ) := U(so(n+ 1))/I(λ)

is a highest weight module of so(n + 1) with highest weight λ, called the Verma
module of weight λ. The module V (λ) need not be irreducible but it has a unique
irreducible quotient. Define Z(λ) to be

Z(λ) := U(so(n+ 1))/J(λ),

where J(λ) is the unique maximal left ideal of U(so(n+1)) containing the left ideal
I(λ). Then Z(λ) is an irreducible highest weight module with highest weight λ. Our
goal is to determine for which λ ∈ h∗, Z(λ) is an irreducible module of the n-Lie
algebra A, i.e. for which λ ∈ h∗, the two-sided ideal Q(A) acts trivially on Z(λ).

1.4.1 Independence of the choice of Borel subalgebra

In this subsection we show that our result will be independent of the choice of Cartan
subalgebra and the choice of positive system. We show that for any two Borel subal-
gebras b and b′ of so(n + 1), the set of weights corresponding to these subalgebras,
such that Z(λ) is an irreducible representation of the n-Lie algebra A, are related
by an isomorphism. Note that we want Z(λ) to be an irreducible A-module and not
only an irreducible so(n+ 1)-module; as an so(n+ 1)-module, this is a well-known
result.

Let h and h′ be two Cartan subalgebras of so(n+ 1), λ ∈ h∗, λ′ ∈ (h′)∗ and Φ+

and Φ′+ two choices of positive systems. Denote by

b := h⊕
⊕
α∈Φ+

gα

and by
b′ := h′ ⊕

⊕
α∈Φ′+

gα
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the two corresponding Borel subalgebras. Let I(b, λ), I(b′, λ′) the two left ideals
corresponding to each of these Borel subalgebras (the notation now keeps track of
the Borel subalgebra as well). Denote by J(b, λ), J(b′, λ′) the maximal left ideals
of U(so(n + 1)) which include the two ideals above. By Lemma 1.1.27 above, the
problem of Z(λ), respectively Z(λ′), being an irreducible A-module translates as
Q(A) ⊆ J(b, λ), respectively Q(A) ⊆ J(b′, λ′).

Let
Λ := {α ∈ h∗|Q(A) ⊆ J(b, α)},

Λ′ := {α′ ∈ (h′)∗|Q(A) ⊆ J(b′, α′)}.
By Theorems 16.2 and 16.4 in [32] there exists an inner automorphism ϕ : so(n +
1) → so(n + 1) for which ϕ(b) = b′ and ϕ(h) = h′. Then, ϕ induces an auto-
morphism ϕ̃ : U(so(n + 1)) → U(so(n + 1)). We want the following equality to
hold:

(ϕ|h)
∗(Λ′) = Λ,

which is the same thing as

Q(A) ⊆ J(b, λ) if and only if Q(A) ⊆ J(b′, λ′),

for λ′ = (ϕ|h)
∗(λ). Since ϕ is an isomorphism, it is enough to show just one impli-

cation of the above equivalence. Assume that Q(A) ⊆ J(b, λ). Then,

Q(A) ⊆ J(b, λ)⇒ ϕ̃(Q(A)) ⊆ ϕ̃(J(b, λ)) = J(b′, λ′).

Hence, if we can show that ϕ̃(Q(A)) = Q(A) we are done. This follows automati-
cally from the fact that Q(A) is a two-sided ideal in U(so(n+ 1)) and ϕ is an inner
automorphism of so(n+ 1).

1.4.2 The strategy for the proof

From the above subsection we see that keeping track of the Borel subalgebra in the
notation of the two ideals I(b, λ) and J(b, λ) is superfluous. Hence we revert to our
original notation, used in the introduction to this section: I(λ) and J(λ).

Lemma 1.1.27 tells us that Z(λ) has an induced structure of an A-module if and
only if Q(A) ⊆ J(λ). Thus, we want to see for which λ ∈ h∗ the inclusion above
holds. The next lemma gives us a useful method for checking this inclusion.

Lemma 1.4.1. Q(A) * J(λ) if and only if Q(A) + I(λ) = U(so(n+ 1)).

Proof. Denote J ′ := Q(A) + I(λ). Then J ′ is an ideal of U(so(n+ 1)) containing
I(λ).

We prove the implication from right to left. Assume Q(A) + I(λ) 6= U(so(n +
1)); then J ′ is a proper ideal containing I(λ), and thus, by maximality of J(λ), we
have the inclusion J ′ ⊆ J(λ). We conclude that Q(A) ⊆ J(λ).

Conversely, if Q(A) ⊆ J(λ) then J ′ ⊆ J(λ)  U(so(n+ 1)) and we see that J ′

is a proper ideal.
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The equality Q(A) + I(λ) = U(so(n + 1)) is equivalent to the assertion that
1 ∈ Q(A) + I(λ), where 1 is the unit in U(so(n+ 1)). Denote

Q̂(A) := (Q(A) + I(λ))/I(λ) ⊆ V (λ) = U(so(n+ 1))/I(λ)

and
1 := 1 + I(λ).

The equality Q(A) + I(λ) = U(so(n+ 1)) is equivalent to 1 ∈ Q̂(A). Observe that
if Q(A) + I(λ) = U(so(n+ 1)) then Q̂(A) = V (λ) and the converse also holds.

Consider the projection along lower weight spaces on the highest weight space:

prλ : V (λ)→ Span1 = V (λ)λ,

where V (λ)λ denotes the 1-dimensional subspace of V (λ) with weight λ. With this
notation we obtain the following equivalence:

1 ∈ Q̂(A) if and only if there exists x ∈ Q̂(A) s.t. prλ(x) 6= 0. (1.9)

The implication from left to right is trivial, hence in order to convince ourselves that
the above equivalence holds we only need to check the converse implication.

Let x ∈ Q̂(A) with prλ(x) 6= 0, then Q̂(A) * ker(prλ). On the other hand
Ĵ(λ) = J(λ)/I(λ) ⊆ ker(prλ). Thus Q̂(A) * Ĵ(λ) and therefore 1 ∈ Q̂(A).

The next lemma is the most important one in this section.

Lemma 1.4.2. The so(n+1)-module structure onZ(λ) factors through anA-module
structure if and only if prλ(R̂) = 0, where R̂ = (R+ I(λ))/I(λ).

Proof. By the Equivalence (1.9) above and the Lemmas 1.4.1 and 1.1.27, it follows
that

Z(λ) has an induced A-module structure if and only if Q̂(A) ⊆ ker(prλ).

We will prove that the equality

prλ(Q̂(A)) = prλ(R̂)

holds, which implies the conclusion.
Since R̂ ⊆ Q̂(A), we have that prλ(R̂) ⊆ prλ(Q̂(A)).
We prove the converse inclusion. By Lemma 1.1.26, the ideal Q(A) is spanned

by elements of the form q = r · u, where r ∈ R and u ∈ U(so(n + 1)). Since the
elements xα1 . . . xαk ·1 (αi ∈ Φ− for all 1 ≤ i ≤ k) span V (λ) = U(so(n+ 1)) ·1,
we conclude that every element in Q̂(A) can be written as a sum of elements of the
form

r · xα1xα2 . . . xαk · 1,

where r ∈ R and αi ∈ Φ−.
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We prove by induction on k ≥ 0 that prλ(r · xα1xα2 . . . xαk · 1) ∈ prλ(R̂), for
all r and αi as above. For k = 0 this is clear. Assume the claim holds for k − 1 ≥ 0.
We write

prλ(r ·xα1xα2 . . . xαk ·1) = prλ([r, xα1 ]xα2 . . . xαk ·1)+prλ(xα1 ·r ·xα2 . . . xαk ·1).

Since R is a ∧n−1A ∼= so(n + 1)-module (see Lemma 1.1.25), [r, xα1 ] ∈ R and
therefore by the inductive hypothesis the first term belongs to prλ(R̂). Since λ is
the highest weight of V (λ), we have that weight(r · xα2 . . . xαk · 1) � λ and thus,
weight(xα1 · r ·xα2 . . . xαk ·1) ≺ λ. Hence, the second term is zero and this finishes
the proof.

R is a finite dimensional so(n+ 1)-module and so(n+ 1) is (semi)simple. Thus,
R is decomposable into weight spaces. If r ∈ R is such that weight(r) = µ 6= 0,
then clearly prλ(r · 1) = 0. Therefore:

Corollary 1.4.3. The so(n + 1)-module structure on Z(λ) factors through an A-
module structure if and only if prλ(r · 1) = 0, for all r ∈ R of weight 0.

1.5 A unified statement for the main theorems and the proof

In this section we will reformulate the main theorems in a single statement, not de-
pendent on the parity of n+ 1, and present the proof of this new statement.

The basic Lie algebra of the simple n-Lie algebra A is isomorphic to so(n + 1)
and we denote by h a Cartan subalgebra of this Lie algebra. Recall that our goal
is to determine for which λ ∈ h∗, the two-sided ideal Q(A) acts trivially on the
irreducible, highest weight module Z(λ). This will ensure that Z(λ) is an n-Lie
module of A. We will first introduce some new notation.

1.5.1 The Lie algebra so(n+1)

Until now, on the (n + 1)-dimensional, complex vector space A we considered the
orthonormal basis e1, . . . , en+1, the inner product 〈ei, ej〉 = δi,j and the orientation
form e1 ∧ . . . ∧ en+1. This was useful for us because of several reasons: the easy
expression of the n-ary bracket, the simple form of the generators of Q(A). It will be
useful for us, further on, to have a complex bilinear form instead of an inner product
onA and a new basis of the basic Lie algebra ∧2A ∼= so(n+1). The theory presented
here has been inspired by [38].

Denote by (·, ·) the bilinear form on A defined by

(ei, ej) = δi,j , 1 ≤ i, j ≤ n+ 1. (1.10)

To give the root basis of so(n + 1) it will be convenient to have another basis of A.
For this we need to take into account the parity of n+ 1.
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If n+ 1 = 2N , we define

v±j =
e2j−1 ∓ ie2j√

2
, j = 1, 2, . . . , N, (1.11)

then {v−N , . . . , v−1, v1, . . . , vN} forms a basis of A and

(vi, vj) = δi+j,0.

If, on the other hand, n + 1 = 2N + 1 then we need one more element, viz.
v0 := e2N+1. Then the basis of A is given by {v−N , . . . , v−1, v0, v1, . . . , vN}, and
again (vi, vj) = δi+j,0.

Hence, a basis of so(n + 1) ' ∧2A is given by elements of the form vj ∧ vk,
where −N ≤ j < k ≤ N and j, k 6= 0 if n + 1 is even. The relation between the
two bases used is given by:

vνj ∧ vµk =
1

2
(e2j−1 ∧ e2k−1 − νµe2j ∧ e2k − i(νe2j ∧ e2k−1 + µe2j−1 ∧ e2k)),

v0 ∧ vνj =
1√
2

(e2j−1 ∧2N+1 −iνe2j ∧ e2N+1).

Here ν, µ are +1 or -1. A non-degenerate, invariant, symmetric bilinear form on
∧2A ' so(n+ 1) is given by

(u1 ∧ u2, v1 ∧ v2) = (u1, v2)(u2, v1)− (u1, v1)(u2, v2).

Define
εj := ie2j−1 ∧ e2j , where 1 ≤ j ≤ N. (1.12)

Here i denotes the imaginary unit. Then εj = vj ∧ v−j and

h :=

N⊕
i=1

Cεi

is a Cartan subalgebra of the Lie algebra so(n+ 1). Let h ∈ h, then the commutator
of h and vνj ∧ vµk is:

[h, vνj ∧ vµk] = (νεj + µεk, h)vνj ∧ vµk,

[h, v0 ∧ vνj ] = (νεj , h)v0 ∧ vνj ,

while the commutator of vνj ∧ vµk and v−νj ∧ v−µk is:

[vνj ∧ vµk, v−νj ∧ v−µk] = −νεj − µεk. (1.13)

Remark 1.5.1. In order to express the roots of the Lie algebras so(2N) and so(2N+
1) in a simpler fashion we identify h∗ with h via the map

(εj , ·) 7−→ εj .
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Thus, if n+ 1 = 2N , the set of roots is given by

Φ = {±(εi ± εj)|1 ≤ i 6= j ≤ N}

and a base for this root system is given by

∆ = {ε1 − ε2, ε2 − ε3, . . . , εN−1 − εN , εN−1 + εN}. (1.14)

Hence, we obtain the following root space decomposition for so(2N):

so(2N) =
⊕

1≤j<k≤N
µ∈{+1,−1}

C(v−j ∧ vµk)⊕
⊕

1≤j≤N
Cεj ⊕

⊕
1≤j<k≤N
µ∈{+1,−1}

C(vj ∧ vµk).

If n+ 1 = 2N + 1, then the set of roots is

Φ = {±(εi ± εj)|1 ≤ i 6= j ≤ N} ∪ {±εi|1 ≤ i ≤ N},

while a base for this root system is given by

∆ = {ε1 − ε2, ε2 − ε3, . . . , εN−1 − εN , εN}. (1.15)

This allows us to give the following root space decomposition of the Lie algebra
so(2N + 1):

so(2N + 1) =
⊕

1≤j<k≤N
µ∈{+1,−1}

C(v−j ∧ vµk)⊕
⊕

1≤j≤N
C(v−j ∧ v0)⊕

⊕
1≤j≤N

Cεj

⊕
⊕

1≤j≤N
C(v0 ∧ vj)⊕

⊕
1≤j<k≤N
µ∈{+1,−1}

C(vj ∧ vµk).

The first line of the formula above contains the negative side of the root space decom-
position and the Cartan subalgebra, while on the second line just the positive side is
listed.

1.5.2 A unified statement for the main theorems

Let h := ⊕Ni=1Cεi be the Cartan subalgebra of the Lie algebra so(n+ 1) constructed
above. Consider the base of the root system of so(n+ 1) given by Equation (1.14) or
(1.15), depending on the parity of n + 1. Let λ be the highest weight of the highest
weight module Z(λ). Denote

λi := λ(εi).

Theorem 1.5.2. The highest weight, irreducible representation Z(λ) of so(n + 1)
factors through a representation of the simple n-Lie algebraA if and only if λ ∈ h∗ is
such that λ1 = λ2 = . . . = λt−1 = −1, λt = x ∈ C and λt+1 = . . . = λbn+1

2
c = 0,

for some 1 ≤ t ≤ bn+1
2 c.
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From general theory of irreducible Lie algebra representations (see for instance
Theorem 21.2 in [32]) we know that for Z(λ) to be finite-dimensional we need the
highest weight to be integral dominant. It follows that for x ∈ Z+ and t = 1 we
obtain a finite dimensional irreducible representation of A and otherwise an infinite
dimensional irreducible one. Thus, we have recovered the result in [14]. Our proof
however, will be different from the one presented there.

When stating the above theorem in terms of the fundamental weights of so(n+1),
one needs to be careful about the distinction between the two cases: n+ 1 is even or
n+ 1 is odd. This gives Theorems 1.3.2 and 1.3.3.

The rest of this section will be devoted to the proof of Theorem 1.5.2. We will
follow the strategy described by Corollary 1.4.3. Namely, with the notation as in
Subsection 1.4.2, we will determine the elements r ∈ R of h-weight zero and impose
the condition that for such elements prλ(r.1) = 0. This will lead to the necessary and
sufficient conditions on the highest weight λ such that the so(n+1)-module structure
onZ(λ) factors through anA-module structure. These conditions can be expressed as
the zero set of a set of polynomials in λ1, . . . , λbn+1

2
c. The solutions can be read in the

statement of the theorem. The proof presented below is a computational proof which
will differentiate between the two cases: n+1 is even or odd. In Subsection 1.5.5 we
will show a second method of obtaining the same polynomials which will make use
of the graphic representation of the generators of R introduced in Subsection 1.2.1.
This second method only proves the implication from left to right in Theorem 1.5.2
above. It has the advantage of working in both cases while no additional distinction
needs to be made.

1.5.3 Proof for the case: n+1 is even

First, we treat the case: n + 1 = 2N . This means that the Lie algebra ∧n−1A is
so(2N).

We want to compute the elements of R in terms of the elements vνj ∧ vµk. By
inverting the matrix which defines the vνj ∧ vµk’s in terms of the ej ∧ ek’s we obtain
the following equality.

e2j−1 ∧ e2k−1

e2j ∧ e2k

e2j ∧ e2k−1

e2j−1 ∧ e2k

 =
1

2


1 1 1 1
−1 1 1 −1
i −i i −i
i i −i −i




vj ∧ vk
v−j ∧ vk
vj ∧ v−k
v−j ∧ v−k

 (1.16)

We will avoid to write long, tedious computations, and jump ahead to the final
result. The most important piece of information is Equation (1.16) above.

Recall that xi1,i2,i3,i4 = ei1,i2ei3,i4 − ei1,i3ei2,i4 + ei1,i4ei2,i3 . This formula can
also be rewritten as:

xi1,i2,i3,i4 =
1

8

∑
σ∈S4

sgn(σ)eiσ(1),iσ(2)eiσ(3),iσ(4) .
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It follows that for any τ in S4,

xiτ(1),iτ(2),iτ(3),iτ(4)
= sgn(τ)xi1,i2,i3,i4 .

1

Therefore, if two indices are equal, the formula above tells us that xi1,i2,i3,i4 = 0.
Hence

R = Span{xi1,i2,i3,i4}1≤i1,i2,i3,i4≤2N =

= Span{1/8
∑
σ∈S4

sgn(σ)eiσ(1),iσ(2)eiσ(3),iσ(4)}1≤i1,i2,i3,i4≤2N =

= Span{1/8
∑
σ∈S4

sgn(σ)(eiσ(1)
∧ eiσ(2)

)(eiσ(3)
∧ eiσ(4)

)}1≤i1,i2,i3,i4≤2N . (1.17)

By using Equation (1.16) and Equation (1.17) we can now express the elements
xi1,i2,i3,i4 in the new basis of so(2N) introduced in Subsection 1.5.1 above.

Span{xi1,i2,i3,i4}1≤i1,i2,i3,i4≤2N =

= Span{1/2((vi ∧ vj)(vk ∧ vl)− (vi ∧ vk)(vj ∧ vl) + (vi ∧ vl)(vj ∧ vk)+
+(vk ∧ vl)(vi ∧ vj)− (vj ∧ vl)(vi ∧ vk) + (vj ∧ vk)(vi ∧ vl))},

where i ≤ j ≤ k ≤ l range from −N to N excluding 0 and the product in the
expression above is the product in U(so(2N)).

We denote an element expressed in this notation by vi,j,k,l(α, β, γ, δ), where
α, β, γ and δ represent the signs of the indices. Hence, we may assume 1 ≤ i ≤
j ≤ k ≤ l ≤ N .

Recall that xa,b,c,d is zero as soon as any two indices are equal. Without loss of
generality we may assume that 1 ≤ a ≤ b ≤ c ≤ d ≤ 2N . For va,b,c,d(α, β, γ, δ) this
fact does not hold anymore, i.e. if any two indices are equal then va,b,c,d(α, β, γ, δ)
is zero if and only if the corresponding signs are also equal.

Under the action of so(2N) on R all the 6 terms in the expression of the ele-
ment va,b,c,d(α, β, γ, δ) have the same h-weight. We compute this weight for (vαa ∧
vβb)(vγc ∧ vδd). Let εi ∈ h. Then

[εi, (vαa ∧ vβb)(vγc ∧ vδd)] =

[εi, vαa ∧ vβb](vγc ∧ vδd) + (vαa ∧ vβb)[εi, vγc ∧ vδd] =

(α(εa, εi) + β(εb, εi))(vαa ∧ vβb)(vγc ∧ vδd)+
(γ(εc, εi) + δ(εd, εi))(vαa ∧ vβb)(vγc ∧ vδd) =

(α(εa, εi) + β(εb, εi) + γ(εc, εi) + δ(εd, εi))(vαa ∧ vβb)(vγc ∧ vδd).

Thus, we obtain the weight

weight(va,b,c,d(α, β, γ, δ)) = αεa + βεb + γεc + δεd,

This proves the following lemma.
1This proves Remark 1.2.5.
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Lemma 1.5.3. The subspace R0 ⊂ R of elements of h-weight zero for the action of
so(2N) on R is spanned by the elements va,b,c,d(α, β, γ, δ) with a = b, c = d and
α = γ = 1, β = δ = −1.2

Thus, R0 is spanned by the elements of the form:

va,a,c,c(1,−1, 1,−1) =

1

2
((va ∧ v−a)(vc ∧ v−c)− (va ∧ vc)(v−a ∧ v−c) + (va ∧ v−c)(v−a ∧ vc)+

+ (vc ∧ v−c)(va ∧ v−a)− (v−a ∧ v−c)(va ∧ vc) + (v−a ∧ vc)(va ∧ v−c)).

By using that vj ∧ vνk · 1 = 0 (for all 1 ≤ j < k ≤ N and ν ∈ {+1,−1}) and
Equation (1.13), we can compute prλ(va,a,c,c(1,−1, 1,−1) · 1).

va,a,c,c(1,−1, 1,−1) · 1 =

1

2
(2εaεc + (−εa + εc)− (−εa − εc)) · 1 =

(εaεc + εc) · 1

Since h · 1 = λ(h)1 for all h ∈ h, we obtain that

prλ(va,a,c,c(1,−1, 1,−1) · 1) = λ(εc)(λ(εa) + 1) = λc(λa + 1).

Corollary 1.5.4. The space R0 ⊂ R, of elements of h-weight zero, has the property
that prλ(R0.1) = 0 if and only if for all 1 ≤ a < c ≤ 2N the equality λc(λa+1) = 0
holds.

By combining this corollary with Corollary 1.4.3 we obtain:

Corollary 1.5.5. The so(n + 1)-module structure on Z(λ) factors through an A-
module structure if and only if for all 1 ≤ a < c ≤ 2N we have that the following
equality holds

λc(λa + 1) = 0.

The Corollary 1.5.5 above also implies Theorem 1.5.2 for the case when n+ 1 is
even.

1.5.4 Proof for the case: n+1 is odd

Next, we treat the case: n + 1 = 2N + 1. Our basic Lie algebra ∧n−1A is now the
Lie algebra so(2N+1) with basis given by elements of the form vi∧vj , where i < j
are contained in the set {−N, . . . , 0, . . . , N}.

2Recall that a ≤ b ≤ c ≤ d and that the equality of 3 consecutive indices is not possible. Observe
that for different choices of signs, the resulting generator gets multiplied by ±1.
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We will apply the same strategy as in the ”n+ 1-even” case, namely: rewrite the
elements of R in terms of the elements above, and afterwards find those which have
weight zero under the action of so(2N + 1).

Observe first that the elements vνj ∧ vµk have the same definition as in the previ-
ous case. This proves that:

Span{xi1,i2,i3,i4}1≤i1,i2,i3,i4≤2N =

Span{(vαa ∧ vβb)(vγc ∧ vδd) + (vαa ∧ vδd)(vβb ∧ vγc)− (vαa ∧ vγc)(vβb ∧ vδd)+
+ (vγc ∧ vδd)(vαa ∧ vβb) + (vβb ∧ vγc)(vαa ∧ vδd)− (vβb ∧ vδd)(vαa ∧ vγc)},

where 1 ≤ a, b, c, d ≤ N and α, β, γ, δ ∈ {±1}. As before, the elements in the set
on the right-hand-side will be denoted by va,b,c,d(α, βγ, δ).

This shows that if all indices involved in xa,b,c,d are strictly less than 2N+1, then
the ”weight-zero” relations are those obtained in the ”n + 1-even” case. Moreover,
the following lemma proves that these are indeed all ”weight-zero” relations in R.

Lemma 1.5.6. The set R0 of elements of h-weight zero in R is spanned by the ele-
ments va,b,c,d(α, β, γ, δ) with a = b < c = d < 2N + 1 and α = γ = 1, β = δ =
−1.

Proof. It follows from the results in Subsection 1.5.3 thatR0 contains the given span,
which is also the span of the elements xa,b,c,d with 1 ≤ a ≤ b ≤ c ≤ d < 2N + 1.

Suppose that R0 strictly contains the mentioned span. Then there would exist a
sequence 1 ≤ a ≤ b ≤ c ≤ d = 2N + 1 such that xa,b,c,d has a ”weight-zero”
component.

By inverting the matrix which defines the elements v0∧va and v−a∧v0 we obtain
that:

e2a−1+α ∧ e2N+1 =
1√
2

∑
ν∈{−1,1}

(iν)αv0 ∧ vνa,

where α ∈ {0, 1}. This gives us the following equality:

x2a−1+α,2b−1+β,2c−1+γ,2N+1 =

1

4
√

2

∑
ν,µ,ω∈{1,−1}

(iν)α(iµ)β(iω)γ ·

(
(vνa ∧ vµb)(v0 ∧ vωc) + (v0 ∧ vνa)(vµb ∧ vωc)− (vνa ∧ vωc)(v0 ∧ vµb)

+ (v0 ∧ vωc)(vνa ∧ vµb) + (vµb ∧ vωc)(v0 ∧ vνa)− (v0 ∧ vµb)(vνa ∧ vωc)
)
.

In this sum the term with indices 0, νa, µb, ωc has weight νεa + µεb + ωεc. For
a particular choice of ν, µ, ω this weight must be zero. This in turn implies that
a = b = c and ν + µ+ ω = 0, which is clearly impossible.

As in Subsection 1.5.3 we now conclude that Corollary 1.5.5 holds also in this
case. This proves Theorem 1.5.2 for n+ 1 is odd.
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1.5.5 The graphical method

In the following we will demonstrate another way of obtaining the same polynomials,
by making use of the graphical language developed in Subsection 1.2.1.

By the definition of the ideal I(λ), it follows that in V (λ) the elements vj ∧ vk.1
and vj∧v−k.1 (j < k) are zero. We use the graphical representation of these elements
to obtain the following equalities:

vj ∧ vk.1 =
1

2
(− + − i − i ).1 = 0,

vj ∧ v−k.1 =
1

2
(− − + i − i ).1 = 0.

Remember that we chose j < k and observe that in these equalities the four points
are labeled 2j − 1, 2j, 2k − 1, 2k.

The computations presented below, should be seen as taking place in U(so(n +
1))/(Q(A) + I(λ)).

Remark 1.5.7. Note that we assume here that Q(A)+ I(λ)  U(so(n+1)), i.e. the
so(n+ 1)-module structure on Z(λ) factors through an A-module structure.

By adding and subtracting the two equalities above we obtain the following two
relations:

= −i ,

= i .

They tell us that if an arc connects two points in the diagram which have different
parities, then we can shift the left leg of the arc, such that the result is an arc between
two points of the same parity. By doing this we acquire either +i or −i in front of
the diagram.

The ideal I(λ) is a left ideal, hence:

( − i )( − i ) = 0

and

( + i )( + i ) = 0.

Recall that the Cartan subalgebra h of so(n+1) was defined as
⊕N

i=1Cεi, where
εj = ie2j−1,2j = i (a simple diagram with one arc connecting the points 2j − 1
and 2j). The element εj acts on the highest weight vector by multiplication with
λ(εj), which we agreed to denote by λj . Using this fact we compute the action of the
products above on the highest weight vector 1.
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The first equality becomes:

0 = ( − i )( − i ) =

= − − i( + ) =

= − i( + ) =

= (i )(−i )− i( + ) =

= −λjλk − i( + ),

while the second can be rewritten as:

0 = ( + i )( + i ) =

= − + i( + ) =

= + i( + ) =

= (i )(−i ) + i( + ) =

= −λjλk + i( + ) =

= −λjλk − 2λk + i( + ).

Summing up, we obtain the following equation:

−2λjλk − 2λk = 0,

hence the same polynomials in λ:

λk(λj + 1) = 0.

1.5.6 A third method for the smallest case

In this subsection we consider the case n + 1 = 4. Then A is the simple 3-Lie
algebra and its basic Lie algebra is so(4). We will present a third method for ob-
taining the possible highest weights such that the representation of so(4) on Z(λ) =
U(so(4))/J(λ) factors through a representation of A on Z(λ).
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Unlike before, so(4) is not a simple Lie algebra, but it is isomorphic to sl(2) ⊕
sl(2). Our approach will be to find the two sl(2)’s sitting inside so(4) and compute
the setR, generatingQ(A), in terms of the elements of these two simple Lie algebras.
We will then impose the condition that R acts trivially on the highest weight module
Z(λ).

In the notation of Subsection 1.5.1 define

x1 = iv1 ∧ v−2 y1 = iv−1 ∧ v2 x2 = iv1 ∧ v2 y2 = iv−1 ∧ v−2.

Then
[x1, y1] = ε1 − ε2 =: h1 and [x2, y2] = ε1 + ε2 =: h2,

while [x1, y2] = [x2, y1] = 0. We obtain in this manner the two sl(2)’s sitting inside
so(4), namely Span{x1, h1, y1} and Span{x2, h2, y2}.

In the notation of Section 1.2, the generating setR of the two-sided idealQ(A) ⊂
U(so(4)) is spanned by the element:

X : = x1,2,3,4 = e12e34 + e14e23 − e13e24 =

= (e1 ∧ e2)(e3 ∧ e4) + (e1 ∧ e4)(e2 ∧ e3)− (e1 ∧ e3)(e2 ∧ e4).

We express this generator in terms of the elements x1, h1, y1, x2, h2, y2. Since h1 =
ε1 − ε2 and h2 = ε1 + ε2 it follows that

e12 =
h1 + h2

2i
and e34 =

h2 − h1

2i
.

By using Equation (1.16) we obtain

e23 =
1

2
(x1 + x2 − y1 − y2),

e14 =
1

2
(−x1 + x2 + y1 − y2),

e13 =
−1

2i
(x1 + x2 + y1 + y2),

e24 =
1

2i
(−x1 + x2 − y1 + y2),

which in turn gives us:

e14e23 − e13e24 =
h1 + 2y1x1 − h2 − 2y2x2

2
.

The element X is thus given by:

X =
h2

1 − h2
2

4
+
h1 − h2

2
+ y1x1 − y2x2.
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Let µ1, µ2 ∈ C and let Z(µ1, µ2) be a highest weight irreducible module for the
Lie algebra so(4), of highest weight µ determined by µ(hi) = µi, (i = 1, 2). Let 1 be
the highest weight vector of Z(µ1, µ2). For this module to be a module for the simple
3-Lie algebra A we want the element X to act trivially on 1. Since hj · 1 = µj1 for
all j ∈ {1, 2} and xj · 1 = 0, we can conclude that X acts on 1 as:

µ2
1 − µ2

2

4
+
µ1 − µ2

2
.

We observe that

X.1 = 0⇔ µ2
1 − µ2

2

4
+
µ1 − µ2

2
= 0⇔ (µ1 + 1)2 = (µ2 + 1)2.

Hence, we have obtained two solutions, namely

µ1 = µ2 and µ1 + µ2 = −2.

Thus, Z(µ1, µ2) = Z(µ1) ⊗ Z(µ2) is a 3-Lie algebra module if either both
weights coincide, or their sum is -2.

There still remains the matter of determining λ1 and λ2 (in the notation previously
used). The formulas for h1 and h2 tell us that µ1 = λ1 − λ2 while µ2 = λ1 + λ2. If
µ1 = µ2 we obtain that λ2 = 0 and if µ1 +µ2 = −2 we obtain the solution λ1 = −1.
These are precisely the solutions of the polynomial λ2(λ1 + 1) = 0.

1.6 Primitive ideals

In this section we present a corollary to Theorem 1.5.2. Namely, we determine which
primitive ideals of the universal enveloping algebra U(∧n−1A) are also primitive
ideals of U(A).

For Lie algebras, primitive ideals are defined to be two sided ideals of the uni-
versal enveloping algebra, which are annihilators of irreducible representations. It
makes sense to define them in an analogous way in the case of n-Lie algebras.

Definition 1.6.1. Let V be an n-Lie algebra and U(V ) its universal enveloping al-
gebra. A two-sided ideal of U(V ) is called primitive if it is the annihilator of some
irreducible module of V .

Let M be an irreducible module of the n-Lie algebra V . The annihilator of
this module, Ann(M), is by definition a primitive ideal of U(V ). By Corollary
1.1.21 and Proposition 1.1.22 M is an irreducible module of the basic Lie algebra
∧n−1V annihilated by the action ofQ(V ) ⊂ U(∧n−1V ). Since U(V ) was defined as
U(∧n−1V )/Q(V ), we may conclude that Ann(M) is a primitive ideal of U(∧n−1V )
which contains Q(V ).

On the other hand, let I be a primitive ideal of U(∧n−1V ), such that Q(V ) ⊆ I .
Then, there exists an irreducible module of ∧n−1V , call it M , which is annihilated
by I and thus by Q(V ). This transforms M into an irreducible module of V and I
into a primitive ideal of U(V ). We conclude that:
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Lemma 1.6.2. Primitive ideals of U(V ) are in 1− 1 correspondence with the prim-
itive ideals of U(∧n−1V ) which contain Q(V ).

Let b be a Borel subalgebra of ∧n−1V and h ⊂ b a Cartan subalgebra. Denote,
as before, by Z(λ) the irreducible highest weight module of highest weight λ ∈ h∗.
It was proven in [8], by M. Duflo, that a primitive ideal I of the universal enveloping
algebra U(∧n−1V ) is the annihilator of the module Z(λ), for some highest weight λ.

Hence, the problem of determining the primitive ideals of U(A), can be reformu-
lated as determining the highest weight, irreducible representations of A.

Let Z(λ) be such a module, and denote by Ann(Z(λ)) its annihilator. For
Ann(Z(λ)) to be a primitive ideal ofU(A), we would need thatQ(A) ⊆ Ann(Z(λ)),
i.e. Q(A) acts trivially on Z(λ). Hence, in order to find the primitive ideals of U(A),
we want to find those weights λ, such that Q(A) ⊆ Ann(Z(λ)). These are precisely
the weights we have determined in the previous sections. Hence, we have already
proved the following theorem.

Theorem 1.6.3. Let I be a primitive ideal of U(A). Then I = Ann(Z(λ)) for some
λ as in Theorem 1.3.2 or Theorem 1.3.3, depending on the parity of n+ 1.

As an example, we will show that the Joseph ideal is a primitive ideal of U(A).
We fix n > 3.

Definition 1.6.4. Let g be a semisimple Lie algebra and denote by U(g) its universal
enveloping algebra. A two-sided ideal I of U(g) is said to be completely prime if for
all a, b ∈ U(g):

ab ∈ I ⇒ a ∈ I or b ∈ I.

In [33], Joseph constructed a primitive, completely prime ideal in U(so(n + 1))
(or more generally in the universal enveloping algebra of a simple complex Lie al-
gebra) corresponding to the closure of the minimal nilpotent orbit of the coadjoint
action; and computed its infinitesimal character. This ideal, called the Joseph ideal,
will be denoted by J .

Proposition 1.6.5. J is a primitive ideal of U(A).

The rest of this chapter contains two proofs for the proposition above. The first
proof makes use of the Theorem 1.6.3. The second proof shows through direct calcu-
lations that indeed Q(A) ⊆ J . In both proofs we will use that ∧n−1A ∼= so(n+ 1).

First proof. Since J is a primitive ideal of U(so(n + 1)) there exists an irreducible
highest weight module of so(n+ 1) of highest weight λ, denoted by Z(λ), which is
annihilated by J . According to Theorem 1.6.3, J is a primitive ideal of the universal
enveloping algebra U(A), if λ is as in Theorem 1.3.2 or Theorem 1.3.3, depending
on the parity of n+ 1.
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Recall that we denoted by π1, . . . , πN the fundamental weights of so(n+ 1), for
n+ 1 = 2N or n+ 1 = 2N + 1. Denote by ρ the sum of these fundamental weights:

ρ = π1 + . . .+ πN .

Assume first that n+ 1 is even, i.e. n+ 1 = 2N . Then, by [33, page 15]

λ+ ρ =

N−3∑
i=1

πi + πN−1 + πN .

Hence,
λ = −πN−2,

which is of the type described in Theorem 1.3.2 for x = 0 and t = N − 1.
Assume that n+ 1 is odd, i.e. n+ 1 = 2N + 1. Then, again by [33, page 15]

λ+ ρ =

N−3∑
i=1

πi +
1

2
πN−2 +

1

2
πN−1 + πN .

Hence,

λ = −1

2
πN−2 −

1

2
πN−1,

which is of the type described in Theorem 1.3.3 for x = −1
2 and t = N − 1.

Thus, we conclude that J is indeed a primitive ideal of U(A).

Second proof. We begin this proof by realizing S2(so(n + 1)) as a submodule of
U(so(n+ 1)) for the so(n+ 1)-action.

Let S(so(n+ 1)) = ⊕k≥0S
k(so(n+ 1)) be the symmetric algebra of so(n+ 1)

and denote by � its product. Denote by T k(so(n + 1)) the k-th tensor power of
so(n+ 1). Then the map Σ : Sk(so(n+ 1))→ T k(so(n+ 1)) defined by

Σ(a1 � . . .� ak) =
1

k!

∑
σ∈Sk

aσ(1) ⊗ . . .⊗ aσ(k)

is a map of so(n+ 1)-modules. Now the composition of the two maps

Σ : Sk(so(n+ 1))→ T k(so(n+ 1))

and the map of so(n+ 1)-modules given by the natural projection

p : T k(so(n+ 1))→ U(so(n+ 1))

is a map
i = p ◦ Σ : Sk(so(n+ 1))→ U(so(n+ 1))
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and by the Poincare-Birkoff-Witt Theorem we have

U(so(n+ 1)) =
⊕
k≥0

i(Sk(so(n+ 1))). (1.18)

We identify Sk(so(n+ 1)) with its image under i.
Denote by α = ε1 + ε2 the highest root of so(n + 1). Then, according to [21,

page 590], as a so(n+ 1)-module

S2(so(n+ 1)) = V (2α)⊕ V (0)⊕W,

where (see [21, page 590])
W = ⊕iV (α+ αi).

Here, the αi’s are roots in so(n + 1) perpendicular to α. The following remark is
obvious by the above decomposition of W , but important further on.

Remark 1.6.6. The complement W has no irreducible subrepresentation in common
with V (2α)⊕ V (0).

In [21] it was shown that the Joseph ideal J ⊂ U(so(n+ 1)) is equal to the ideal
generated by W and C − c0, where c0 is the eigenvalue for the Casimir C for the
infinitesimal character that Joseph obtained. Hence, in order to show that Q(A) ⊂ J
it suffices to prove that R ⊂W . The lemma below completes the proof.

Lemma 1.6.7. R ⊂W .

Proof. To prove this Lemma we first want to realize R as a subrepresentation of
S2(so(n+ 1)) for the so(n+ 1)-action.

By Equation (1.18) we can view R as sitting inside S2(so(n + 1)). Recall that
so(n+ 1) ∼= ∧2A. In the notation of Section 1.2, consider the ∧2A-module ∧4A and
the map

ψ : ∧4A→ S2(∧2A)

defined on monomials as:

ei∧ ej ∧ ek ∧ el 7→ (ei∧ ej)� (ek ∧ el)− (ei∧ ek)� (ej ∧ el) + (ei∧ el)� (ej ∧ ek).

Observe that R ∼= ψ(∧4A).
Of course, we can also define the map φ : S2(∧2A)→ ∧4A defined on monomi-

als as:
(vi ∧ vj)� (vk ∧ vl) 7→ vi ∧ vj ∧ vk ∧ vl.

It is easy to see that φ ◦ ψ = 3Id. Then, kerφ is a subrepresentation of ∧2A in
S2(∧2A), complementary to R. Hence, we have obtained the following decomposi-
tion into submodules:

S2(∧2A) = ψ(∧4A)⊕ Kerφ.

Thus, by Remark 1.6.6, in order to show thatR ⊂W , it suffices to show that V (2α)⊕
V (0) ⊆ kerφ. Let w ∈ ∧2A be a highest weight vector for the highest weight α.
Then, V (2α) is generated by w � w and the conclusion follows directly.

41



42



Chapter 2

Kostant’s convexity theorem,
parabolic subgroups and groups of
the Harish-Chandra class

LetG be a real connected semisimple Lie group with finite center andK the maximal
compact subgroup associated to some Cartan involution θ : G → G. The non-
linear convexity theorem of Kostant gives the image of a left translate of K under the
Iwasawa projection. In the next chapter we will state a generalization of this result
to semisimple symmetric spaces (or more generally, reductive symmetric spaces).
Chapter 4 below contains the proof of our convexity theorem.

This chapter serves as preparation for the next one. We start in Section 2.1 with a
brief account of the non-linear convexity theorem of Kostant. In Section 2.2 we intro-
duce parabolic subalgebras and parabolic subgroups of a real connected semisimple
Lie group G, while in Section 2.3 we give a short introduction to the theory of sym-
metric spaces. We end this chapter with the definition of a reductive group of the
Harish-Chandra class (class H) and a motivation for using this type of Lie groups,
see Section 2.4.

The theory in this chapter can be found, among other places, in [36] and [55].
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2.1 Basic structure theory of semisimple Lie groups

In this section we discuss some of the basic structure theory of semisimple Lie
groups. In particular, it is our aim to explain here the Iwasawa decomposition of a
real connected semisimple Lie group G and Kostant’s non-linear convexity theorem.

We denote by g a real Lie algebra. Recall that the symmetric bilinear form

B : g× g→ g

defined by
B(X,Y ) = Tr(adXadY ), for all X,Y ∈ g

is called the Killing form on g. The Lie algebra g is said to be semisimple if it is
the sum of its simple ideals. Cartan’s criterion for semisimplicity says that the Lie
algebra g is semisimple if and only if its Killing form is non-degenerate. The Lie
algebra g is said to be reductive if it is the direct sum of two subalgebras, an abelian
one and a semisimple one.

Example 2.1.1. Denote by sl(n,R), n ≥ 2, the set of n-by-n matrices with real
entries and trace zero. Then sl(n,R) is a semisimple Lie algebra and its Killing form
is given by B(X,Y ) = 2nTr(XY ).

Definition 2.1.2. A real Lie group G is said to be semisimple if its Lie algebra g is
semisimple.

Example 2.1.3. Let SL(n,R), n ≥ 2, be the set of n-by-n matrices with real en-
tries and determinant 1. Then SL(n,R) is a semisimple Lie group with Lie algebra
sl(n,R).

Let G be a real connected semisimple Lie group and denote by g its Lie algebra.
A map θ : g → g is said to be an involution on g if θ is a Lie algebra automorphism
such that θ2 = id. An involution θ : g → g is called a Cartan involution if the
symmetric bilinear form

〈U, V 〉 := −B(U, θV ) (U, V ∈ g) (2.1)

is positive definite.

Example 2.1.4. Denote by g the Lie algebra of Example 2.1.1, g = sl(n,R). Let
θ : g→ g be the map given by

θ(X) = −XT . (2.2)

Then θ is a Cartan involution on g.
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It is known that every semisimple Lie algebra g has such a Cartan involution (see
Corollary 6.18 in [36]). Moreover, all Cartan involutions on g are conjugate under
Int(g) (see Corollary 6.19 in [36]).

Let θ : g → g be a Cartan involution on the semisimple Lie algebra g. Then, θ
has two eigenvalues, ±1, and it yields the eigenspace decomposition

g = k⊕ p,

where k denotes the +1-eigenspace and p the −1-eigenspace of g. This decomposi-
tion is known as the Cartan decomposition of the Lie algebra g.

Example 2.1.5. For the semisimple Lie algebra g = sl(n,R) and the Cartan involu-
tion given by (2.2) the +1-eigenspace is given by

k := {X ∈ sl(n,R)|X = −XT } = so(n,R),

while the -1-eigenspace w.r.t. θ equals

p := {X ∈ sl(n,R)|X = XT }.

The Cartan decomposition tells us that every matrix in the Lie algebra sl(n,R) is the
sum of two matrices with trace 0: a symmetric one and a skew-symmetric one.

The Cartan decomposition g = k ⊕ p has the special property that the Killing
form is negative definite on k and positive definite on p. Furthermore k and p are
orthogonal w.r.t the Killing form.

Let K denote the subgroup of G with Lie algebra k,

K := 〈exp k〉.

The subgroup K is compact if and only if the center of G is finite, |Z(G)| < ∞.
Moreover, if K is compact then K is maximally compact and any other maximally
compact subgroup of G is conjugate to K (see Theorem 6.31 in [36]).

Remark 2.1.6. From now on we assume that the Lie group G has finite center.

Theorem 2.1.7 (Cartan decomposition). Let G, K and p be as above. The mapping
K × p→ G given by

(k,X) 7→ k · expX

is a diffeomorphism.

Proof. For the proof see for instance [36, Theorem 6.31].

Example 2.1.8. As in Example 2.1.3, let G = SL(n,R). Then its Lie algebra
sl(n,R) has the Cartan decomposition

sl(n,R) = so(n,R)⊕ p,
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where p denotes the set of symmetric n-by-n matrices of trace zero. The Lie group
SL(n,R) has finite center and therefore the subgroup SO(n,R) = 〈exp so(n,R)〉
is a maximally compact subgroup. According to Theorem 2.1.7 every matrix in
SL(n,R) can be written uniquely as the product of two matrices with determinant 1:
an orthogonal one and a symmetric one with positive eigenvalues

SL(n,R) = SO(n,R)× exp p.

We define the global Cartan involution on G. Let g ∈ G. Then g can be written
uniquely as k · expX , where k ∈ K and X ∈ p. Define

Θ : G→ G by Θ(g) = Θ(k · expX) = k · exp(−X). (2.3)

It is clear that Θ is involutive, i.e. its square is the identity, and that its fixed point set
is given by

GΘ = K.

Moreover, Θ is a Lie group automorphism and its differential at the identity equals
the Cartan involution θ : g→ g

dΘ(e) = θ,

see [36, Theorem 6.31].

Remark 2.1.9. For simplicity, we will denote both the global Cartan involution and
its infinitesimal counterpart by θ. It will be clear from the context which one we are
referring to.

Example 2.1.10. Consider the decomposition of SL(n,R) presented in Example
2.1.8

SL(n,R) = SO(n,R)× exp p.

Define θ : SL(n,R) → SL(n,R) by θ(x) = (xT )−1. We want to show that θ
is precisely the global Cartan involution defined by (2.3). For k ∈ SO(n,R) and
X ∈ p we compute

θ(k · expX) = ((k · expX)T )−1 = (expXT · kT )−1 = (kT )−1 · exp(−XT ).

Since k ∈ SO(n,R) we have that (kT )−1 = k, while XT = X .

Lemma 2.1.11. Let X ∈ p. Then the map adX : g → g is diagonalizable with real
eigenvalues.

Proof. We will show that adX is self-adjoint, where the adjoint (·)∗ is defined rela-
tive to the inner product 〈·, ·〉. We note that

〈(adθX)Y,Z〉 = −B([θX, Y ], θZ) = B(Y, [θX, θZ])

= B(Y, θ[X,Z]) = −〈Y, (adX)Z〉
= −〈(adX)∗Y, Z〉.

Hence −adX = adθX = −(adX)∗ and this implies the desired conclusion.
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Remark 2.1.12. The proof of Lemma 2.1.11 also shows that for X ∈ k the map
(adX)C : gC → gC is diagonalizable with pure imaginary eigenvalues.

Let a be a maximal abelian subspace of p, which exists because of the finite
dimensionality of p. It is unique up to conjugation by an element of K ([36, The-
orem 6.51]). By Lemma 2.1.11 above we know that any transformation in the set
{adH|H ∈ a} is diagonalizable with real eigenvalues. Since they commute, these
transformations are simultaneously diagonalizable with real eigenvalues. Accord-
ingly, a simultaneous eigenvalue or a-weight in g is a linear functional α ∈ a∗ such
that the space

gα := {X ∈ g| [H,X] = α(H)X for all H ∈ a}

is non-trivial. The set of non-zero weights we denote by Σ(g, a). The simultaneous
eigenspace decomposition is the vectorial direct sum given by

g = g0 ⊕
⊕

α∈Σ(g,a)

gα, (2.4)

where g0 = Zg(a), the centralizer of a in g. Since a is maximal abelian in p we have
that g0∩p = a, and since a is θ-stable, so is g0. Thus, g0 = m⊕a, where m = Zk(a),
the centralizer of a in k.

Definition 2.1.13. A weight α ∈ Σ(g, a) is called a root of a in g, while the corre-
sponding weight space gα is called a root space. The decomposition (2.4) is known
as the root space decomposition of the semisimple Lie algebra g.

Remark 2.1.14. The set of roots Σ(g, a) forms a root system in a∗ ([36, Lemma
6.53]). This system might be non-reduced, meaning that if α ∈ Σ(g, a) is a root,
either 1

2α or 2α might be a root of a in g as well. Let

Σ◦(g, a) := {α ∈ Σ(g, a)| 1
2
α 6∈ Σ(g, a)},

i.e. Σ◦(g, a) is the set of indivisible roots. Then

Σ(g, a) ⊆ Σ◦(g, a) ∪ 2Σ◦(g, a).

Remark 2.1.15. Denote by W (a) the Weyl group of the root system Σ(g, a). Then
the map NK(a)→ GL(a) factors through an isomorphism

NK(a)/ZK(a) 'W (a),

where NK(a) is the normalizer of a in K and ZK(a) is the centralizer of a in K for
the adjoint action of G on g.
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Example 2.1.16. Consider the Cartan decomposition of the Lie algebra sl(n,R)
given in Example 2.1.5

sl(n,R) = so(n,R)⊕ p,

where p is the set of symmetric traceless matrices in Mn(R). A maximal abelian
subspace a ⊂ p is given by

a = {H ∈ p|H is a diagonal matrix}.

Given H ∈ a, we denote by Hj the j-th diagonal entry of H . Then the root system
of a in sl(n,R) is given by

Σ(sl(n,R), a) = {αi,j | 1 ≤ i 6= j ≤ n}, (2.5)

where αi,j(H) = Hi − Hj . Observe that in this case the root system is reduced.
For a root αi,j ∈ Σ(sl(n,R), a) the corresponding root space gαi,j is spanned by the
matrix which has entry 1 in the i-th row and j-th column and 0 everywhere else.

Let Σ(P ) denote a positive system for the root system Σ(g, a) and let

nP =
⊕

α∈Σ(P )

gα.

Observe that Σ(g, a) = Σ(P )∪−Σ(P ). For the set of negative roots−Σ(P ) we will
also use the notation Σ(P̄ ). The use of the notations Σ(P ) and nP will be explained
in Section 2.2.

Remark 2.1.17. Observe that θ(gα) = g−α, for each α ∈ Σ(g, a), since θ = −id on
a.

Thus, the root space decomposition (2.4) now implies that

g = θ(nP )⊕m⊕ a⊕ nP . (2.6)

Proposition 2.1.18 (Iwasawa decomposition of Lie algebras). With the notation as
above, g decomposes as the vector space direct sum g = k⊕ a⊕ nP .

Proof. We begin by showing that the sum is indeed direct. By the decomposition
(2.6), the intersection a∩ nP is trivial and the sum a+ nP is direct. Let Y ∈ k∩ (a⊕
nP ). Then, by the definition of k and Remark 2.1.17

Y = θ(Y ) ∈ a⊕ θ(nP ).

Decomposition (2.6) now implies that Y ∈ k ∩ a and thus Y = −Y . Therefore
Y = 0.

Let X ∈ g. According to Equation (2.6) and Remark 2.1.17, we can write

X = Y +H +
∑

α∈Σ(g,a)

Xα,
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where Y ∈ m ⊂ k, H ∈ a and Xα ∈ gα. Let Xβ be an element appearing in the
sum

∑
Xα. If β ∈ Σ(P ) then Xβ ∈ nP . If on the other hand β ∈ −Σ(P ), we write

Xβ = Xβ + θXβ − θXβ . The observations that Xβ + θXβ ∈ k and that θXβ ∈ nP
(β is a negative root) finishes the proof.

Remark 2.1.19. The subalgebras a and nP of g have the properties that a is abelian,
nP is nilpotent, a⊕ nP is a solvable Lie subalgebra of g, and [a⊕ nP , a⊕ nP ] = nP .

Example 2.1.20. We continue Example 2.1.16 above. A positive system for the root
system Σ(sl(n,R)) is given by

Σ(P ) = {αi,j | 1 ≤ i < j ≤ n}.

The nilpotent subalgebra nP is the subalgebra of strictly upper-triangular matrices in
Mn(R). The Iwasawa decomposition tells us that every matrix in sl(n,R) can be
written as the sum of three traceless matrices: a skew-symmetric one, a diagonal one
and a strictly upper-triangular one.

The Iwasawa decomposition of the Lie algebra g,

g = k⊕ a⊕ nP ,

defines the projection Ea : g → a along k ⊕ nP . The linear convexity theorem of
Kostant says that for H ∈ a.

Ea(Ad(K)H) = conv(W (a) ·H), (2.7)

where ’conv’ denotes the convex hull.

Example 2.1.21. As an example of the linear convexity theorem, we discuss the easy
case of sl(2,R).

A matrix in sl(2,R) is of the form

X =

(
x a
b −x

)
and the projection Ea : sl(2,R)→ a is given by taking the diagonal. Let

k =

(
cos γ − sin γ
sin γ cos γ

)
∈ SO(2,R) and H =

(
x 0
0 −x

)
∈ a.

Then

Ea(Ad(k)H) = Ea(

(
cos γ − sin γ
sin γ cos γ

)(
x 0
0 −x

)(
cos γ sin γ
− sin γ cos γ

)
)

=

(
x(cos2 γ − sin2 γ) 0

0 −x(cos2 γ − sin2 γ)

)
.

Since cos2 γ − sin2 γ ∈ [−1, 1] and W (a) = {±id} we obtain that for every H ∈ a
the equality π(Ad(K)H) = conv(W (a) ·H) clearly holds.
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Denote by A, respectively NP , the analytic subgroup of G with Lie algebra a, re-
spectively nP . The groupsA andNP , besides being connected, are simply connected
and moreover A normalizes NP . A proof of these facts and of the theorem below can
be found in [36, Theorem 6.46].

Theorem 2.1.22 (Iwasawa decomposition of Lie groups). With the notation as above,
the multiplication map K ×A×NP → G given by (k, a, n) 7→ kan is a diffeomor-
phism.

The Iwasawa decomposition of the Lie group G tells us that as a manifold we
can decompose this Lie group as the product of three subgroups: a maximal compact
subgroup K, and abelian subgroup A and a unipotent subgroup NP . The following
example illustrates this decomposition for the Lie group SL(n,R).

Example 2.1.23. The Lie algebra sl(n,R) of the Lie group SL(n,R) has the Iwa-
sawa decomposition

sl(n,R) = so(n,R)⊕ a⊕ nP ,

where a and nP are as in Examples 2.1.16 and 2.1.20. The subgroup A of SL(n,R)
generated by a is given by the set of all diagonal matrices with positive entries and
determinant 1, while the subgroup NP consists of upper-triangular matrices with 1’s
on the diagonal. Thus, the Iwasawa decomposition for SL(n,R) is given by

SL(n,R) ' SO(n,R)×A×NP .

We are now ready to give the statement of the non-linear convexity theorem of
Kostant.

An element g ∈ G can be written in a unique way as g = kan, where k ∈ K,
a ∈ A and n ∈ NP . The Iwasawa decomposition G = KANP gives rise to the real
analytic map

HP : G→ a given by g ∈ K expHP (g)NP . (2.8)

This map is known as the Iwasawa projection. By its definition we can easily see that
the Iwasawa projection is left K-invariant and right NP -invariant, i.e. for k ∈ K and
n ∈ NP

HP (g) = HP (kgn).

Kostant’s non-linear convexity theorem ([37, Theorem 4.1]) investigates the Iwasawa
projection of a left translate of the maximal compact subgroupK. Namely, for g ∈ G,
the non-linear convexity theorem gives us the image HP (gK). By [36, Theorem
7.39], we know that g = kak′, where a ∈ A is unique up to conjugation by elements
ofW (a) and k, k′ ∈ K. Thus, HP (gK) = HP (kak′K) = HP (aK). This means that
it suffices to consider elements of the abelian subgroup A. The non-linear convexity
theorem of Kostant states that for any a ∈ A

HP (aK) = conv(W (a) · log a). (2.9)
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Here, ’conv’ stands for the convex hull. We have already mentioned that both sub-
groups A and NP are connected and simply connected. Since they are also nilpotent,
the following standard lemma tells us that the maps exp : a → A and exp : nP →
NP are diffeomorphisms. In (2.9) log denotes the inverse of the map exp : a→ A.

Lemma 2.1.24. Let N be a connected and simply connected Lie group with nilpo-
tent Lie algebra n. If n0 is a subalgebra of n, then the exponential map maps n0

diffeomorphically onto a closed subgroup of N.

Remark 2.1.25. In [26, Theorem 1.4.2] the non-linear convexity theorem of Kostant
has been reduced to the linear one by a homotopy argument.

We end this section with an example of the non-linear convexity theorem.

Example 2.1.26. Let G be the Lie group SL(3,R) with Lie algebra g = sl(3,R).
Then, the root system Σ(sl(3,R), a) is as in the figure below

−β

α

α+β

β

−α

−α−β

Figure 2.1: The root system Σ(sl(3,R), a)

and the Weyl group W (a) (which is isomorphic to the permutation group S3) is
generated by reflections in the root hyperplanes.

We identify a with a∗ via the inner product 〈·, ·〉 defined by (2.1). Let a ∈ A. Our
aim is to find the image of a left translate of SO(3,R), given by aSO(3,R), under
the map HP . According to the non-linear convexity theorem this image equals the
convex set conv(W (a) · log a), displayed below.
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log(a)

Figure 2.2: The convex hull of W (a) · log a

2.2 Parabolic subalgebras and parabolic subgroups

In this section we give a short introduction to parabolic subalgebras and parabolic
subgroups. We retain the notation introduced in Section 2.1: G, θ, K, A and NP and
their infinitesimal counterparts g, k, a and nP , where

nP :=
⊕

α∈Σ(P )

gα

for some positive choice of roots Σ(P ) ⊂ Σ(g, a).
Recall that we used the notation m := Zk(a). By Equation (2.6) we have the

decomposition
g = θ(nP )⊕m⊕ a⊕ nP .

Let X ∈ m, Y ∈ gα, for some positive root α ∈ Σ(P ), and H ∈ a. Then

[H, [X,Y ]] = [[H,X], Y ] + [X, [H,Y ]] = α(H)[X,Y ],

which shows that [m ⊕ a, nP ] ⊆ nP . We conclude that p := m ⊕ a ⊕ nP is a Lie
subalgebra of g.

Definition 2.2.1. Any subalgebra of g conjugate via Ad(G) to the subalgebra p is
called a minimal parabolic subalgebra of g.

Remark 2.2.2. Because of the Iwasawa decompositionG = KANP , we may just as
well assume that a minimal parabolic subalgebra of g is conjugate to the subalgebra
p via Ad(K).

Example 2.2.3. Consider the semisimple Lie algebra sl(n,R) with Iwasawa decom-
position

sl(n,R) = so(n,R)⊕ a⊕ nP ,

where a and nP are as in Examples 2.1.16 and 2.1.20. Let X ∈ so(n,R) be such that
[X,H] = 0 for all H ∈ a. An easy computation shows that X is the zero matrix, and
thus the minimal parabolic subalgebra p = m ⊕ a ⊕ nP is given by upper triangular
matrices with trace zero.
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Definition 2.2.4. Any subalgebra of the Lie algebra g which contains a minimal
parabolic subalgebra is called a parabolic subalgebra of g.

Remark 2.2.5 (Alternative definition). A parabolic subalgebra of the semisimple Lie
algebra g can also be defined as any subalgebra q whose complexification qC contains
a Borel subalgebra of gC, the complexification of g.

We will present a method of obtaining all parabolic subalgebras q of g which
contain the minimal parabolic subalgebra p.

Denote by ∆ ⊂ Σ(P ) the set of simple roots of the root system Σ(g, a). Fix ∆′

a subset of ∆ and define

Π = Σ(P ) ∪ (Span(∆′) ∩ Σ(g, a)).

Denote
q := m⊕ a⊕

⊕
α∈Π

gα. (2.10)

Then q is a parabolic subalgebra of g containing the minimal parabolic subalgebra p.
Moreover, any parabolic subalgebra of g containing the minimal parabolic subalgebra
p can be constructed in this manner (for a proof of this fact see [36, Lemma 7.74]).

Example 2.2.6. Let Σ(sl(n,R), a) = {αi,j | 1 ≤ i 6= j ≤ n} be the root system of
a in sl(n,R) (given in Example 2.1.16) with a choice of positive roots Σ(P ) as in
Example 2.1.20. Then, the set of simple roots is given by

∆ = {αi,i+1| 1 ≤ i ≤ n− 1}.

Every subset ∆′ of ∆ defines a parabolic subalgebra given by block-upper triangular
matrices in sl(n,R). For instance, let ∆′ = {α1,2, α2,3, αn−1,n}. Then

Span(∆′) ∩ Σ(sl(n,R), a) = {±α1,2,±α1,3,±α2,3,±αn−1,n}

and we obtain the parabolic subalgebra of sl(n,R) consisting of traceless matrices
with 0’s under the main diagonal, except for the positions (2, 1), (3, 1), (3, 2) and
(n, n− 1).

We obtain in this manner, one subalgebra for every arrangement of blocks.

By using the definition of the parabolic subalgebra q given in (2.10), we can
obtain another decomposition of q. Namely, we rewrite the decomposition (2.10) as

q = m⊕ a⊕
⊕

α∈Span(∆′)∩Π

gα ⊕
⊕

α∈Π\Span(∆′)

gα

and denote

nq :=
∑

α∈Π\Span(∆′)

gα, lq := m⊕ a⊕
⊕

α∈Span(∆′)∩Π

gα.
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Observe that lq = q ∩ θq. The parabolic subalgebra q is now the vector space direct
sum

q = lq ⊕ nq.

The subalgebra lq is a θ-stable reductive subalgebra of g. We write

lq = [lq, lq]⊕ Z(lq),

where Z(lq) denotes the center of lq. The subspaces [lq, lq] and Z(lq) are θ-stable as
well and we write

lq = (Z(lq) ∩ k)⊕ (Z(lq) ∩ p)⊕ ([lq, lq] ∩ k)⊕ ([lq, lq] ∩ p).

Denote aq := Z(lq) ∩ p and mq := (lq ∩ k)⊕ ([lq, lq] ∩ p). We obtain in this manner
the decomposition of lq as the direct sum of Lie algebras

lq = mq ⊕ aq.

We conclude that the parabolic subalgebra q decomposes as

q = mq ⊕ aq ⊕ nq. (2.11)

Definition 2.2.7. The decomposition given in (2.11) is called the Langlands decom-
position of the parabolic subalgebra q.

Remark 2.2.8. Observe that aq = ∩α∈∆′ kerα. Moreover, if q is a minimal parabolic
subalgebra of g, then the two decompositions (2.10) and (2.11) coincide.

Let M = ZK(a). Then MA = ZG(a) and it is θ-stable (since a is θ-stable). Let
x ∈MA, Y ∈ gα, for some positive root α, and H ∈ a. Then

[H,Ad(x)Y ] = [Ad(x)H,Ad(x)Y ] = Ad(x)[H,Y ] = α(H)Ad(x)Y

and we see that MA normalizes nP . We conclude that MA normalizes NP and thus

P := MANP

is a subgroup of G. Moreover, the following theorem shows that P is a closed sub-
group of G with Lie algebra p.

Theorem 2.2.9. P = NG(p) and hence P is a closed subgroup. The subgroup P
has Lie algebra p = m⊕ a⊕ nP .

Proof. For a proof the reader is advised to check [36, Proposition 7.83].

By using the Iwasawa decomposition of the group G, it can be shown that the
multiplication map M × A × NP → P is a diffeomorphism. It also follows that
K/M ' G/P .
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Definition 2.2.10. Any subgroup of G which is conjugate to P is called a minimal
parabolic subgroup of G.

Example 2.2.11. Consider the Lie group SL(n,R) with Iwasawa decomposition

SL(n,R) = SO(n,R)ANP ,

whereA is given by diagonal matrices with positive entries and determinant 1 andNP

is given by the set of upper triangular matrices with 1’s on the diagonal, as was shown
in Example 2.1.23. A simple computation shows that M = ZSO(n,R)(a) is given by
diagonal matrices with ±1 on the diagonal and determinant 1. Thus, the minimal
parabolic subalgebra P is the set of all upper triangular matrices with determinant 1.

Denote by P(A) the set of all minimal parabolic subgroups of G containing A
and let Q ∈ P(A). Then Q = MANQ, where NQ = exp nQ and nQ is the direct
sum of the root spaces corresponding to some uniquely determined positive system
Σ(Q) ⊂ Σ(g, a). The assignment Q 7→ Σ(Q) gives a bijection from P(A) to the set
of positive systems in Σ(g, a). As promised, this explains the notation Σ(P ) and nP .

Definition 2.2.12. Let Q be a subgroup of G containing a minimal parabolic sub-
group. Then Q is called a parabolic subgroup of G.

Let Q be a parabolic subgroup of G with Lie algebra q. Define

LQ = Q ∩ θQ, aQ = Z(Lie(LQ)) ∩ p,

where Lie(LQ) denotes the Lie algebra of the subgroup LQ and Z(Lie(LQ)) de-
notes the center of Lie(LQ). Put AQ = exp aQ and MQ = ZK(aQ) exp(p ∩
[Zg(aQ), Zg(aQ)]). Furthermore, let nQ be the nilpotent radical of the Lie algebra
Lie(Q) and NQ = exp nQ. Then NQ is a closed subgroup of G, called the unipotent
radical of the parabolic subgroup Q.

Theorem 2.2.13 ([55, Theorem II.6.3.10]). The multiplication maps MQ × AQ →
LQ and LQ ×NQ → Q are diffeomorphisms.

Definition 2.2.14. The subgroup LQ = MQAQ is called the θ-stable Levi component
of the parabolic subgroup Q and AQ is called the split component. We refer to the
decomposition

Q = MQAQNQ

as the Langlands decomposition of the parabolic subgroup Q.

Remark 2.2.15. The subgroupAQ is sometimes called the unique θ-stable split com-
ponent of the parabolic subgroup Q.

Let Q be some parabolic subgroup of G. It can be shown that Q ∈ P(A) if and
only if its split component is given by A. The dimension of A is called the real rank
of the Lie group G. If Q is a minimal parabolic subgroup of G with split component
A, then MQ = M and LQ = MA.

The following proposition and its proof can be found in [55, Proposition II.6.4.19].

55



Proposition 2.2.16. Let P = MPAPNP and Q = MQAQNQ be two parabolic
subgroups of G. Suppose that P ⊂ Q. Then

MP ⊂MQ, AP ⊃ AQ, NP ⊃ NQ.

We will frequently use the notation Q̄ for θ(Q) and N̄Q for θ(NQ).

2.3 Semisimple symmetric spaces

Let G be a Lie group and σ : G → G and involution on G. Let H be an open
subgroup of the fixed point set Gσ, such that Gσ◦ ⊂ H ⊂ Gσ. Here Gσ◦ denotes the
identity component of Gσ.

Definition 2.3.1. The pair (G,H) is called a symmetric pair and the homogeneous
space G/H is called a symmetric space. If the Lie group G is semisimple then the
homogeneous space G/H is called a semisimple symmetric space.

Remark 2.3.2. From now on we assume that the real Lie group G is connected,
semisimple and has finite center.

Remark 2.3.3. A symmetric space can also be defined via Riemannian geometry,
as opposed to the Lie theoretic definition given above. In Riemannian geometry a
Riemannian symmetric space is a Riemannian manifold such that at every point the
geodesic symmetry about that point is an isometry.

The example below shows how one can obtain a Riemannian symmetric space (in
the sense of Remark 2.3.3) as a special case of Definition 2.3.1. Remark 2.3.3 above
also explains the name ’symmetric space’.

Example 2.3.4. Assume the involution σ is a Cartan involution on the Lie group G.
Then the fixed point set Gσ is the maximal compact subgroup K and the symmetric
space G/K is a Riemannian symmetric space (as defined in Remark 2.3.3). The
Riemannian metric is G-invariant and given by the Ad(K)-invariant inner product
〈·, ·〉 on Te(G/K) ' g/k ' p. Let p = hK be an arbitrary point in G/K. Define

sp : G/K → G/K, sp(gK) = hσ(h−1g)K.

Then sp(p) = p and one can check that sp is the geodesic reflection in p and it is in
fact an isometry.

Let g be the Lie algebra of G. We denote the infinitesimal correspondent of σ
again by σ : g→ g. Then g has the eigenspace decomposition

g = h⊕ q,

where h denotes the +1 eigenspace and q denotes the -1 eigenspace of the involution
σ. Observe that h is the Lie algebra of the subgroup H .
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Let θ be a Cartan involution on G (and its infinitesimal counterpart, denoted the
same) which commutes with σ (the existence of which follows from [36, Theorem
6.16]). Then σθ := σ ◦ θ is an involution on g and g has a simultaneous eigenspace
decomposition with respect to the involutions σ and θ given by

g = (k ∩ h)⊕ (k ∩ q)⊕ (p ∩ h)⊕ (p ∩ q).

Here g = k⊕ p is the Cartan decomposition of the Lie algebra g determined by θ.
Denote by aq a maximal abelian subspace of p ∩ q.

Definition 2.3.5. The subgroup H is called essentially connected if the condition

H = ZK∩H(aq)H◦

is satisfied, where H◦ denotes the identity component of H .

Remark 2.3.6. Since all Cartan involutions commuting with σ are conjugate via
elements of Ad(H) and all maximal abelian subspaces of p∩q are conjugate viaK∩
H ([53, Corollary I.9]), it follows that H being essentially connected is independent
of the choice of aq.

Example 2.3.7 (The group case). Let G be a real connected semisimple Lie group
with finite center, θ be a Cartan involution on G and P a minimal parabolic subgroup
of G belonging to P(A). The Iwasawa decomposition of G with respect to θ and P
is given by

G = KANP .

Define

G′ = G×G, θ′ = θ × θ, K ′ = K ×K, A′ = A×A and N ′ = NP ×NP .

ThenG′ is a real semisimple connected Lie group with finite center and its fixed point
set under the involution

σ : G′ → G′, σ(x, y) = (y, x)

is given by H = diag(G′). Hence (G×G)/diag(G×G) is a semisimple symmetric
space. Moreover, a′ = a × a decomposes as a′ = a′h ⊕ a′q where a′h is given by
{(X,X) |X ∈ a} and a′q by {(X,−X) |X ∈ a}. According to Proposition 7.33
in [36], ZK(a) meets every connected component of G and hence, Zdiag(K×K)(a

′
q)

meets every connected component of diag(G × G). It follows that H is essentially
connected.

The map from G′/diag(G′) to G, given by

(g1, g2)H 7→ g1g
−1
2 ,

is a diffeomorphism. Hence, every semisimple Lie group G can viewed in this way
as a semisimple symmetric space. We will refer to this example as the group case.
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2.4 Groups of the Harish-Chandra classH
In the next chapters, 3 and 4, we will state and prove a convexity theorem for semisim-
ple symmetric spaces. This theorem generalizes the non-linear convexity theorem of
Kostant to this type of symmetric spaces. The proof of the theorem will at some point
use induction on the real rank of the Lie group G. More specifically, we will look at
centralizers GX := ZG(X) for certain elements X in a and apply the induction hy-
pothesis to these subgroups. For such ideas to work one needs that the subgroup GX
has the same properties as the Lie groupG. For real connected semisimple Lie groups
with finite center, the main properties of the group are not necessarily inherited by
this type of subgroups, as the next example clearly illustrates.

Example 2.4.1. Let G be the Lie group SL(3,R) with Iwasawa decomposition as in
Example 2.1.23. TakeX1 ∈ a to be the diagonal matrix (1, 1,−2). Then SL(3,R)X1

is isomorphic to the Lie groupGL(2,R), which is neither connected nor semisimple.
As a second example take X2 ∈ a to be the diagonal matrix (1,−1, 0). Then

SL(3,R)X2 is isomorphic to the abelian group (R∗, ·)× (R∗, ·) which has four con-
nected components; it as well is neither connected nor semisimple.

Hence, we need to consider a larger class of Lie groups: reductive Lie groups of
the Harish-Chandra class. We will denote this class of groups byH.

The theory presented in Sections 2.1, 2.2 and 2.3 above can be extended to the
Harish-Chandra class. We will not repeat this theory here, instead we will give the
definition of this type of groups and state a few of their many interesting properties.

Definition 2.4.2. A real Lie groupG is said to be a reductive Lie group of the Harish-
Chandra class (we write G ∈ H) if

i) its Lie algebra g is reductive,

ii) the index of the identity component G◦ of G in G is finite,

iii) Ad(G) is contained in the connected complex adjoint group Aut(gC)◦ of gC,

iv) the commutator subgroup of G has finite center; |Z([G◦, G◦])| <∞.

Example 2.4.3. Let G be a real connected semisimple Lie group with finite center.
Then G ∈ H.

Example 2.4.4. If P is a parabolic subgroup of the Lie group G, then its θ-stable
Levi component LP is a reductive Lie group of the Harish-Chandra class, according
to [55, Theorem II.6.3.13].

The next proposition and its proof can be found in [55, Proposition II.1.1].

Proposition 2.4.5.

(a) Let Gi ∈ H, 1 ≤ i ≤ n. Then G1 × . . .×Gn ∈ H.
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(b) Let G ∈ H and let H be a subgroup of G, s.t. G◦ ⊂ H ⊂ G. Then H ∈ H.

(c) Let G ∈ H. Then Ad(G) ∈ H.

The next proposition contains the main reason why we choose to work with this
class of groups. Namely, by passing to centralizers of suitable elements we obtain
subgroups, which are in their own right groups of the Harish-Chandra class. This will
allow us to use a certain induction on the dimension or the rank of the group.

Proposition 2.4.6 ([36, Proposition 7.25]). Let G be a Lie group belonging toH and
θ a Cartan involution on G. Denote by K := Gθ the maximal compact subgroup of
G and by A the unique θ-stable split component. Let X ∈ a, the Lie algebra of A.
Then GX , the centralizer of X in G, is a reductive Lie group of the Harish-Chandra
class, with maximal compact subgroup KX and associated Cartan involution given
by the restriction of θ.

The symmetric space G/H is called a reductive symmetric space of the Harish-
Chandra class if G ∈ H and H is essentially connected.

Example 2.4.7. LetG′ = G×G, whereG is a reductive group of the Harish-Chandra
class. Then the symmetric spaceG×G/diag(G×G), constructed in Example 2.3.7,
is a reductive symmetric space.
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Chapter 3

Convexity theorems for
semisimple symmetric spaces

In this chapter we generalize the non-linear convexity result of Kostant to the setting
of semisimple symmetric spaces (or more generally, reductive symmetric spaces).
Let G = KANP (where P ∈ P(A) is a minimal parabolic subgroup of G) be
a reductive Lie group of the Harish-Chandra class and H an essentially connected
open subgroup of the fixed point set Gσ of the involution σ : G → G (σ and the
Cartan involution θ, determined byK, commute). Fix a inA. It is natural to consider
the question whether the image HP (aH) is a convex subset of a. This question was
first answered in [5] for a particular kind of minimal parabolic subgroups of G. The
convexity result in [5] represents a special case of our convexity theorem.

In Section 3.1 below, we give a precise formulation of our result. We con-
tinue in Section 3.2 with a detailed exposition of the group case. We start this ex-
position in Subsection 3.2.1 with an example of our convexity result for the case
SL3(R) × SL3(R)/diag(SL3(R) × SL3(R)). In Subsection 3.2.2 we present an
independent proof for the case of the group. We end the chapter with a consequence
of the convexity theorem for the case of the group. Namely, we present an easy proof
for a well-known result about the image HP (NQ), where Q is a minimal parabolic
subgroup of G contained in P(A), see Subsection 3.2.3.
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3.1 A precise formulation of the result

In this section we give the precise statement of the convexity result. We start by
briefly recalling the notation established above.

G is a reductive Lie group of the Harish-Chandra class, σ and involution on it, and
H an open subgroup of the fixed point set Gσ. Let θ : G→ G be a Cartan involution
on G that commutes with σ. As before, K is the maximal compact subgroup of
G associated to θ (K = Gθ) and g is the Lie algebra of G. With respect to the
two corresponding involutions on g ( denoted σ and θ as well), g decomposes into
eigenspaces as

g = k⊕ p = h⊕ q.

Note that h is the Lie algebra of H and observe that since σ and θ commute, we have
that p = p ∩ h⊕ p ∩ q.

Fix a maximal abelian subspace aq of p∩ q, and a a maximal abelian subspace of
p that contains aq. Then a is σ-stable and decomposes as

a = ah ⊕ aq, (3.1)

where ah denotes the subspace a ∩ h. Let Σ(g, a) be the set of roots of a in g and
Σ(g, aq) the set of roots of aq in g. The latter set is a (possibly non-reduced) root
system as well, see e.g. [53, Proposition 10]. Its Weyl group is given by

W (aq) ' NK(aq)/ZK(aq). (3.2)

Let Σ(P ) be a positive system for Σ(g, a) and define

Σ(P, σθ) := {α ∈ Σ(P ) : σθα ∈ Σ(P )}

and
Σ(P )− := {α ∈ Σ(P, σθ) | σθα = α⇒ σθ|gα 6= idgα}. (3.3)

We use the notation prq : a→ aq for the projection of a onto aq along ah, see (3.1).
As mentioned before, it is natural to study the more general question of convexity

of the set HP (aH), a ∈ A, i.e. if this image is a convex subset of a. Before we can
state the theorem, we need to introduce some more notation and make a few remarks.

Remark 3.1.1. Note that A = Aq × Ah where Ah = A ∩H . Thus, we just need to
consider a ∈ Aq.

Remark 3.1.2. Since HP (aH) = prq ◦ HP (aH) + ah, it suffices to consider the
image of aH , a ∈ Aq, under the map

HP,q := prq ◦ HP : G→ aq.
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Let B denote an extension of the Killing form on [g, g] (the semisimple part of
the reductive Lie algebra g) to the entire algebra g, such thatB is an Ad(G)-invariant
non-degenerate symmetric bilinear form on g which is invariant under both θ and σ,
and such that B is negative definite on k and positive definite on p.

We define a positive definite inner product on g by

〈U, V 〉 := −B(U, θV ) (U, V ∈ g).

Note that the root space decomposition and the eigenspace decompositions (with
respect to θ and σ) are orthogonal with respect to this inner product. Moreover, the
extended Killing form and the inner product coincide if either U or V belongs to p.

Definition 3.1.3. The Weyl group WK∩H is defined as

WK∩H := NK∩H(aq)/ZK∩H(aq).

Let α be a root in Σ(g, a). We denote by Hα the element in a that satisfies the
conditions: α(Hα) = 2 and Hα ⊥ kerα with respect to 〈·, ·〉.

Definition 3.1.4. Let P be a minimal parabolic subgroup of G containing A. Then
we define the finitely generated polyhedral cone Γ(P ) in aq by

Γ(P ) =
∑

α∈Σ(P )−

R≥0prq(Hα).

Main Theorem (Theorem 4.10.1) Let G be a reductive Lie group of the Harish-
Chandra class, σ an involution on G and H an essentially connected open subgroup
of Gσ. Let P be any minimal parabolic subgroup containing A and a ∈ Aq. Then

HP,q(aH) = conv(WK∩H · log a) + Γ(P ),

where ’conv’ denotes the convex hull.

If the two involutions σ and θ are equal, then K = H and Σ(P, σθ) = Σ(P ).
This implies thatW (a) = WK∩H and that Σ(P )− = ∅. Thus, we obtain that Γ(P ) =
0 and hence, in this case our main theorem coincides with the original non-linear
convexity theorem of Kostant [21]. For P satisfying Σ(P, σθ) = Σ(P ) \ a∗h the
above result coincides with [5, Theorem 1.1]. This will be explained in detail in
Section 4.2.2

3.2 The group case

For this section our main goal is to present an example of the convexity theorem
stated above, Theorem 4.10.1, for the case of the group (see Example 2.3.7) and to
present an independent proof of the convexity theorem for the case of the group.
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The first part of this section should be regarded as a continuation of Example 2.3.7
presented above.

Let G′, θ′, K ′, N ′P , P , σ and H be as in Example 2.3.7. For the maximal abelian
subspace a′q of p′ ∩ q′ we may take

a′q = {(X,−X) | X ∈ a},

while a′h = a′ ∩ h is given by a′h = diag(a× a).
The root system of a′ in g′ is given by

Σ(g′, a′) = Σ(g, a)× {0} ∪ {0} × Σ(g, a).

Let Q be a minimal parabolic subgroups of G containing A, i.e. Q ∈ P(A). Then
P × Q is a minimal parabolic subgroup of G′ containing A′. Moreover any min-
imal parabolic subgroup of G′ containing A′ is of this form. The positive system
associated to P ×Q is given by

Σ(P ×Q) = Σ(P )× {0} ∪ {0} × Σ(Q),

where Σ(P ) and Σ(Q) are positive systems for Σ(g, a) corresponding to the minimal
parabolic subgroups P and Q. The corresponding negative systems we denote by
Σ(P̄ ) and Σ(Q̄).

For b = (a, a−1) an element of A′q, Theorem 4.10.1 tells us that

prq ◦ HP×Q(bH) = conv(WK′∩H · log b) + Γ(P ×Q).

In order to understand the cone Γ(P × Q), we have to determine those roots γ ∈
Σ(P × Q) for which σθ′γ ∈ Σ(P × Q). Let γ = (α, 0) be such a root. Then
α ∈ Σ(P ) and σθ′γ = (0,−α) must be an element of {0} × Σ(Q). It follows that

Σ(P ×Q, σθ′) = (Σ(P ) ∩ Σ(Q̄))× {0} ∪ {0} × (Σ(P̄ ) ∩ Σ(Q)).

Notice that there are no roots γ ∈ Σ(P ×Q) for which σθ′γ = γ.
Thus,

Γ(P ×Q) =
∑

γ∈Σ(P×Q,σθ′)

R≥0prqH
′
γ , (3.4)

where H ′γ = (Hα, 0), if γ = (α, 0), and H ′γ = (0, Hα), for γ = (0, α). The map
prq : a′ → a′q is given by

prq(U, V ) = (
U − V

2
,
V − U

2
) (3.5)

and we can show that the following Lemma holds.

Lemma 3.2.1. The following equality holds.

Γ(P ×Q) = Γ({(Y,−Y ) |Y ∈ Γa(Σ(P ) ∩ Σ(Q̄))})
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Proof. By the definition of the map prq : a′ → a′q we have that

∑
γ∈Σ(P×Q,σθ′)

R≥0prqH
′
γ =

=
∑

α∈Σ(P )∩Σ(Q̄)

R≥0(
Hα

2
,
−Hα

2
) +

∑
α∈Σ(P̄ )∩Σ(Q)

R≥0(
−Hα

2
,
Hα

2
) =

=
∑

α∈Σ(P )∩Σ(Q̄)

R≥0(
Hα

2
,
−Hα

2
) +

∑
α∈Σ(P̄ )∩Σ(Q)

R≥0(
H−α

2
,
−H−α

2
) =

=
∑

α∈Σ(P )∩Σ(Q̄)

R≥0(
Hα

2
,
−Hα

2
) +

∑
−α∈Σ(P )∩Σ(Q̄)

R≥0(
H−α

2
,
−H−α

2
) =

=
∑

α∈Σ(P )∩Σ(Q̄)

R≥0(Hα,−Hα),

which is precisely the cone Γ({(Y,−Y ) |Y ∈ Γa(Σ(P ) ∩ Σ(Q̄))}).

Hence, by identifying a′q ' a via the map (X,−X) 7→ X , we obtain (for b =
(a, a−1) ∈ A′q)

prq ◦ HP×Q(bH) = conv(WK · log a) +
∑

α∈Σ(P )∩Σ(Q̄)

R≥0Hα. (3.6)

3.2.1 A particular case of the group case

We specialize to the case where G′ = SL3(R)× SL3(R) and the infinitesimal invo-
lution θ : sl3(R) → sl3(R) is given by θ(X) = −XT . We will consider different
minimal parabolic subgroups P × Q of G′ containing A′ and investigate what our
convexity theorem gives in each case.

We may identify a ' a∗ via the inner product 〈·, ·〉. With this identification
Equation (3.6) can be rewritten as

prq ◦ HP×Q(bH) = conv(WK · log a) +
∑

α∈Σ(P )∩Σ(Q̄)

R≥0α.

Here Σ(P ) and Σ(Q) are positive systems of the root system Σ(sl3(R), a), as de-
picted in Figure 2.1.26. Fix Σ(P ) = {α, β, α+ β}.

First we consider the case Σ(Q) = Σ(P ). Then P = Q and Σ(P ) ∩ Σ(Q̄) = ∅.
Hence, there is no cone. We obtain that the image prq ◦HP×P (bH) is the convex set
conv(WK · log a).
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log(a)

Figure 3.1: The convex hull of WK · log a

Since every semisimple Lie group G, can be realized as the semisimple sym-
metric space G × G/diag(G), we recover in this fashion the convexity theorem of
Kostant.

Let Σ(Q) = {α + β, β,−α}. Then Σ(P ) ∩ Σ(Q̄) = {α}. Thus, we obtain in
this case conv(WK . log(a)) + R≥0α, as can be seen in the figure below.

Figure 3.2: The convex set conv(WK · log a) + R≥0α

If Σ(Q) = {β,−α,−(α+β)}, then Σ(P )∩Σ(Q̄) = {α, α+β}. Thus, the con-
vex cone will be generated by these roots and we obtain the result conv(WK . log(a))+
R≥0α+ R≥0(α+ β).
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Figure 3.3: The convex set conv(WK · log a) + R≥0α+ R≥0(α+ β)

Finally, we analyze the case Σ(Q) = Σ(P̄ ). This positive system corresponds
to precisely the type of minimal parabolic subgroups of G′ considered in [5]. Then
Σ(Q̄) ∩ Σ(P ) = {α, α + β, β}, and the convex cone will be spanned by all these
roots.

Figure 3.4: The convex set conv(WK · log a) + Σγ∈Σ(P )R≥0γ

3.2.2 An independent proof for the case of the group

In this section we present a simpler, computational proof for the case of the group.
This proof is inspired by the independent proof of Theorem A.1 in [5].

As in Kostant’s non-linear convexity theorem, we will investigate the image under
the composition of maps prqHP×Q of a left translate of H . We first show that it
suffices to consider elements of A′q. Namely, let (u, v) ∈ G×G. Then according to
the decomposition

G×G = (K ×K)×A′q × diag(K ×K)
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(see [17]), we may write (u, v) = (k1ag
′, k2a

−1g′). Then

prqHP×Q((u, v)diag(G×G)) =

= prqHP×Q({(k1ag
′g, k2a

−1g′g) | g ∈ G})
= prq({(HP (k1ag

′′),HQ(k2a
−1g′′)) | g′′ ∈ G})

= prq({(HP (ag′′),HQ(a−1g′′)) | g′′ ∈ G}) (3.7)

which is equal to prqHP×Q((a, a−1)diag(G × G)) and we conclude that indeed it
suffices to consider elements of A′q. Observe that

prqHP×Q((a, a−1)diag(G×G)) = prqHP×Q((a2, e)diag(G×G)).

Let a2 ∈ A and write g = ka′n as given by the Iwasawa decompositionG = KANP .
Thus, (3.7) is now equal to

= prq({(HP (a2ka′n),HQ(ka′n)) | k ∈ K, a′ ∈ A,n ∈ NP })
= prq({(HP (a2ka′),HQ(a′n)) | k ∈ K, a′ ∈ A,n ∈ NP })
= prq({(HP (a2k) + log a′,HQ(a′na′−1) + log a′) | k ∈ K, a′ ∈ A,n ∈ NP }).

(3.8)

By the definition of the map prq : a′ → a′q given in (3.5) we see that (3.8) equals

= prq({(HP (a2k),HQ(a′na′−1)) | k ∈ K, a′ ∈ A,n ∈ NP })
= prq({(HP (a2k),HQ(n′)) | k ∈ K,n′ ∈ NP })
= prq(HP (a2K)× HQ(NP )).

By identifying a′q with a via the map (X,−X) 7→ X , we obtain the following theo-
rem.

Theorem 3.2.2.

prqHP×Q((a, a−1)diag(G×G)) =
1

2
(HP (a2K)− HQ(NP )).

It is well known, see for instance Lemma 4.4.9, that

HQ(NP ) = Γa(Σ(P̄ ) ∩ Σ(Q)), (3.9)

where Γa(Σ(P̄ ) ∩ Σ(Q)) denotes the polyhedral cone in a spanned by the elements
Hα with α ∈ Σ(P̄ )∩Σ(Q). By Kostant’s non-linear convexity theorem and Equation
(3.9) we obtain that

prqHP×Q((a, a−1)diag(G×G)) = 1
2conv(W (a) · log a2)− 1

2Γa(Σ(P̄ ) ∩ Σ(Q))

= conv(W (a) · log a) + Γa(Σ(P ) ∩ Σ(Q̄)).
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Recall that we have identified a′q with a via the map (X,−X) 7→ X . Since− log a =
log a−1, we obtain that the image of (a, a−1)H under the map prq ◦ HP×Q is given
by

conv(WK′∩H · log(a, a−1)) + Γ({(Y,−Y ) |Y ∈ Γa(Σ(P ) ∩ Σ(Q̄))}),

where Γ({(Y,−Y ) |Y ∈ Γa(Σ(P ) ∩ Σ(Q̄))}) is the polyhedral cone in a′q spanned
by {(Y,−Y ) |Y ∈ Γa(Σ(P ) ∩ Σ(Q̄))}.

On the other hand, Theorem 4.10.1 tells us that for (a, a−1) ∈ A′q

prq ◦ HP×Q((a, a−1)H) = conv(WK′∩H · log(a, a−1)) + Γ(P ×Q). (3.10)

The cone Γ(P ×Q) is defined in (3.4) as

Γ(P ×Q) =
∑

γ∈Σ(P×Q,σθ′)

R≥0prqH
′
γ ,

where H ′γ = (Hα, 0), if γ = (α, 0), and H ′γ = (0, Hα), for γ = (0, α).
By Lemma 3.2.1 these two cones coincide.

Remark 3.2.3. Theorem 3.2.2 tells us that our convexity result for the case of the
group can be obtained from the original non-linear convexity theorem of Kostant and
Equation (3.9).

Conversely, we can obtain both the non-linear convexity theorem of Kostant and
Equation (3.9) by assuming that Theorem 4.10.1 holds. Namely, for the minimal
parabolic subgroup P × P (P ∈ P(A)), Theorem 3.2.2 gives

prqHP×P ((a, a−1)H) = conv(W (a) · log a),

where (a, a−1) ∈ A′q. This is precisely the non-linear convexity theorem of Kostant.
In the next subsection we will demonstrate a method of obtaining Equation (3.9)

from the group case.

3.2.3 A consequence of the group case

Although Lemma 3.2.4 is used in the proof of the convexity theorem, we can recover
it by assuming that Theorem 4.10.1 holds. In this subsection we show how this can
be done. A different proof of this equality can be found in Lemma 4.4.9 below.

By Theorem 4.10.1 we have that for (a, a−1) ∈ A′q

prq◦HP×Q((a, a−1)diag(G×G)) = conv(WK′∩diag(G×G)·log(a, a−1))+Γ(P×Q),
(3.11)

where the cone Γ(P ×Q) is defined by (3.4).
We identify a′q with a (via the map (X,−X) 7→ X) and thus, Lemma 3.2.1 gives

Γ(P ×Q) = Γa(Σ(P ) ∩ Σ(Q̄)). (3.12)
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Hence, for (a, a−1) = (e, e), Equations (3.11) and (3.12) give us

prq ◦ HP×Q(diag(G×G)) = Γa(Σ(P ) ∩ Σ(Q̄)) (3.13)

On the other hand, Theorem 3.2.2 with (a, a−1) = (e, e), gives

prqHP×Q(diag(G×G)) = −1

2
HQ(NP ). (3.14)

Since −1
2HQ(NP ) = −1

2HQ((NP ∩ N̄Q)(NP ∩NQ)) = −1
2HQ(NP ∩ N̄Q) (recall

that N̄Q := θ(NQ)), we conclude that

−1

2
HQ(NP ∩ N̄Q) = Γa(Σ(P ) ∩ Σ(Q̄)),

which is equivalent to saying that

HQ(NP ∩ N̄Q) = −2Γa(Σ(P ) ∩ Σ(Q̄)) = Γa(Σ(P̄ ) ∩ Σ(Q)).

This provides a proof of the following lemma.

Lemma 3.2.4. Let S ∈ P(A). Then the Iwasawa projection HP : G→ a restricts to
a map N̄P ∩NS → a, with image equal to the cone

Γa(Σ(P ) ∩ Σ(S̄)).
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Chapter 4

Proof of the convexity theorem

The present chapter contains the proof of the Main Theorem (Theorem 4.10.1). The
proof follows the guideline prescribed in Section 4.1 below and uses ideas in [5].
Each step of the proof is contained in a different section in this chapter. In Section
4.10 all these steps are put together in the final argumentation of the proof.

We conclude this chapter with an appendix, A. In Appendix A we give the proof
of Lemma 4.2.10 concerning the decomposition of nilpotent groups in terms of sub-
groups generated by roots.
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4.1 An outline of the proof

The proof of the main theorem follows the line of argument described below, which
is an extension of the argumentation of [5], which in turn was inspired by [26].

We first prove the theorem for a regular element a ∈ Aq. Since the map HP :
G→ a is right H ∩ P -invariant, see Lemma 4.4.1, the map

Fa : H → aq, h 7→ HP,q(ah)

factors through a map F̄a : H/H ∩ P → aq (recall that the map HP,q : G → aq

was defined in Remark 3.1.2). In order for the idea of the proof in [5] to work in
the present situation, one needs to establish properness of the map F̄a. This is done
in Section 4.4 by reducing the problem to the case of a suitable σ-stable parabolic
subgroup R combined with application of results of [5]. The established properness
implies that the image Fa(H) is closed in aq.

The considerations of Section 4.4 also lead to the constraint on the image Fa(H)
that it does not contain any line of aq, see Corollary 4.4.15.

In Section 4.5 we introduce the functions Fa,X : H → R, for X ∈ aq, defined by

Fa,X(h) = 〈X,Fa(h)〉 = B(X,Fa(h)).

Geometrically, these functions test the Iwasawa projection by linear forms on aq, and
give us constraints on the image of H under Fa. For a more detailed exposition on
Fa,X we refer the reader to [13]. Our own study of this function follows ideas in [5]
and [13].

In Section 4.6 we calculate the critical set Ca,X of the function Fa,X explicitly,
for a ∈ Areg

q and X ∈ aq. In particular, we show that this set is the union of a
finite collection Ma,X of injectively immersed connected submanifolds of H . If
Ca,X ( H, then all submanifolds in Ma,X are lower dimensional, so that Ca,X is
thin in the sense of the Baire theorem, i.e. its closure has empty interior. These
considerations allow us to show that in case Σ(g, aq) spans a∗q, the set Ca of points in
H where Fa is not submersive, is closed and thin, see Proposition 4.6.7. In particular,
we then have that

Fa(Ca) ( Fa(H). (4.1)

In Sections 4.7 and 4.8 we calculate the Hessians of Fa,X and their transversal
signatures along all manifolds fromMa,X . These calculations, which are extensive,
in particular allow us to determine all points where the transversal signatures are
definite. This in turn gives us all points where Fa,X attains local maxima and min-
ima. A main result of Section 4.8 is Lemma 4.8.14 which asserts that for every local
minimum m of the function Fa,X we have that 〈X, · 〉 ≥ m on the set

Ω := conv(WK∩H · log a) + Γ(P ). (4.2)

In Section 4.9 we prepare for the proof of the main theorem by using a limit
argument to reduce to the case of a regular element a ∈ Aq.
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The proof of the main theorem is finally given in Section 4.10. It proceeds by
induction over the rank of the root system Σ(g, aq). More precisely, for a ∈ Areg

q

the set Ca,X depends on X ∈ aq through the centralizer gX of X in g. It is shown
that Ca,X ( H implies that rk Σ(gX , aq) < rk Σ(g, aq) so that the induction hypoth-
esis holds for the centralizer GX of X in G. This allows us to determine the image
Fa(Ca,X) for such X. In particular, this leads to a precise description of the image
Fa(Ca) from which it is seen that the latter image contains the boundary of the set Ω.

In the proof we use this observation, together with the earlier obtained constraint
that the image Fa(H) does not contain a line, to conclude that Fa(H) is contained in
Ω. In particular, this implies that, for each X ∈ aq, every local minimum of Fa,X is
global.

For the converse inclusion, we first show that the image of H \ Ca under the
map Fa is a union of connected components of Ω \ Fa(Ca). The established fact
that every local minimum of Fa,X is global then allows us to show that all connected
components appear in the image, thereby completing the proof.

Finally, we wish to mention that many of our calculations have been inspired by
[26] and [13].

4.2 Some structure theory for parabolic subgroups

In this section we will construct a (minimal) parabolic subgroup in P(A), which has
a special position relative to the involution σ; it will play an important role in Section
4.4. We will also discuss some structure theory of parabolic subgroups from P(A)
and derive a useful decomposition for their unipotent radicals.

We recall that every parabolic subgroup P from P(A) has a Langlands decompo-
sition of the form given in Definition 2.2.14. Thus, by the text succeeding Definition
2.2.14, its (θ-stable) Levi component LP is given by

LP = L = MA

and the multiplication mapL×NP → P is a diffeomorphism. The opposite parabolic
subgroup P̄ is defined to be the unique parabolic subgroup from P(A) with Σ(P̄ ) =
−Σ(P ). It equals θ(P ).

4.2.1 Extremal minimal parabolic subgroups

If τ is any involution of G which leaves A invariant, then its infinitesimal version
τ : g→ g leaves a invariant, and we put

Σ(P, τ) := {α ∈ Σ(P ) : τα ∈ Σ(P )}. (4.3)

Observe that Σ(P, τ) = Σ(P ) ∩ τΣ(P ).
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Definition 4.2.1. A minimal parabolic subgroup Q ∈ P(A) is said to be h-extreme
if

Σ(Q, σ) = Σ(Q) \ a∗q. (4.4)

Starting with any minimal parabolic subgroup P ∈ P(A), we can obtain an h-
extreme minimal parabolic subgroup by changing one simple root at a time. This
process is described in Lemma 4.2.6 below.

Lemma 4.2.2. Let P ∈ P(A). Then

Σ(P ) = Σ(P, σ) t Σ(P, σθ) (disjoint union).

Proof. Let α ∈ Σ(P ). From the fact that σθα = −σα, the result follows easily.

Lemma 4.2.3. Let P ∈ P(A) and assume that

Σ(P, σ)  Σ(P ) \ a∗q.

Then there exists a P -simple root α ∈ Σ(P, σθ) with α /∈ a∗q.

Remark 4.2.4. A root α ∈ Σ(g, a) is said to be P -simple if it is simple in the positive
system Σ(P ).

Proof. Assume the contrary. Then for every simple root β ∈ Σ(P ) we have σβ =
−σθβ ∈ Σ(P ) or σθβ ∈ a∗q. In the latter case, σθβ = β. Thus we see that for any
simple root β ∈ Σ(P ) we have either σβ ∈ Σ(P ) or σβ = −β.

The set Σ(P ) is a positive system for the root system Σ(g, a). Hence, there exists
an element X ∈ a such that α(X) > 0 for all α ∈ Σ(P ). Put Xh := 1

2(X + σ(X)).
Then for every simple root β in Σ(P ) we have either σβ = −β, in which case
β(Xh) = 0, or σβ ∈ Σ(P ), in which case β(Xh) > 0. In any case, for each simple
β ∈ Σ(P ), the value β(Xh) is a nonnegative real number. Moreover, the number is
zero if and only if σβ = −β. It follows that for all α ∈ Σ(P ) we must have α(Xh) ≥
0. Moreover, if α(Xh) = 0, then we must have α ∈ a∗q. Since σθ(Xh) = −Xh and
Σ(P, σ)  Σ(P ) \ a∗q, we easily arrive at a contradiction.

Corollary 4.2.5. If P and α are as in Lemma 4.2.3, then P ′ := sα(P ) has the
following properties:

(a) Σ(P ) ∩ a∗q = Σ(P ′) ∩ a∗q ,

(b) Σ(P, σ) ( Σ(P ′, σ).

Here, sα denotes the reflection in α.

In the proof of the above corollary, we will follow the convention established in
Remark 2.1.14 to write

R◦ := {α ∈ R : 1
2 α /∈ R}

for the set of indivisible roots of any (possibly non-reduced) root system R. Further-
more, if S ⊆ R is any subset, we will write S◦ := S ∩R◦. Finally, we agree to write
Σ◦(P ) for Σ(P )◦.
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Proof. It suffices to prove (a) and (b) with everywhere Σ replaced by Σ◦. Since P ′ :=
sα(P ) with α simple in Σ(P ), we have

Σ◦(P
′) = (Σ◦(P ) \ {α}) ∪ {−α},

which implies (a).
Let β ∈ Σ◦(P ) ∩ σΣ◦(P ). Then β 6= α and σβ 6= σα. Since β and σβ both

belong to Σ◦(P
′), it follows that β ∈ Σ◦(P

′) ∩ σΣ◦(P
′). This proves the inclusion

in (b). We still need to show that equality cannot hold. This follows from the fact
that θα = −α ∈ Σ(P ′, σ).

Lemma 4.2.6. Let P ∈ P(A). Then there exists a minimal parabolic subgroupQh ∈
P(A) such that the following conditions hold:

(a) Σ(Qh) ∩ a∗q = Σ(P ) ∩ a∗q,

(b) Σ(Qh) ∩ a∗h = Σ(P ) ∩ a∗h,

(c) Σ(P, σ) ⊆ Σ(Qh, σ),

(d) Qh is h-extreme, see (4.4).

Proof. If α ∈ Σ(P ) ∩ a∗q, then σα = −α /∈ Σ(P ). Hence

Σ(P, σ) = Σ(P ) ∩ σΣ(P ) ⊆ Σ(P ) \ a∗q. (4.5)

If the above inclusion is an equality, the result holds with Qh := P. If not, then the
inclusion in (4.5) is proper and Lemma 4.2.3 guarantees the existence of a simple
root α ∈ Σ(P ) \ a∗q such that σθα ∈ Σ(P ). By applying Corollary 4.2.5 we see that
the minimal parabolic subgroup P ′ := sα(P ) satisfies the above conditions (a) and
(b), and

Σ(P, σ) ( Σ(P ′, σ). (4.6)

Put P0 = P and P1 = P ′. By applying the above process repeatedly, we obtain a
sequence of parabolic subgroups P = P0, P1, . . . , Pk satisfying

(a) Σ(Pi) ∩ a∗q = Σ(Pi+1) ∩ a∗q,

(b) Σ(Pi) ∩ a∗h = Σ(Pi+1) ∩ a∗h,

(c) Σ(Pi, σ) ( Σ(Pi+1, σ),

for 0 ≤ i < k. The process ends when for some k > 0 the condition Σ(Pk) ∩
σΣ(Pk) = Σ(Pk) \ a∗q is satisfied. The parabolic subgroup Qh = Pk satisfies all
assertions of the lemma.

Remark 4.2.7. In analogy with Definition 4.2.1, a parabolic subgroup Q ∈ P(A)
is said to be q-extreme if Σ(Q, σθ) = Σ(Q) \ a∗h. With obvious modifications in the
proof, Lemma 4.2.6 is valid with q-extreme in place of h-extreme.
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4.2.2 The convexity theorem for a q-extreme parabolic subgroup

We shall now explain why the result of [5] is a special case of the Main Theorem.
We keep the notation as above and impose that P ∈ P(A) is q-extreme, see Remark
4.2.7. Then Σ(P, σθ) = Σ(P ) \ a∗h, so that

∆+ := Σ(P, σθ)|aq

is a positive system for Σ(g, aq). For α ∈ Σ(g, aq), the root space gα is σθ-invariant;
we write gα,± for the ±1 eigenspaces of σθ|gα . Put

∆+
− = {α ∈ ∆+ : gα,− 6= 0}.

Then [5, Theorem 1.1] asserts that

HP,q(aH) = conv(WK∩H · log a) + Υ(P ),

where Υ(P ) is the finitely generated polyhedral cone in aq defined by

Υ(P ) =
∑
α∈∆+

−

R≥0Hα;

here Hα denotes the element of aq with Hα ⊥ kerα and α(Hα) = 2.

Thus, our main theorem coincides with [5, Theorem 1.1] if Γ(P ) = Υ(P ). The
latter is asserted by the following lemma.

Lemma 4.2.8. Let P ∈ P(A) be q-extreme. Then Υ(P ) = Γ(P ).

Proof. Let α ∈ Σ(P, σθ). Then α|aq is non-zero hence belongs to Σ(g, aq). More-
over,

prq(Hα) = Hα|aq
. (4.7)

As σθ restricts to the identity on aq, the a-roots α and σθα have the same restriction
to aq giving the root α|aq of ∆+. If the given a-roots are different, then the sum
gα + σθ(gα) is direct and contained in gα|aq

and we see that gα|aq ,− 6= 0, so that
α ∈ Σ(P )− and α|aq ∈ ∆+

−. On the other hand, if α = σθα, then gα = gα|aq
and

we see that α ∈ Σ(P )− if and only if α|aq ∈ ∆+
−. It follows from this argument that

Σ(P )−|aq = ∆+
−. Using (4.7) we now see that

Γ(P ) =
∑

α∈Σ(P )−

R≥0Hα|aq
=
∑
α∈∆+

−

R≥0Hα = Υ(P ).
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4.2.3 Decompositions of nilpotent Lie groups

In this subsection we give a brief survey of a number of useful results on decomposi-
tions of nilpotent Lie groups that will be needed in this chapter.

Lemma 4.2.9 ([29, Lemma IV.6.8]). Let N be a connected, simply connected nilpo-
tent Lie group with Lie algebra n. Let (ni)0≤i≤k be a strictly decreasing sequence of
ideals of n such that n0 = n, nk = 0 and

[n, ni] ⊆ ni+1 for all 0 ≤ i < k.

Let b1 and b2 be two mutually complementary subspaces of n such that ni = b1 ∩
ni + b2 ∩ ni, for all 0 ≤ i ≤ k. Then the mapping

ϕ : (X,Y )→ expX expY

is an analytic diffeomorphism of b1 × b2 onto N .

Lemma 4.2.10. Let NP be the nilpotent radical of a minimal parabolic subgroup
in P(A), nP its Lie algebra and n1, . . . , nk ⊂ nP linearly independent subalgebras
of nP that are direct sums of a-root spaces. Assume that n = n1 ⊕ . . . ⊕ nk is a
subalgebra of nP . Denote by N := exp n and by Ni := exp ni, i ∈ {1, . . . , k}, the
corresponding closed subgroups of NP . Then the multiplication map

µ : N1 × . . .×Nk → N

is a diffeomorphism.

This result is stated in [13, Lemma 2.3] for n = nP , with reference to [41]. We
need the present slightly more general version with n a subalgebra of nP . A proof of
this result can be found in Appendix A.

4.2.4 Fixed points for the involution in minimal parabolic subgroups

Let P ∈ P(A). The decomposition P = LNP induces a similar decomposition for
the intersection P ∩H . In the present subsection we present a proof for this fact, see
the lemma below.

Lemma 4.2.11. P ∩H ' (L ∩H)× (NP ∩H)

Proof. Let p be an element in P ∩ H . According to the decomposition P = LNP ,
we write p = ln. Then, σ(ln) = σ(l)σ(n) = ln and we obtain that σ(n)n−1 =
σ(l)−1l ∈ L. Since σ(NP ) = (σ(NP ) ∩ N̄P ) × (σ(NP ) ∩ NP ) we conclude that
σ(n)n−1 ∈ N̄PNP . Now, by [36, Lemma 7.64] it follows that N̄PNP ∩ L = e and
thus σ(n) = n and σ(l) = l.
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4.2.5 Decomposition of nilpotent radicals induced by the involution

In this subsection, we assume that P ∈ P(A).We will show that the unipotent radical
NP decomposes as the product of NP ∩H and a suitable closed subgroup NP,+ of
NP . To describe this subgroup, we need the existence of suitable elements of aq. As
usual, an element X ∈ aq is said to be regular for the root system Σ(g, aq) if no root
of this system vanishes on it. The set of such regular elements is denoted by areg

q . We
observe that in terms of the system Σ(g, a) this set may be described as

areg
q = {X ∈ aq : (α ∈ Σ(g, a) with α(X) = 0)⇒ α|aq = 0}. (4.8)

Lemma 4.2.12.

(a) There exists an element Zq ∈ areg
q such that α(Zq) > 0 for all α ∈ Σ(P, σθ).

(b) There exists an element Zh ∈ ah such that α(Zh) > 0 for all α ∈ Σ(P, σ).

Proof. The set

a′ := {X ∈ a : (α, β ∈ Σ(g, a) with α(X) = β(X))⇒ α = β}

is the complement of finitely many hyperplanes in a, hence open and dense. Let
a+(P ) denote the positive chamber associated with the positive system Σ(P ) for
Σ(g, a). Fix ZP ∈ a+(P ) ∩ a′. Then it is readily verified that Zq := ZP + σθ(ZP )
satisfies the requirements of (a). Likewise, the element Zh = ZP + σ(ZP ) satisfies
the requirements of (b).

Given Zq ∈ areg
q we put Σ(P,+) := {α ∈ Σ(P ) : α(Zq) > 0}. Then

nP,+ :=
⊕

α∈Σ(P,+)

gα

is a subalgebra of nP . Let NP,+ := exp n+ be the corresponding closed subgroup of
NP , see Lemma 2.1.24. Define

nP,σ :=
∑

α∈Σ(P,σ)

gα

and NP,σ as the corresponding closed subgroup.

Proposition 4.2.13. Let Zq ∈ areg
q be as in Lemma 4.2.12 (a) and letNP,+ be defined

as above. Then the multiplication map

NP,+ × (NP ∩H)→ NP

is a diffeomorphism.

The proof of this result relies on the following lemma.
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Lemma 4.2.14. Let P ∈ P(A) and let Zq ∈ areg
q be as in Lemma 4.2.12 (a). Put

Σ(P, σ,+) := {α ∈ Σ(P, σ) : α(Zq) > 0}.

Then the following statements hold:

(a) nP,σ,+ :=
∑

α∈Σ(P,σ,+) gα is a subalgebra of nP,σ,

(b) NP,σ,+ := exp nP,σ,+ is a closed subgroup of NP,σ,

(c) nP,σ = nP,σ,+ ⊕ (nP ∩ h),

(d) the multiplication map

µ : NP,σ,+ × (NP ∩H)→ NP,σ

is a diffeomorphism.

Proof. (a): Assume that α, β ∈ Σ(P, σ,+) and α + β ∈ Σ(g, a). Then α + β ∈
Σ(P, σ) and (α+ β)(Zq) > 0 so that α+ β ∈ Σ(P, σ,+). This implies (a).

Assertion (b) follows from (a) by application of Lemma 2.1.24.
Next, we prove (c). Let α ∈ Σ(P, σ,+). Then σα(Zq) < 0, which implies that

nP,σ,+ ∩ h = {0}. It follows that

nP,σ,+ ∩ (nP ∩ h) = {0}.

It remains to be shown that any X ∈ nP,σ can be written as

X = X+ +Xh,

with X+ ∈ nP,σ,+ and Xh ∈ nP ∩ h. It suffices to prove this for X ∈ gα ⊂ nP,σ.
If α(Zq) > 0, then X ∈ nP,σ,+ by definition. On the other hand if α(Zq) = 0,
then by regularity of Zq we have that α ∈ a∗h and thus gα ⊆ h, which implies that
X ∈ nP ∩ h. Finally, if α(Zq) < 0, then

X = (X + σ(X))− σ(X)

with X + σ(X) ∈ nP ∩ h and −σ(X) ∈ nP,σ,+, and we are done.
For (d) fix Zh as in Lemma 4.2.12 (b). Then for all α ∈ Σ(P, σ) we have that

vα := α(Zh) > 0. Let the set of positive real numbers thus obtained be ordered by
vα1 < vα2 < · · · < vαm . We define n0 = nP,σ, nm = 0, and for 1 ≤ i < m,

ni :=
∑

α∈Σ(P,σ)
α(Zh)>vαi

gα.

Then n1, . . . , nm is a strictly decreasing sequence of ideals in nP,σ with [n, ni] ⊆ ni+1

for 0 ≤ i < m. We note that each ni is invariant under σ. Hence, by the same
argument as in the proof of (c) we obtain that

ni = (ni ∩ nP,σ,+)⊕ (ni ∩ (nP ∩ h))
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for all 0 ≤ i ≤ m. Thus, we may apply Lemma 4.2.9 to conclude that

NP,σ ' NP,σ,+ × exp(nP ∩ h).

It remains to show that exp(nP ∩ h) = NP ∩H . This follows from the fact that

NP ∩H ⊆ {n ∈ NP : σ(n) = n} = {expX : X ∈ nP ∩ h} ⊆ NP ∩H.

This proves assertion (d).

Proof of Proposition 4.2.13. Let

nP,σθ :=
∑

α∈Σ(P,σθ)

gα

and let NP,σθ be the corresponding subgroup of NP . Then nP = nP,σθ ⊕ nP,σ and
by Lemma 4.2.10 we obtain that

NP ' NP,σθ ×NP,σ. (4.9)

We apply Lemma 4.2.14 to the second component and conclude that

NP ' NP,σθ ×NP,σ,+ × (NP ∩H).

On the other hand, nP,+ = nP,σ,+ ⊕ nP,σθ. From this we infer by application of
Lemma 4.2.10 that

NP,σθ ×NP,σ,+ ' NP,+

The result now follows.

Remark 4.2.15. For the case of an h-extreme parabolic subgroup, Proposition 4.2.13
is due to [1], where, for this special case, a different proof of the result is given.

4.3 Auxiliary results in convex linear algebra

In this section we present a few results in convex linear algebra which will be used in
Section 4.4.

Lemma 4.3.1. Let V be a finite dimensional real linear space and B ⊆ V a closed
subset, star-shaped about the origin. If B is non-compact, then there exists a v ∈
V \ {0} such that R≥0v ⊆ B.

Proof. Since B is star-shaped, we have sB = t(s/t)B ⊆ tB for all 0 < s < t.
Fix a positive definite inner product on V and let S be the associated unit sphere
centered at the origin. For s > 0 we define the compact set Cs := s−1B ∩ S. Then
s < t =⇒ Cs ⊃ Ct. As B is unbounded and starshaped, each of the sets Cs is
non-empty. It follows that the intersection

C := ∩s>0Cs

is non-empty. Let v be a point in this intersection. Then v 6= 0 and for all s > 0 we
have sv ∈ sCs ⊆ B. Hence, R≥0v ⊆ B.
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Lemma 4.3.2. Let V and W be two finite dimensional real linear spaces, p : V →
W a linear map and Γ ⊆ V a closed convex cone. Then the following assertions are
equivalent.

(a) p|Γ is a proper map.

(b) ker p ∩ Γ = {0}.

Proof. First we prove that (a) implies (b). Assume (b) doesn’t hold, i.e. there exists
v ∈ ker p ∩ Γ, v 6= 0. Then R≥0v ⊆ ker p ∩ Γ = (p|Γ)−1(0) and we obtain that
(p|Γ)−1(0) is not compact and hence p|Γ is not a proper map.

For the converse implication, assume that (a) does not hold. Then there exists a
compact set K ⊆ W , such that the set p−1(K) ∩ Γ is not compact. As the latter
set is closed, it is unbounded in V. Let K̄ be the convex hull of K ∪ {0}. Then K̄
is compact and p−1(K̄) ∩ Γ is convex, contains 0 and is unbounded in V, hence not
compact. We apply Lemma 4.3.1 and obtain that there exists v 6= 0 such that ∀t ≥ 0 :
tv ∈ p−1(K̄)∩Γ. Hence, t·p(v) ∈ K̄ for every t ≥ 0. Since K̄ is compact, it follows
that p(v) = 0 and v ∈ ker p ∩ Γ, which implies that (b) cannot hold.

Lemma 4.3.3. Let V be a finite dimensional real linear space, and Γ a closed convex
cone in V such that there exists a linear functional ξ ∈ V ∗ with ξ > 0 on Γ \ {0}.
Then the following holds.

(a) For every R > 0 the set {x ∈ Γ : ξ(x) ≤ R} is compact.

(b) The addition map a : (x, y) 7→ x+ y, Γ× Γ→ V, is proper.

Proof. Let R > 0. The set ΓR := {x ∈ Γ : ξ(x) ≤ R} is closed and convex and it
contains the origin. If v ∈ ΓR \ {0} then the half line R≥0v is not contained in ΓR.
By Lemma 4.3.1 we infer that ΓR is compact, hence (a).

We turn to (b). Assume K ⊆ V is compact. Then there exist an R > 0 such
that ξ ≤ R on K. Let (x, y) ∈ a−1(K). Then it follows that ξ(x + y) ≤ R, hence
ξ(x) ≤ R and ξ(y) ≤ R, so that (x, y) belongs to the compact set ΓR × ΓR. We
conclude that a−1(K) is a closed subset of ΓR × ΓR, hence compact.

If S is a subset of Σ(g, a) then the convex cone

Γa(S) :=
∑
α∈S

R≥0Hα.

is finitely generated, hence closed in a. Likewise,

Γaq(S) := prqΓa(S) =
∑
α∈S

R≥0 prq(Hα)

is a closed and convex cone in aq.

Corollary 4.3.4. Let P ∈ P(A). Then the following assertions are valid.
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(a) The map prq : Γa(Σ(P, σθ))→ aq is proper.

(b) The addition map a : Γaq(Σ(P, σθ))× Γaq(Σ(P, σθ))→ aq is proper.

Proof. We start with (a). In view of Lemma 4.3.2 it suffices to establish the claim
that Γa(Σ(P, σθ)) ∩ ah = 0. This can be done as follows. There exists a Y ∈ a such
that α(Y ) > 0 for all α ∈ Σ(P ). Put X := Y +σθY = Y −σ(Y ), then X ∈ aq and
〈X,Hα〉 = α(X)/2 = (α+σθα)(Y )/2 > 0 for all α ∈ Σ(P, σθ). It follows that the
linear functional ξ = 〈X, · 〉 ∈ a∗ has strictly positive values on Γa(Σ(P, σθ)) \ {0}.
Now ξ = 0 on ah and we see that the claim is valid. Hence, (a).

For (b) we proceed as follows. Let ξ be as above, then ker prq ⊆ ker ξ and we
see that ξ > 0 on Γaq(Σ(P, σθ)) \ {0}. Now use Lemma 4.3.3.

4.4 Properness of the Iwasawa projection

Let P ∈ P(A) and let HP : G → a be the Iwasawa projection defined by (2.8). Let
HP,q : G→ aq be defined as in Remark 3.1.2. The purpose of this section is to prove
that the restriction of HP,q to H factors through a proper map H/H ∩ P → aq.

We start with a simple lemma.

Lemma 4.4.1. The map HP,q|H : H → aq is leftK∩H- and right (P∩H)-invariant.

Proof. Let h ∈ H, kH ∈ K ∩ H and p ∈ P ∩ H. By the Iwasawa decomposition,
the element h may be decomposed as h = kan, with k ∈ K, a ∈ A and n ∈ NP . In
view of Lemma 4.2.11 we may decompose p = mbn′, with m ∈M ∩H, b ∈ A∩H
and n′ ∈ NP ∩H. Since MA normalizes NP and centralizes A we find

kHhp = kHkanmbn
′ = (kHkm)ab((mb)−1n(mb))n′ ∈ KabNP .

From this we deduce that

HP,q(kHhp) = prq (log a+ log b) = prq log a = HP,q(h).

It follows from the above lemma that the restriction of HP,q to H induces a
smooth map

HP,q : H/H ∩ P → aq. (4.10)

The following proposition is the main result of this section.

Proposition 4.4.2. The induced map (4.10) is proper.

In order to prove the proposition, we will reduce it to another result, Proposition
4.4.7, establishing some useful lemmas along the way.
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We fix Qh in h-extreme position and related to P as in Lemma 4.2.6. Let ZG(ah)
denote the centralizer of ah in G and define the parabolic subgroup

R := ZG(ah)NQh
. (4.11)

Let nR be the sum of the root spaces gα for α ∈ Σ(Qh, σ) = Σ(Qh) \ a∗q and
put NR := exp(nR). Then NR is σ-stable. It is readily seen that R has the Levi
decomposition R = LRNR where LR = ZG(ah) is σ-stable. Hence, R is σ-stable.
Let Σ(R) denote the set of a-roots that appear in nR.

Lemma 4.4.3. Σ(P ) ∩ Σ(R̄) ⊆ Σ(P, σθ).

Proof. Let α ∈ Σ(P ) ∩ Σ(R̄). Then α ∈ Σ(Q̄h), hence α /∈ Σ(P, σ), see Lemma
4.2.6. This implies that α ∈ Σ(P, σθ).

Let R = MRARNR be the Langlands decomposition of R. Then LR = MRAR.

Lemma 4.4.4. The multiplication map

µ : (K ∩H)× (MR ∩H)× (NR ∩H)/(NR ∩H ∩ P ) −→ H/H ∩ P,

given by (k,m, [n]) 7→ km[n] is surjective.

Proof. The map K × (lR ∩ p) × NR → G given by (k,X, n) 7→ k expXn is a
diffeomorphism. Since K, lR ∩ p and NR are σ-stable, it follows that

H = (K ∩H)(LR ∩H)(NR ∩H). (4.12)

Now LR = MRAR with MR and AR both σ-stable. Since AR ∩ H normalizes
NR ∩H , we have that

H = (K ∩H)(MR ∩H)(AR ∩H)(NR ∩H)

= (K ∩H)(MR ∩H)(NR ∩H)(AR ∩H).

This implies the result.

We equipMR∩H with the natural right-action of the closed subgroupMR∩H∩
P. The latter group acts on NR ∩H by conjugation. Moreover, since MR normalizes
NR and P normalizes NP , the conjugation action leaves the closed subgroup NR ∩
H ∩ P invariant. Accordingly, we have an induced right-action of MR ∩H ∩ P on
(NR ∩H)/(NR ∩H ∩ P ) given by

[n] ·m = [m−1nm], (m ∈MR ∩H ∩ P, n ∈ NR ∩H).

We equip (MR ∩H)× (NR ∩H)/(NR ∩H ∩ P ) with the product action by MR ∩
H ∩ P. This action is proper and free, so that the associated quotient space (MR ∩
H)×MR∩H∩P (NR ∩H)/(NR ∩H ∩ P ) is smooth.
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Lemma 4.4.5. The multiplication map of Lemma 4.4.4 induces a surjective smooth
map

µ̄ : (K ∩H)× (MR ∩H)×MR∩H∩P (NR ∩H)/(NR ∩H ∩ P )→ H/H ∩ P.

Proof. Let k ∈ K ∩H, m ∈MR ∩H and n ∈ NR ∩H. Then for p ∈MR ∩H ∩P
we have

µ(k, (m, [n])·p) = µ(k,mp, [p−1np]) = kmp(p−1np)[e] = kmn[e] = µ(k,m, [n]).

This implies that µ induces a smooth map µ̄ as described. The surjectivity of µ̄
follows from the surjectivity of µ.

Proposition 4.4.2 will follow from the result that the composition HP,q ◦ µ̄ is
proper. The latter map is left-invariant under the left action of K ∩ H on the first
component. Thus, Proposition 4.4.2 will already follow from the following result.

Lemma 4.4.6. The map (m,n) 7→ HP,q(mn) induces a smooth map

ϕ : (MR ∩H)×MR∩H∩P (NR ∩H)/(NR ∩H ∩ P )→ aq

which is proper.

The inclusion map NR ∩H → NR induces an embedding of (NR ∩H)/(NR ∩
H ∩ P ) onto a closed submanifold of NR/NR ∩ P. This embedding is equivariant
for the conjugation action of MR ∩H ∩ P. Accordingly, we may view

(MR ∩H)×MR∩H∩P (NR ∩H)/(NR ∩H ∩ P )

as a closed submanifold of

(MR ∩H)×MR∩H∩P NR/(NR ∩ P ).

Thus, for the proof of Lemma 4.4.6 it suffices to establish the following result.

Proposition 4.4.7. The map ψ : (m,n) 7→ HP,q(mn) induces a smooth map

ψ̄ : (MR ∩H)×MR∩H∩P NR/(NR ∩ P )→ aq. (4.13)

This map is proper.

Before we proceed with the proof of Proposition 4.4.7 we will first study the
maps MR ∩H/MR ∩H ∩ P → aq and NR/(NR ∩ P )→ aq induced by HP,q.

Lemma 4.4.8. The map HRP,q := HP,q|MR∩H induces a smooth map H̄RP,q : (MR ∩
H)/(MR∩H ∩P )→ aq which is proper and has image equal to the cone Γaq(ΣR

−),
where

ΣR
− = {α ∈ Σ(P ) ∩ a∗q : gα 6⊂ ker(σθ − I)}.

In particular, the image is contained in the cone Γaq(Σ(P, σθ)).
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Proof. We start by noting that (MR,MR ∩ H) is a reductive symmetric pair of the
Harish-Chandra class, which is invariant under the Cartan involution θ. Furthermore,
∗aR := mR∩a is a maximal abelian subspace of mR∩p (contained in aq) andMR∩P
is a minimal parabolic subgroup ofMR containing ∗AR := exp ∗aR.Accordingly, by
restriction the Iwasawa projection map HP,q : H → aq induces the similar projection
map HRP,q : MR ∩H → aq which is the analogue of HP,q defined relative to the data
MR,MR ∩K,P ∩MR, H ∩MR, in place of G,K,P,H.

The ∗aR-roots inNP ∩MR are precisely the restrictions of the roots from Σ(P )∩
a∗q. From this we see that the minimal parabolic subgroup P∩MR ofMR is σθ-stable.
Hence, in view of [5, Lemma 3.3], the map H̄RP,q is proper and has image equal to
the cone Γaq(ΣR

−) given above. The final assertion now follows from the observation
that Σ(P ) ∩ a∗q ⊆ Σ(P, σθ).

The following lemma is well known. For completeness of the exposition, we
provide the proof.

Lemma 4.4.9. The Iwasawa map HP |N̄P : N̄P → a is proper. If Q ∈ P(A), then

HP (NQ ∩ N̄P ) = Γa(Σ(P ) ∩ Σ(Q̄)).

Proof. For the first assertion, let (n̄j) be sequence in N̄P such that HP (n̄j) converges.
Then n̄j = kjajnj , with kj ∈ K, aj = expHP (n̄j) and nj ∈ NP . By passing
to a converging subsequence, we may arrange that in addition the sequence (kj)
converges in K. It follows that n−1

j a−1
j n̄j = kj converges in G. By [25, Lemma 39],

the sequence (n̄j) converges.
For the second assertion, we may assume Σ(Q̄)∩Σ(P ) 6= ∅ and use the idea due

to S. Gindikin and F. Karpelevic [22], to decompose NQ ∩ N̄P by using a P -simple
root in Σ(Q̄) ∩ Σ(P ). Let α be such a root. Let nα = gα + g2α and Nα = exp nα.
Put Q′ = sαQsα . Then, with the notation of Subsection 4.2.1,

Σ◦(Q̄) ∩ Σ◦(P ) = {α} t (Σ◦(Q̄
′) ∩ Σ◦(P )),

so that
NQ ∩ N̄P = N̄α(NQ′ ∩ N̄P ) ' N̄α × (NQ′ ∩ N̄P ).

Let n̄ ∈ NQ ∩ N̄P . Then according to the above decomposition we may write n̄ =
n̄αn̄

′, where n̄α ∈ N̄α and n̄′ ∈ NQ′ ∩NP . Let g(α) be the semisimple subalgebra
generated by nα and n̄α and let G(α) be the corresponding analytic subgroup of G.
By the Iwasawa decomposition ofG(α) for the minimal parabolic subgroup P∩G(α)
we may write n̄α = kαaαnα with kα ∈ G(α) ∩K, aα ∈ exp(RHα) and nα ∈ Nα.
From the fact that

NQ′ ∩ N̄P ' NQ′/(NQ′ ∩NP ),

we see that there exists a diffeomorphism τnα of NQ′ ∩ N̄P onto itself, such that

nαn̄
′ ∈ τnα(n̄′)NP , for all n̄′ ∈ NQ′ ∩ N̄P .
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This implies that

HP (n̄αn
′) = HP (aατnα(n̄′)a−1

α ) + log aα,

and we see that

HP (N̄α(N ′Q ∩ N̄P )) = HP (N ′Q ∩ N̄P ) + HP (N̄α).

Now HP (N̄α) equals the image of N̄α under the Iwasawa projection Hα for the split
rank 1 group G(α) and the minimal parabolic subgroup P ∩G(α). By [28, Theorem
IX.3.8], which is based on SU(2, 1)-reduction, we see that Hα(N̄α) = R≥0Hα. It
follows that

HP (N̄α(N ′Q ∩ N̄P )) = HP (N ′Q ∩ N̄P ) + R≥0Hα.

The proof is completed by induction on the number of elements in Σ◦(Q̄) ∩ Σ◦(P ).

The following lemma is the second ingredient for the proof of Proposition 4.4.7.

Lemma 4.4.10. The Iwasawa map HP,q|NR : NR → aq factors through a proper
map NR/NR ∩NP → aq with image equal to the cone

Γaq(Σ(P ) ∩ Σ(R̄)). (4.14)

In particular, the image is contained in the cone Γaq(Σ(P, σθ)).

Proof. We denote the induced map by H. It follows by application of Lemma 4.2.10
that the multiplication map (NR ∩ N̄P ) × (NR ∩ NP ) → NR is a diffeomorphism.
Let ν : NR ∩ N̄P → NR/NR ∩NP denote the induced diffeomorphism. Then
H ◦ ν equals prq ◦ HP,R, where HP,R denotes the restriction of HP to NR ∩ N̄P .
This restriction is proper with image Γa(Σ(P ) ∩ Σ(R̄)), by Lemma 4.4.9 above. In
particular, the image is contained in the cone Γa(Σ(P, σθ)), by Lemma 4.4.3. In view
of Corollary 4.3.4 (a) it now follows that H ◦ ν = prq ◦ HP,R is proper with image
equal to (4.14). This implies the result.

We proceed with a final lemma needed for the proof of Proposition 4.4.7.

Lemma 4.4.11. Let ψ̄ be as in (4.13) and let

p̄r1 : (MR ∩H)×MR∩H∩P NR/(NR ∩ P )→ (MR ∩H)/(MR ∩H ∩ P )

denote the map induced by projection onto the first component.
Let C ⊆ aq be a compact set. Then the set p̄r1(ψ̄−1(C)) is relatively compact in

(MR ∩H)/(MR ∩H ∩ P ).
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Proof. Letm 7→ [m] denote the canonical projectionMR∩H → (MR∩H)/(MR∩
H ∩ P ). Let (mj) and (nj) be sequences in M ∩ H and NR, respectively, such
that HP (mjnj) ∈ C for all j. Then it suffices to show that the sequence ([mj ]) in
(MR ∩H)/(MR ∩H ∩ P ) has a converging subsequence.

In accordance with the Iwasawa decompositionMR = (K∩MR)(A∩MR)(NP∩
MR), we may decompose mj = kjajνj . Since ah ⊆ aR = center(lR) ∩ p, we have
mR ∩ a = a⊥R ∩ a ⊆ aq, so that log aj = HRP,q(mj).

The element tj = ajνj belongs to MR, hence n′j := tjnjt
−1
j ∈ NR, for all j.

From mjnj = kjn
′
jajνj it follows that

HP,q(mjnj) = HP,q(kjn
′
j) + log aj = HP,q(n′j) + HRP,q(mj).

We now note that both HP,q(n′j) and HP,q(mj) belong to Γaq(P, σθ) by Lemma
4.4.10 and Lemma 4.4.8. By application of Corollary 4.3.4 we infer that the sequence
HP,q(mj) is contained in a relatively compact subset of aq. By application of Lemma
4.4.8 it now follows that ([mj ]) is contained in a relatively compact subset of (MR ∩
H)/(MR ∩H ∩ P ), hence contains a convergent subsequence.

Completion of the proof of Proposition 4.4.7. Let C be a compact subset of
aq and let (mj) be a sequence in MR ∩ H and (nj) a sequence in NR such that
ψ̄([(mj , nj)]) ∈ C for all j. Then it suffices to show that the sequence of points

[(mj , nj)] ∈ (MR ∩H)×MR∩H∩P NR/(NR ∩NP )

has a converging subsequence.
In view of Lemma 4.4.11 we may pass to a subsequence of indices and assume

that the sequence ([mj ]) in D := (MR ∩H)/(MR ∩H ∩ P ) converges. Since the
canonical projection MR ∩ H → D determines a principal fiber bundle, we may
invoke a local trivialization to obtain a converging sequence (8mj) in MR ∩H such
that 8mj ∈ mj(MR∩H∩P ) for all j. Let pj ∈MR∩H∩P be such thatmj = 8mjpj
for all j. Then

[(mj , nj)] = [(8mj ,
8nj)],

with 8nj = pjnjp
−1
j ∈ NR.

Replacing the original sequence of points (mj , nj) in this fashion if necessary,
we may as well assume that the original sequence (mj) converges in MR ∩ H. Let
m ∈ MR ∩ H be the limit of this sequence. As in the proof of Lemma 4.4.11
we may decompose mj = kjajνj and m = kaν in accordance with the Iwasawa
decomposition MR = (MR ∩K)(MR ∩ A)(MR ∩ N). Then kj → k, aj → a and
νj → ν, for j → ∞. Put tj = ajνj and n′j = tjnjt

−1
j . As in the proof of Lemma

4.4.11 it follows that

ψ̄([mj , nj ]) = log aj + HP,q(n′j).

Since (aj) converges, it follows that the sequence HP,q(n′j) is contained in a compact
subsetC ′ ⊆ aq. By Lemma 4.4.10 it follows that the sequence ([n′j ]) inNR/NR∩NP

87



is contained in a compact subset. Passing to a suitable subsequence of indices we may
as well assume that the sequence ([n′j ]) converges to a point [n], for some n ∈ NR.
It follows that

[nj ] = [t−1
j n′jtj ] = t−1

j · [n
′
j ]→ t−1 · [n] = [t−1nt], (j →∞),

where t = aν. We conclude that the sequence [(mj , nj)] converges with limit equal
to [(m, t−1n)].

We finish this section with a number of results that will be needed in Section 4.10.

Corollary 4.4.12. Let A be a compact subset of Aq. Then the map

(a, h) 7→ HP,q(ah)

induces a proper map A×H/H ∩ P → aq.

Proof. Let C be a compact subset of aq. Let C ′ be the compact convex hull of the
union of the sets w(logA), for w in the Weyl group W (a) = NK(a)/ZK(a).

Let a ∈ A and h ∈ H and assume that HP,q(ah) ∈ C. We may decompose
h = kbn with k ∈ K, b ∈ A and n ∈ NP . By Kostant’s convexity theorem, ak =
k′a′n′, with k′ ∈ K, n′ ∈ NP and log a′ contained in the (compact) convex hull of
W (a) · log a hence in C ′. Now

ah = akbn = k′a′n′bn = k′a′bn′′

with n′′ = b−1nbn′ ∈ NP . It follows that

HP,q(ah) = prq(log b+ log a′) = HP,q(h) + prq(log a′),

so that HP,q(h) is contained in the compact set C ′′ = C + prq(−C ′). By Proposition
4.4.2, the preimage CH of C ′′ in H/H ∩ P is compact. It follows from the above
that (a, [h]) ∈ A×CH . Hence the preimage of C in A×H/H ∩ P is compact, and
the result follows.

Corollary 4.4.13. Let P ∈ P(A). Then HP,q(H) ⊆ Γaq(Σ(P, σθ)).

Proof. By (4.12) we have

H = (H ∩K)(H ∩NR)(H ∩ LR) ⊆ KNR(H ∩ LR).

Fix h ∈ H, then we may write h = knRhL with k ∈ K, nR ∈ NR and hL ∈
(H ∩ LR). The group P ∩ LR is a minimal parabolic subgroup of LR, containing
A. In accordance with the associated Iwasawa decomposition for LR, we may write
hL = kLaLnL with kL ∈ K∩LR, aL ∈ A and nL ∈ NP ∩LR. Since LR normalizes
NR, it follows that

h = knRkLaLnL ∈ Kn′RaLnL
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with n′R ∈ NR. We now observe that n′R ∈ KbNP with b = expHP (n′R). Thus,
h ∈ KbaLNP . It follows that

HP,q(h) = prq(log b+ log aL) ∈ HP,q(NR) + HP,q(H ∩ LR). (4.15)

The result now follows by combining the fact that HP,q(H ∩MR) = HP,q(H ∩ LR)
with Lemmas 4.4.8 and 4.4.10.

Lemma 4.4.14. Let Γ1 and Γ2 be two closed cones inside some vector space V and
B ⊂ V a compact subset. If Γ1 ⊆ B + Γ2 then Γ1 ⊆ Γ2.

Proof. Let γ1 ∈ Γ1. Then for all positive (or negative) n ∈ R we have that nγ1 ∈
Γ1 ⊆ B + Γ2 (we may assume n > 0). Thus,

nγ1 = bn + γ2n

for bn ∈ B and γ2n ∈ Γ2. It follows that

γ1 = bn/n+ γ2n/n

and as n goes to infinity bn/n goes to zero (since B is compact), while γ2n/n con-
verges to some γ2 ∈ Γ2 (Γ2 being closed). Thus, γ1 = γ2 ∈ Γ2.

Corollary 4.4.15. Let P ∈ P(A). Then for each a ∈ Aq, the set HP,q(aH) does not
contain any line of aq.

Proof. Let h ∈ H.We may write h = kbnwith k ∈ K,n ∈ NP and b = expHP (h).
Furthermore, ak = k′a′n′ in accordance with G = KANP . Then a′ = expHP (ak).
It follows that

ah = k′a′n′bn ∈ Ka′bNP ,

so that

HP,q(ah) = prq(log a′ + log b) ∈ HP,q(aK) + HP,q(h)

⊆ HP,q(aK) + Γaq(Σ(P, σθ)) (4.16)

by Lemma 4.4.13.
For the completion of the proof we will argue by contradiction. Suppose that

HP,q(ah) contains a line of the form Z + RY, with Y ∈ aq \ {0}. There exists an
element X ∈ a such that α(X) > 0 for all α ∈ Σ(P ) and such that 〈X,Y 〉 6= 0.
Then it follows that α(X + σθX) > 0 for all α ∈ Σ(P, σθ). Hence 〈X, prqHα〉 > 0
for all α ∈ Σ(P, σθ). Since HP,q(aK) is compact, it follows that 〈X, · 〉 is bounded
from below on the set in the right-hand side of (4.16), hence also on the line Z+RY.
This implies that 〈X,Y 〉 = 0, contradiction.
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4.5 Critical points of components of the Iwasawa map

In this section we assume that P ∈ P(A) is a fixed minimal parabolic subgroup and
that a is a fixed element of Aq. We will investigate the critical sets of components of
the map h 7→ HP,q(ah), H → aq. For this, let X ∈ aq, and consider the function
Fa,X : H → R defined by

Fa,X(h) = 〈X,HP (ah)〉 = 〈X,HP,q(ah)〉 = B(X,HP,q(ah)). (4.17)

The second equality is valid because ah and aq are perpendicular with respect to the
inner product 〈 · , · 〉, while the third holds because HP,q(ah) ∈ aq ⊂ p. We start
with a result on derivatives of the function

FX : G→ R, g 7→ 〈X,HP (g)〉. (4.18)

In order to formulate it, we need a bit of additional notation. If F ∈ C∞(G) and
U ∈ g, we define:

F (g;U) = RUF (g) :=
d

dt

∣∣∣∣
t=0

F (g exp(tU)).

The following result and its proof can be found in [13, Corollary 5.2]. See also
[5, Corollary 4.2].

Lemma 4.5.1. Let g ∈ G and U ∈ g. Then

FX(g;U) = B(Ad(τ(g))U,X) = B(U,Ad(ν(g)−1)X),

where we have used the decompositions g = k(g)τ(g) and τ(g) = a(g)ν(g), ac-
cording to the Iwasawa decomposition G = KANP .

We define the set of regular elements in Aq by Areg
q := exp(areg

q )), see (4.8). If
X ∈ aq we denote by GX the centralizer of X in G and put

NP,X := NP ∩GX . (4.19)

Lemma 4.5.2. Let a ∈ Aq and let X ∈ aq. The point h ∈ H is a critical point
for the function Fa,X if and only if ah = kbn for certain k ∈ K, b ∈ A and
n ∈ NP,X(NP ∩H).

Proof. Let h ∈ H. Then h is a critical point for the function Fa,X if and only if

∀U ∈ h : 0 = Fa,X(h;U) = B(U,Ad(ν(ah)−1)X). (4.20)

Since h and q are perpendicular with respect to B, see text above Definition 3.1.3,
the condition (4.20) is equivalent to the assertion that Ad(ν(ah)−1)X ∈ q. Write
n = ν(ah) and decompose n = n+nH according to the decomposition NP =
NP,+(NP ∩H) of Proposition 4.2.13. Since Ad(nH) normalizes q, the above con-
dition is equivalent to Ad(n+)X ∈ q. Now apply the lemma below to see that the
latter is equivalent to n+ ∈ NP,+ ∩ NP,X . It follows that (4.20) is equivalent to
n ∈ NP,X(NP ∩H).
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Lemma 4.5.3. Let n ∈ NP,+ (cf. Proposition 4.2.13 ) and X ∈ aq. Then

Ad(n)X ∈ q ⇐⇒ Ad(n)X = X.

Proof. The implication ‘⇐’ is obvious. Thus, assume that Ad(n)X ∈ q. We may
write n = exp(U), where U ∈ nP,+. Then by nilpotence of nP,+,

Ad(n)X = ead(U)X ∈ X + nP,+

By assumption, Ad(n)X −X ∈ q. Since obviously σ(nP,+) ∩ nP,+ = 0, it follows
that nP,+ ∩ q = 0 and we infer that Ad(n)X = X.

Given X ∈ aq we agree to denote by Ca,X the set of critical points for the func-
tion Fa,X . The remainder of this section will be dedicated to proving the following
description of this set in case a is regular. We recall the definitions of the Weyl groups
W (aq) and WK∩H from (3.2) and Definition 3.1.3.

Remark 4.5.4. In the following we will use the notation

aw := w−1 · a

for a ∈ Aq and w ∈ W (aq). This notation has the advantage that (av)w = avw and
(aw)β = awβ, for v, w ∈ W (aq) and β ∈ Σ(g, aq). In particular, Ad(aw) = awβI
on gβ.

We will use the similar notation for a ∈ A and w ∈W (a).

Lemma 4.5.5. Let a ∈ Areg
q and X ∈ aq. Then

Ca,X =
⋃

w∈WK∩H

wHX(NP ∩H). (4.21)

Proof. Let xw be a representative ofw inNK∩H(aq), let h ∈ HX and nP ∈ NP ∩H .
Then

ν(axwhnP ) = ν(x−1
w axwhnP ) = ν(awhnP ) = ν(awh)nP .

The element awh belongs to GX , and according to [13, Equation 2.6],

GX ' KXANP,X .

Thus, ν(awh) ∈ NP,X and it follows that ν(axwhnP ) ∈ NP,X(NP ∩ H). This
proves that the set on the right-hand side of (4.21) is included in the set on the left-
hand side. It remains to prove the converse inclusion.

Let h ∈ Ca,X . Then by Lemma 4.5.2 we may write ah = kbnXnH with k ∈ K,
b ∈ A, nX ∈ NP,X and nH ∈ NP ∩H. From this we see that k−1ahn−1

H = bnX ∈
GX . The element h′ := hn−1

H , belongs to H . In view of the Cartan decomposition
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H = (K ∩ H) × exp(p ∩ h), we may write h′ = h1h2, where h1 ∈ K ∩ H and
h2 ∈ exp(p ∩ h). Then

k−1ah1h2 = k−1h1(h−1
1 ah1)h2 ∈ GX . (4.22)

By [45], the group G decomposes as

G ' K × exp(p ∩ q)× exp(p ∩ h).

According to [45, Theorem 5], GX has a similar decomposition

GX ' KX × exp(p ∩ qX)× exp(p ∩ hX).

By the uniqueness properties of the latter decomposition it follows from (4.22) that
k−1h1 ∈ KX , h−1

1 ah1 ∈ exp(p ∩ qX) and h2 ∈ exp(p ∩ hX).
We note that σθ fixes X hence leaves the centralizer GX invariant. The fixed

point group GX,+ of this involution in GX admits the Cartan decomposition

GX,+ ' (K ∩HX)× exp(p ∩ qX).

Obviously aq is a maximal abelian subspace of p ∩ qX . Hence, every element of the
latter space is conjugate to an element of aq under the group (K ∩ HX)◦. We infer
that there exists an element l ∈ (K ∩HX)◦ such that

l−1h−1
1 ah1l ∈ Aq. (4.23)

Since a was assumed to be regular for Σ(g, aq), it follows that a is regular for
Σ(g+, aq) as well. Hence, (4.23) implies that the element h1l ∈ K ∩ H normal-
izes aq. It follows that h1 ∈ NK∩H(aq)(K ∩HX). Then,

h′ = h1h2 ∈ NK∩H(aq)(K ∩HX) exp(p ∩ hX) = NK∩H(aq)HX

and we conclude that hn−1
H ∈ NK∩H(aq)HX . This finally implies that

h ∈ NK∩H(aq)HX(NP ∩H),

which concludes the proof.

4.6 Properties of the set of critical points

As in the previous section, we assume that P ∈ P(A) and that a is a regular point in
Aq. In the previous section we defined the function Fa,X : H → R, for X ∈ aq, by
(4.17) and we determined its set of critical points Ca,X , see (4.21). The purpose of
the present section is to study this set in more detail.

We start with the following lemma.
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Lemma 4.6.1. The map ϕ : HX × (NP ∩H) → H given by (h, n) 7→ hn induces
an injective immersion

ϕ̄ : HX ×NP∩HX (NP ∩H)→ H

with image HX(NP ∩H).

Proof. The groupHX×(NP∩H) has a natural left action onH given by the formula:
(h, n) · x = hxn−1. The set HX(NP ∩ H) is the orbit for this action through the
identity element e of H. Let F be the stabilizer of e for this action. Then it follows
that the map (h, n) 7→ (h, n) · e = hn−1 factors through an injective immersion
(HX × (NP ∩H))/F → H with image HX(NP ∩H). The stabilizer F consists of
the elements (h, h) with h ∈ HX ∩NP . To complete the proof of the lemma, we note
that the map (h, n) 7→ (h, n−1) induces a diffeomorphismHX×NP∩HX (NP∩H)→
(HX × (NP ∩H))/F.

Lemma 4.6.2. LetX ∈ aq. Then the set Ca,X is closed inH.Moreover, the following
holds.

(a) If hX + (nP ∩ h) = h then Ca,X = H.

(b) If hX + (nP ∩ h) ( h then Ca,X is a finite union of lower dimensional
injectively immersed submanifolds.

Proof. Since Ca,X is the set of critical points of the smooth function Fa,X , it is closed.
From Lemma 4.5.5 combined with Lemma 4.6.1 it follows that Ca,X is a finite

union of injectively immersed submanifolds of dimension dX := dim(hX+(nP∩h)).
From this, (b) is immediate.

For (a) we assume the hypothesis to be fulfilled, or equivalently, that dX =
dim(H). Then Ca,X is open in H. Since this set is also closed in H , and contains
HX(NP ∩ H), it follows that Ca,X ⊃ H◦. From Lemma 4.5.5 it follows that Ca,X
is left NK∩H(aq)-invariant, so that Ca,X ⊃ ZK∩H(aq)H◦. Since H is essentially
connected, the latter set equals H.

Lemma 4.6.3. Let X ∈ aq. Then the following assertions are equivalent:

(a) h = hX + (nP ∩ h);

(b) ∀α ∈ Σ(g, a) : α(X) = 0.

Proof. First assume (b). Then gX = g and (a) follows. We will prove the converse
implication by contraposition. Thus, assume that (b) does not hold. Then there exists
a root β ∈ Σ(g, a) such that β(X) 6= 0. By changing sign if necessary, we may in
addition arrange that β ∈ Σ(P ).

Given a subset O ⊆ Σ(g, a) ∪ {0}, we agree to write

gO = ⊕α∈O gα. (4.24)
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In particular, we see that nP = gΣ(P ).We also agree to writeOσ := O∩σ(O). Then
using σ(gα) = gσα we readily see that

gO ∩ h = (gOσ)σ = ⊕ω∈Oσ/{1,σ} (gω)σ; (4.25)

here Oσ/{1, σ} denotes the set of orbits for the action on Oσ of the subgroup {1, σ}
of Aut(g). If we apply (4.25) to the set OX := {α ∈ Σ(g, a) : α(X) = 0} ∪ {0},
we find

hX = ⊕ω∈OX/{1,σ} (gω)σ.

We note that Σ(P )σ = Σ(P, σ), so that

nP ∩ h = gΣ(P,σ) ∩ h.

We now consider the set Oβ := {β, σβ,−β,−σβ}. Since OX ∩ Oβ = ∅, it
follows from the above that

(hX + (nP ∩ h)) ∩ gOβ = nP ∩ h ∩ gOβ = (gΣ(P,σ)∩Oβ )σ. (4.26)

On the other hand,
h ∩ gOβ = (gOβ )σ.

From β(X) 6= 0 it follows that β /∈ a∗h. If β ∈ a∗q then Σ(P, σ) ∩ Oβ = ∅ and
if β /∈ a∗q then Σ(P, σ) ∩ Oβ ⊆ {β, σβ}. In any case, Σ(P, σ) ∩ Oβ is a proper
σ-invariant subset of Oβ. By application of (4.25) it now follows that

(gΣ(P,σ)∩Oβ )σ ( (gOβ )σ.

Using (4.26) we infer that (a) is not valid.

We agree to write
S := aq \ ∩α∈Σ(g,aq) kerα. (4.27)

Remark 4.6.4. If Σ(g, aq) spans aq then it follows that S = aq \ {0}.

Corollary 4.6.5. S = {X ∈ aq : Ca,X ( H}.

Proof. Let X ∈ aq. In the situation of Lemma 4.6.2 (b) the set Ca,X is a count-
able union of lower dimensional submanifolds, hence nowhere dense by the Baire
category theorem. Thus, by application of Lemmas 4.6.2 and 4.6.3 it follows that
Ca,X ( H ⇐⇒ X ∈ S.

For each Z ∈ aq, let Σ(Z) denote the collection of roots in Σ(g, aq) vanishing
on Z. We define the equivalence relation ∼ on aq by

X ∼ Y ⇐⇒ Σ(X) = Σ(Y ).
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Then clearly, ∼ has finitely many equivalence classes in aq and

X ∼ Y ⇐⇒ GX = GY .

The class of 0 is given by [0] = ∩α∈Σ(g,aq) kerα and S is the union of the remain-
ing finitely many equivalence classes for ∼. Furthermore, the set Ca,X depends on
X ∈ S through the centralizer GX , hence through the equivalence class [X] for ∼ .
Accordingly, we will also write Ca,[X] for this set.

We define
Ca := ∪X∈S Ca,X . (4.28)

Lemma 4.6.6.

(a) There exists a finite subset S0 ⊆ S such that (4.28) is valid for the union over S0

in place of S.

(b) The set Ca is closed and a finite union of lower dimensional injectively immersed
submanifolds of H.

(c) The set Ca is nowhere dense in H.

Proof. By the discussion preceding the lemma, Ca is the union of the sets Ca,[X], for
[X] ∈ S/ ∼ . Since the latter set is finite, assertion (a) follows with S0 a complete set
of representatives for S/ ∼ . Assertion (b) now follows by application of Corollary
4.6.5 and Lemma 4.6.2. Assertion (c) follows from (b) by application of the Baire
category theorem.

The following result illustrates the importance of the set Ca.

Proposition 4.6.7. The set H \ Ca is open and dense in H. Assume that Σ(g, aq)
spans a∗q. Then the map Fa : h 7→ HP,q(ah), H → aq is submersive at all points of
H \ Ca.

Proof. The first assertion is a consequence of Lemma 4.6.6.
Let h0 ∈ H\Ca. Then for everyX ∈ S the point h0 is not critical for the function

Fa,X . As S = aq \ {0}, see Remark 4.6.4, it follows that Fa : h 7→ HP,q(ah) is
submersive at h0.

Lemma 4.6.8. Let P ∈ P(A) and a ∈ Areg
q . Then the following assertions are valid.

(a) The sets HP,q(aH) and HP,q(aCa) are closed in aq.

(b) If Σ(g, aq) spans a∗q then the set HP,q(aH) \ HP,q(aCa) is open and closed in
aq \ HP,q(aCa).
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Proof. For A ⊆ A compact, the map A×H/(H ∩ P )→ aq, (b, [h]) 7→ HP,q(bh) is
proper, hence closed; see Corollary 4.4.12. In particular, it follows that HP,q(aH) is
closed in aq.

It follows from Lemma 4.6.6 that Ca is closed in H. Moreover, Ca is a countable
union of lower dimensional submanifolds of H. Thus, by the Baire property, Ca has
empty interior in H. In particular, it is a proper subset of H.

Furthermore, the set Ca is right H ∩ P -invariant, hence has closed image in
H/H ∩ P. It follows that HP,q(aCa) is closed in aq. This establishes (a).

By Proposition 4.6.7 the map Fa : h 7→ HP,q(ah) is submersive at the points of
H \ Ca. Hence HP,q(a(H \ Ca)) is open in aq. It follows that

HP,q(aH) \ HP,q(aCa) = HP,q(a(H \ Ca)) \ HP,q(aCa) (4.29)

is open in aq hence in aq \HP,q(aCa). Finally, since HP,q(aH) is closed, the first set
in (4.29) is closed in aq \HP,q(aCa). We conclude that the set (4.29) is both open and
closed in aq \ HP,q(aCa).

Lemma 4.6.9. Assume that Σ(g, aq) spans a∗q. Then HP,q(aH) \ HP,q(aCa) 6= ∅.

Proof. Under the assumption that Σ(g, aq) spans a∗q, the map HP,q : aH → aq

is submersive except at points of Ca. The set H \ Ca is open and non-empty. Thus,
HP,q(a(H \Ca)) is open and non-empty. By Sard’s Theorem, HP,q(aCa) has measure
zero. This implies that

HP,q(a(H \ Ca)) \ HP,q(aCa) 6= ∅,

and hence
HP,q(aH) \ HP,q(aCa) 6= ∅.

Remark 4.6.10. The lemma can readily be extended to the case that Σ(g, aq) does
not span a∗q, but we will not need this.

4.7 The computation of Hessians

We retain the assumption that P ∈ P(A). Furthermore, we assume that a ∈ Areg
q and

X ∈ aq. In this section we will compute the Hessian of the function Fa,X : H → R,
defined in (4.17), at all points of its critical locus Ca,X .

Given U ∈ h, we denote by RU the associated left-invariant vector field on H
defined by

RU (h) = dlh(e)U =
∂

∂t
(h exp tU)|t=0, (h ∈ H).

The associated derivation on C∞(H) is denoted by the same symbol.
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If f : H → R is a C2-function with critical point at h, then its Hessian at h is the
symmetric bilinear form H(f)(h) = H(f)h on ThH given by

H(f)h(RU (h), RV (h)) := RURV f(h) = ∂s∂tf(h exp sU exp tV )|s=t=0,

for U, V ∈ h.

Lemma 4.7.1. Let a ∈ Aq, X ∈ aq and h ∈ H. Then for all U, V ∈ h we have:

RURV Fa,X(h) = B(U,La,X,h(V )) = −〈U, θLa,X,h(V )〉,

where La,X,h : h→ h is the linear map given by

La,X,h(V ) = −Ad(h−1) ◦ πh ◦Ad(a−1) ◦Ad(ka(h)) ◦ ad(X) ◦Ek ◦Ad(τ(ah))V.
(4.30)

Here πh : g → h denotes the projection according to the decomposition g = h ⊕ q
and Ek : g → k is the projection associated with the Iwasawa decomposition g =
k ⊕ a ⊕ nP . The notation ka(h) is used to express the K-part of the element ah
with respect to the Iwasawa decomposition G = KANP . Finally, τ(ah) denotes the
(ANP )-part of ah with respect to the same Iwasawa decomposition.

Proof. By [5, Lemma 5.1], see also [13], we obtain that for x ∈ G and U, V ∈ g,

RURV FX(x) = B([Ad(τ)U, Ek ◦Ad(τ)V ], X),

where FX is the function defined in (4.18) and where τ := τ(x). Therefore,

RURV FX(x) = −B(Ad(τ)U, adX ◦ Ek ◦Ad(τ)V )

= −B(U, Ad(τ)−1 ◦ adX ◦ Ek ◦Ad(τ)V ).

We can restrict now to the case where x = ah and U, V ∈ h. Since Fa,X(h) =
FX(ah), we obtain

RURV Fa,X(h) = RURV FX(ah) = B(U, −πh ◦Ad(τ)−1 ◦ adX ◦Ek ◦Ad(τ)V ).
(4.31)

Since ah = ka(h)τ(ah), it follows that τ−1 = τ(ah)−1 = h−1a−1ka(h) and by
applying Ad to this equality we obtain

Ad(τ−1) = Ad(h−1)Ad(a−1)Ad(ka(h)).

We complete the proof by substituting this equality in (4.31) and observing that πh
commutes with Ad(h−1).
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4.8 The transversal signature of the Hessian

In this section we fix P ∈ P(A), a ∈ Areg
q and X ∈ aq. We will study the behavior

of the Hessian H(Fa,X)h of the function Fa,X : H → R defined in (4.17) at each
point h of its critical set Ca,X . This Hessian is a symmetric bilinear form on ThH. Its
kernel at h is by definition equal to the following linear subspace of ThH,

ker(H(Fa,X)(h)) := {V ∈ ThH : H(Fa,X)(h)(V, · ) = 0}.

By symmetry, the Hessian induces a non-degenerate symmetric bilinear form on the
quotient space ThH/ ker(H(Fa,X)(h)), which we will denote by H̄(Fa,X)(h). For
each w ∈WK∩H we select a representative xw ∈ NK∩H(aq). The set

Ca,X,w := xwHX(H ∩NP )

is an injectively immersed submanifold of H, see Lemma 4.6.1. In particular this set
has a well-defined tangent space at each of its points. We will show that the Hessian
of Fa,X is transversally non-degenerate along Ca,X,w.

Lemma 4.8.1. Let w ∈ WK∩H . Then at each point h̄ ∈ Ca,X,w the kernel of the
Hessian H(Fa,X)(h̄) equals the tangent space Th̄Ca,X,w.

The proof of this lemma will make use of Lemma 4.8.2 below. In that lemma,
La,X,h ∈ End(h) is defined as in (4.30). Let k̄a := π ◦ ka : H → K/M , where
ka : H → K is defined as in Lemma 4.7.1 and where π denotes the canonical
projection K → K/M.

Lemma 4.8.2. Let h ∈ H◦X and V ∈ h. Then the following statements are equivalent.

(a) V ∈ kerLa,X,h,

(b) d(lka(h)−1 ◦ k̄a ◦ lh)(e)(V ) ∈ kX/m,

(c) V ∈ hX + (h ∩ nP ).

Proof. First, we prove that (a) =⇒ (b). Assume (a) holds. In view of (4.30) this is
equivalent to

Ad(a−1) ◦Ad(ka(h)) ◦ ad(X) ◦ Ek ◦Ad(τ(ah))V ∈ q. (4.32)

Observe that Ad(ka(h)) ◦ ad(X) ◦ Ek ◦ Ad(τ(ah))V ∈ p. In view of [5, Lemma
5.7] we see that (4.32) implies that

Ad(ka(h)) ◦ ad(X) ◦ Ek ◦Ad(τ(ah))V ∈ aq. (4.33)

Since h ∈ HX and GX = KXANP,X , see (4.19), it follows that ka(h) centralizes
X . Thus, Ad(ka(h)) and ad(X) commute. Now Ad(ka(h)) ◦ Ek ◦ Ad(τ(ah))V is
an element in k, which decomposes as

k = kX +
⊕

α∈Σ(P )
α(X)6=0

(I + θ)gα.
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Furthermore, by (4.33), we know that ad(X) maps this element to an element of
aq. This implies that

Ad(ka(h)) ◦ Ek ◦Ad(τ(ah))V ∈ kX .

Since ka(h) ∈ KX , we obtain that

Ek ◦Ad(τ(ah))V ∈ kX . (4.34)

By the use of [5, Lemma 5.2], we may rewrite

Ek ◦Ad(τ(ah)) = dlka(h)(e)
−1 ◦ dka(h) ◦ dlh(e) = d(lka(h)−1 ◦ ka ◦ lh)(e).

Hence, (4.34) implies

d(lka(h)−1 ◦ ka ◦ lh)(e)(V ) ∈ kX . (4.35)

Observe that dπ(e) : kX → kX/m is given by the canonical projection and that the
maps π and lka(h)−1 commute. Hence, equation (4.35) is equivalent to

d(lka(h)−1 ◦ k̄a ◦ lh)(e)(V ) ∈ kX/m (4.36)

and (b) follows.
Next, we prove that (b) =⇒ (c). Assume (b) and denote by ϕ the diffeomorphism

ϕ : K/M → G/P arising from the Iwasawa decomposition G = KANP . The
inclusion H ↪→ G induces the map ψ : H → G/P . It is easy to check that the
diagram given below commutes.

H
ψ−−−−−−−−→ G/P

k̄a

y yla
K/M

ϕ−−−−−−−−→ G/P

(4.37)

The map ψ commutes with the left multiplication by an element h ∈ H , viewed
either as the map lh : H → H or as the map lh : G/P → G/P . On the other
hand, the diffeomorphism ϕ introduced above, commutes with the left multiplication
lk : K/M → K/M , where k ∈ K. Hence, the commutative diagram (4.37) gives
rise to the following commutative diagram. We use the notation k := ka(h).

H
ψ−−−−−−−−→ G/P

l−1
k ◦k̄a◦lh

y ylk−1ah

K/M
ϕ−−−−−−−−→ G/P

(4.38)
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Note that under each of the four maps in diagram (4.38), the origin of the domain is
mapped to the origin of the codomain. Taking derivatives at the origins we obtain the
commutative diagram given below.

h
ψ?−−−−−−−−→ g/p

T

y yd(lk−1ah)(eP )

k/m
ϕ?−−−−−−−−→ g/p

(4.39)

Here
p = m⊕ a⊕ nP

denotes the Lie algebra of P and T denotes the map d(l−1
k ◦ k̄a ◦ lh)(e) : h → k/m.

Furthermore, ϕ∗ = dϕ(eM) and ψ∗ = dψ(e).

Observe that k−1ah = τ := τ(ah). Since h belongs to HX , it follows that τ
and τ−1 belong to ANP,X ⊆ P . This in turn implies that Ad(τ−1) is a bijection
from gX to gX which normalizes p. Let Ad(τ) : g/p→ g/p be the map induced by
Ad(τ) : g→ g. Then

d(lk−1ah)(eP ) = Ad(τ).

We use the commutativity of diagram (4.39) to compute the pre-image of kX/m under
the map T :

T−1(kX/m) = ψ−1
? ◦Ad(τ−1) ◦ ϕ?(kX/m)

= ψ−1
? (Ad(τ−1)(kX + p))

= ψ−1
? (Ad(τ−1)(gX + p))

= ψ−1
? ((Ad(τ−1)gX) + p)

= ψ−1
? (gX + p)

= {U ∈ h : U + p ∈ gX + p}
= hX + (h ∩ p).

Since h∩p = (m⊕a)∩h⊕(nP ∩h), see Subsection 4.2.4, and (m⊕a)∩h ⊆ hX ,
we obtain that hX + (h∩ p) = hX + (h∩ nP ). Thus if (b) holds, then T (V ) ∈ kX/m
and we infer that V ∈ hX + (h ∩ p) hence (c).

Finally, the implication (c) =⇒ (a) is easy.

Proof of Lemma 4.8.1. Recall thatH is essentially connected. By [5, Proposition
2.3], the centralizer HX is essentially connected as well (relative to GX ).

Assume first that h̄ = h ∈ H◦X . Then, by Lemma 4.8.2 above, we have that

kerLa,X,h = hX + (nP ∩ h).
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Since dlh(e) is a linear isomorphism g → ThG, mapping Te[HX(NP ∩ H)] onto
Th[HX(NP ∩H)], we obtain that

kerH(Fa,X)(h) = dlh(e)(kerLa,X,h) = Th[HX(NP ∩H)],

which establishes the assertion for h̄ = h ∈ H◦X .
Let now h̄ = hn, with n ∈ NP ∩H . Then the right-multiplication rn : H → H

is a diffeomorphism and Fa,X ◦ rn = Fa,X , so that

kerH(Fa,X)(hn) = drn(h)[kerH(Fa,X)(h)] = drn(h)Th[HX(NP ∩H)].

As the latter space equals Thn[HX(NP ∩ H)] this proves the assertion for h̄ ∈
H◦X(NP ∩H).

Finally, we discuss the general case h̄ ∈ wHX(NP ∩H). Since H , respectively
HX , is essentially connected we may write h̄ = xwhn, where h ∈ H◦X , n ∈ NP ∩H
and xw is a representative of w in NK∩H(aq) chosen accordingly. Since xw normal-
izes Aq,

Fa,X ◦ lxw = Fw−1a,X .

Furthermore, from a ∈ Areg
q it follows that w−1a ∈ Areg

q . Since lxw is a diffeomor-
phism from H to itself, it follows that dlxw(hn) is a linear isomorphism from ThnH
onto Th̄H and that

kerH(Fa,X)(h̄) = kerH(Fa,X)(xwhn)

= dlxw(hn)[kerH(Fx−1
w a,X)(hn)]

= dlxw(hn)Thn[HX(NP ∩H)]

= Th̄[xwHX(NP ∩H)]

= Th̄Ca,X,w.

We will now determine the set of critical points where the Hessian is transversally
positive definite. For the description of our next result we define the following subsets
of Σ(P ). If α ∈ Σ(g, a)∩a∗q, then the associated root space gα is σθ-invariant. Hence,
for such a root α,

gα = gα,+ ⊕ gα,−,

where
gα,± = {U ∈ gα : σθU = ±U}.

Accordingly, we define

Σ(g, aq)± := {α ∈ Σ(g, aq) : gα,± 6= 0}.

In order to formulate the first main result of this section, we need to specify particular
subsets of Σ(P ).
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Definition 4.8.3.

(a) Σ(P )+ := {α ∈ Σ(P ) : α ∈ a∗q =⇒ gα,+ 6= 0}.

(b) Σ(P )− := {α ∈ Σ(P, σθ) : α ∈ a∗q =⇒ gα,− 6= 0}.

Note that (b) in this definition is consistent with (3.3).

Proposition 4.8.4. Let w ∈ WK∩H . Then the Hessian H(Fa,X)(xw) is positive
definite transversally to Ca,X,w if and only if the following two conditions are fulfilled

(a) ∀α ∈ Σ(P )+ : α(X)α(w−1(log a)) ≤ 0;

(b) ∀α ∈ Σ(P )− : α(X) ≥ 0.

Remark 4.8.5. For the geometric meaning of these conditions we refer to Lemma
4.8.14, towards the end of this section.

Proof. We will prove the proposition in a number of steps. As a first step, let lw :=
lxw denote left multiplication by xw on H. Then the tangent space of Ca,X,w at xw
is the image of hX + (h ∩ nP ) under the tangent map dlw(e) : h → TxwH. We will
denote by Hw the pull-back of the Hessian H(Fa,X)(xw) under dlw(e). Then

kerHw = hX + (nP ∩ h) (4.40)

and the following conditions are equivalent:

(a) the Hessian H(Fa,w)(xw) is positive definite transversally to Ca,X,w;

(b) the bilinear form Hw is positive definite transversally to hX + (h ∩ nP ).

Accordingly, we will concentrate on deriving necessary and sufficient conditions
for (b) to be valid.

Lemma 4.8.6. The bilinear form Hw on h is given by

Hw(U, V ) = 〈U,LwV 〉, (U, V ∈ h),

where Lw : h→ h is the linear map given by

Lw = −πh ◦ ad(X) ◦Ad(aw) ◦ Ek ◦Ad(aw).

Proof. Let U, V ∈ h. Then in view of Lemma 4.7.1 we have

Hw(U, V ) = RURV Fa,X(xw) = B(U,La,X,hV ) = −〈U, θLa,X,hV 〉

with h = xw and La,X,h defined as in Lemma 4.7.1. Now ah = axw = xwa
w and

we see that τ = τ(ah) = aw and ka(h) = xw. Hence,

− θ ◦ La,X,h(V ) = θ ◦Ad(x−1
w ) ◦ πh ◦Ad(a−1) ◦Ad(xw) ◦ ad(X) ◦ Ek ◦Ad(aw)V
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= θ ◦ πh ◦Ad(x−1
w ) ◦Ad(a−1) ◦Ad(xw) ◦ ad(X) ◦ Ek ◦Ad(aw)V

= θ ◦ πh ◦Ad(aw)−1 ◦ ad(X) ◦ Ek ◦Ad(aw)V

= −πh ◦Ad(aw) ◦ ad(X) ◦ Ek ◦Ad(aw)V.

The result now follows since Ad(aw) and ad(X) commute.

In the sequel it will be useful to consider the finite subgroup

F = {1, σ, θ, σθ} ⊆ Aut(g).

The natural left action of F on g leaves a invariant, and induces natural left actions
on a∗ and on Σ(g, a). Accordingly, if τ ∈ F and α ∈ Σ(g, a), then

τ(gα) = gτα

If O is an orbit for the F -action on Σ(g, a), we write, in accordance with (4.24),

gO =
⊕
α∈O

gα.

Then obviously,
g = g0 ⊕

⊕
O∈Σ(g,a)/F

gO, (4.41)

with mutually orthogonal summands. Each of the summands is F -invariant, hence
σ-invariant. In particular, if we write h0 = h ∩ g0 and hO = h ∩ gO, then

h = h0 ⊕
⊕

O∈Σ(g,a)/F

hO, (4.42)

with F -stable orthogonal summands.

Lemma 4.8.7.

(a) The decomposition (4.42) is orthogonal for 〈 · , · 〉.

(b) The decomposition (4.42) is preserved by Lw.

(c) The decomposition (4.42) is orthogonal for Hw.

Proof. The validity of (a) follows immediately from the fact that relative to the given
inner product, the root spaces are mutually orthogonal, as well as orthogonal to g0.

For (b) we note that the decomposition (4.41) is preserved by Ad(A), ad(a), Ek

and πh. Finally, in view of Lemma 4.8.6, the validity of (c) follows from (a) and
(b).
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It follows from the above lemma that the kernel of Hw decomposes in accordance
with (4.42). Let vP,X := (ker Hw)⊥ ∩ h. Then in view of (4.40) we have

vP,X = h⊥X ∩ (h ∩ nP )⊥ ∩ h =
∑

O∈Σ(g,a)/F

vO, (4.43)

with vO = vP,X ∩hO. From these definitions it follows that Hw is non-degenerate on
each of the spaces vO. Moreover, Hw is positive definite if and only if the restriction
of Hw to vO is positive definite for every O ∈ Σ(g, a)/F. This in turn is equivalent
to the condition that the symmetric map Lw : h→ h has a positive definite restriction
to each of the spaces vO (if vO is zero, we agree that the latter is automatic). We will
now systematically discuss the types of orbits O for which vO is non-trivial.

First of all, we note that α ∈ O =⇒ −α = θα ∈ O. Therefore, we see that
O∩Σ(P ) 6= ∅ for allO ∈ Σ(g, a)/F. Let∼ denote the equivalence relation on Σ(P )
defined by

α ∼ β ⇐⇒ Fα = Fβ,

then the map α 7→ Fα induces a bijection from Σ(P )/ ∼ onto Σ(g, a)/F. The
following lemma summarizes all possibilities for the spaces vO, as O ∈ Σ(g, a)/F.

Lemma 4.8.8. Let α ∈ Σ(P ), and put O = Fα.

(a) If α(X) = 0 then vO = 0.

(b) If α(X) 6= 0 then we are in one of the following two cases (b.1) and (b.2).

(b.1) α ∈ Σ(P, σ); in this case vO = {V + σ(V ) : V ∈ g−α}.
(b.2) α ∈ Σ(P, σθ); in this case vO = hO.

Proof. (a) If α(X) = 0 then hO ⊆ gX , so that vO = {0}.
(b) Assume that α(X) 6= 0. Then it follows that α /∈ a∗h, so that α 6= σα. By

Lemma 4.2.2 we are in one of the cases (b.1) and (b.2).
We first discuss case (b.1). Then σα ∈ Σ(P ) so that σα 6= −α and O = Fα

consists of the four distinct elements α, θα = −α, σα and σθα = −σα. We see that
hO consists of sums of elements of the form U + σ(U) and V + σ(V ) with U ∈ gα
and V ∈ g−α. The elements U + σ(U) belong to h ∩ nP , whereas the elements
V + σ(V ) belong to h⊥X ∩ (h ∩ nP )⊥. In view of (4.43) this implies the assertion of
(b.1).

Next, we discuss case (b.2). ThenO∩Σ(P ) = {α,−σα} so that hO ⊥ (nP ∩h).
Since obviously hO ⊥ hX , we infer the assertion of (b.2).

We will now proceed by explicitly calculating the restrictions Lw|vO for all these
cases. The following lemma will be instrumental in our calculations.

Lemma 4.8.9. Let Tw : g→ g be defined by

Tw = ad(X) ◦Ad(aw) ◦ Ek ◦Ad(aw).

Let β ∈ Σ(g, a) and Uβ ∈ gβ.
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(a) If β ∈ Σ(P ) then Tw(Uβ) = 0.

(b) If −β ∈ Σ(P ) then Tw(Uβ) = β(X) (a2wβUβ − θUβ).

Proof. Assume β ∈ Σ(P ). Then gβ ⊆ nP ⊆ kerEk. Since Ad(aw) preserves gβ, (a)
follows.

For (b), assume that −β ∈ Σ(P ). Then Uβ equals Uβ + θUβ modulo nP , so that
Ek(Uβ) = Uβ + θUβ. Hence,

Tw(Uβ) = ad(X) ◦Ad(aw)[awβ(Uβ + θUβ)]

= ad(X)(a2wβUβ + θUβ)

= β(X)(a2wβUβ − θUβ).

In our calculations of Lw|vO , we will distinguish between the cases described in
Lemma 4.8.8. Case (a) is trivial.

Lemma 4.8.10 (Case b.1). Let O = Fα with α ∈ Σ(P, σ) and α(X) 6= 0. Then

Lw|vO =
α(X)

2
(a−2wα − a2wα)I.

In particular, this restriction is positive definite if and only if α(X)α(w−1 log a) < 0.

Proof. Let V ∈ g−α and put Z := V + σ(V ). Since −α,−σα ∈ −Σ(P ), it follows
from Lemma 4.8.9 that

Tw(Z) = −α(X)(a−2wαV − θV )− α(σX)(a2wασV − θσV )

= α(X)[−a−2wαV + a2wασV + θV − θσV ]

so that

Lw(Z) = −πh ◦ Tw(Z) =
α(X)

2
(a−2wα − a2wα)Z.

It follows that Lw restricts to multiplication by a scalar on vO. The sign of this scalar
equals the sign of −α(X)α(w−1 log a). The result follows.

We now turn to the calculation of Lw|vO in case (b.2), where O = Fα, with
α ∈ Σ(P, σθ) and α(X) 6= 0. There are two possibilities between which we will
distinguish:

(b.2.1) α ∈ Σ(P, σθ) \ a∗q,

(b.2.2) α ∈ Σ(P ) ∩ a∗q.
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In each of these cases, vO = hO by Lemma 4.8.10. We will use the notation

v(U) = h(U) = h ∩ span (F · U),

for U ∈ gα. In case (b.2.1), the orbit O = Fα consists of the four distinct roots
α, σα, θα and σθα, and

v(U) = R(U + σ(U))⊕ R(σθ(U) + θ(U)).

In case (b.2.2), O = Fα = {α,−α}, and we see that

v(U) = R(U + σ(U)).

In all of these cases, we see that if U1, . . . , Um is an orthonormal basis of gα, then

vO =
m⊕
j=1

v(Uj), (4.44)

with mutually orthogonal summands.

Lemma 4.8.11 (Case (b.2.1)). LetO = Fα, with α ∈ Σ(P, σθ) \ a∗q and α(X) 6= 0.
Then Lw|vO is positive definite if and only if α(X) > 0 and α(X)α(w−1 log a) < 0.

Proof. Fix an element U ∈ gα and put Z1 = U +σ(U) and Z2 = θZ1 = θU +σθU.
Then Tw(U) = 0 by Lemma 4.8.9, hence

Tw(Z1) = Tw(σU)

= σα(X)(a2wσασ(U)− θσ(U))

= α(X)(θσ(U)− a−2wασ(U)),

from which we see that

Lw(Z1) = −πhTw(Z1) =
α(X)

2
(a−2wαZ1 − Z2).

Likewise,

Lw(Z2) =
α(X)

2
(a−2wαZ2 − Z1).

It follows that Lw preserves the subspace v(U) of vO spanned by the orthogonal
vectors Z1, Z2 and that the restriction Lw|v(U) has the following matrix with respect
to this basis:

mat(Lw|v(U)) =
α(X)

2

(
a−2wα −1
−1 a−2wα

)
This matrix is positive definite if and only if both its trace and determinant are posi-
tive. This is equivalent to

α(X) > 0 and α(X)(a−4wα − 1) > 0.
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It follows that Lw is positive definite on the subspace v(U) if and only if α(X) > 0
and α(X)α(w−1 log a) < 0.

Let U1, . . . , Um be an orthonormal basis for gα. Then by (4.44) we see that map
Lw is positive definite if and only if all restrictions Lw|v(Uj) are positive definite.
This is true if and only if α(X) > 0 and α(X)α(w−1 log a) < 0.

Lemma 4.8.12 (Case (b.2.2)). Let O = Fα with α ∈ Σ(P ) ∩ a∗q and α(X) 6= 0.
Then Lw|vO is positive definite if and only if the following two conditions are fulfilled.

(a) α ∈ Σ(P )+ ∩ a∗q =⇒ α(X)α(w−1 log a)) < 0.

(b) α ∈ Σ(P )− ∩ a∗q =⇒ α(X) > 0.

Proof. We write vO,+ = vO ∩ k and vO,− = vO ∩ p. Then

vO = vO,+ ⊕ vO,−,

with orthogonal summands. We will show that Lw preserves this decomposition, and
determine when both restrictions Lw|vO,± are positive definite.

Let U± ∈ gα,± and put Z± = U±+σ(U±). Then Z± ∈ gO,±, and every element
of vO,± can be expressed in this way.

By a straightforward computation, involving Lemma 4.8.9, we find

Lw(Z±) =
1

2
α(X)(a−2wα ∓ 1)Z±.

This shows that Lw acts by a real scalar C± on vO,±. The restriction of Lw to vO±
is positive definite if and only if the restrictions of Lw to both subspaces vO,± are
positive definite. The latter condition is equivalent to

vO,+ 6= 0 =⇒ C+ > 0 and vO,− 6= 0 =⇒ C− > 0.

The space vO,± is non-trivial if and only if gα,± 6= 0, which in turn is equivalent to
α ∈ Σ(P )±∩a∗q.On the other hand, the sign ofC+ equals that of−α(X)α(w−1 log a)
whereas the sign ofC− equals that of α(X). From this the desired result follows.

Completion of the proof of Proposition 4.8.4. First assume that Hw is positive
definite. Then Lw restricts to a positive definite symmetric map on each of the spaces
vO for O = Fα, α ∈ Σ(P ). First assume that α ∈ Σ(P )+. If α(X) = 0, then

α(X)α(w−1 log a) ≤ 0 (4.45)

holds. If α(X) 6= 0, we are in one of the cases (b.1) or (b.2) of Lemma 4.8.8. In the
latter case, we are either in the subcase (b.2.1) or in (b.2.2) with α ∈ Σ(P )+ ∩ a∗q.
In all of these cases, inequality (4.45) is valid. We conclude that assertion (a) of the
proposition is valid.
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For the validity of assertion (b), assume that α ∈ Σ(P )−. If α(X) = 0, then

α(X) ≥ 0. (4.46)

If α(X) 6= 0, then we must be in case (b.2) of Lemma 4.8.8, since Σ(P )− ∩
Σ(P, σ) = ∅.We are either in subcase (b.2.1) or in subcase (b.2.2) with α ∈ Σ(P )+∩
a∗q. In both subcases, (4.46) holds. This establishes condition (b) of the proposition,
and the implication in one direction.

For the converse implication, assume that conditions (a) and (b) of the proposition
hold. Let α ∈ Σ(P ) and put O = Fα. Then it suffices to show that Hw is positive
definite on vO.

If α(X) = 0, then vO = 0 by Lemma 4.8.8 and it follows that Hw is positive
definite on vO. Thus, assume that α(X) 6= 0. Then by regularity of log a, the expres-
sion α(X)α(w−1 log a) is different from zero. Hence if any of the inequalities (4.45)
or (4.46) holds, it holds as a strict inequality.

In case (b.1), α ∈ Σ(P, σ) ⊆ Σ(P )+ so that Hw|vO is positive definite by Lemma
4.8.10. In case (b.2.1), α ∈ Σ(P, σθ) \ a∗q ⊆ Σ(P )+ ∩ Σ(P )− so that (4.45) and
(4.46) are both valid. Hence, Hw|vO is positive definite by Lemma 4.8.11.

Finally, assume we are in case (b.2.2). Since Σ(P )± ∩ a∗q ⊆ Σ(P )±, it follows
from the hypotheses (a) and (b) of the proposition and from Lemma 4.8.12 that Hw|vO
is positive definite.

Corollary 4.8.13. Let w ∈ WK∩H . Then the function Fa,X as well as the signature
and rank of its Hessian are constant on the immersed submanifold wHX(NP ∩H).

Proof. As the group H is essentially connected, HX = ZK∩H(aq)H◦X . Let xw be a
representative of w in NK∩H . Since ZK∩H(aq) is normal in NK∩H(aq), it follows
that

wHX(NP ∩H) = xwZK∩H(aq)H◦X(NP ∩H) = ZK∩H(aq)xwH
◦
X(NP ∩H).

The function Fa,X : H → R is left ZK∩H(aq)- and right (NP ∩ H)-invariant.
Hence, it suffices to prove the assertions for the set xwH◦X of critical points. This set
is connected, so that Fa,X is constant on it. From Lemma 4.8.1 it follows that rank
and signature of its Hessian remain constant along this set as well.

As in (4.2) we define

Ω := conv(WK∩H · log a) + Γ(P ).

Lemma 4.8.14. Let a ∈ Areg
q andX ∈ aq. Assume that the function Fa,X has a local

minimum at the critical point h ∈ Ca,X . Then for every U ∈ Ω

〈X,U〉 ≥ 〈X,HP,q(ah)〉.

In particular, Ω lies on one side of the hyperplane HP,q(ah) +X⊥.
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Proof. The critical point h belongs to a connected immersed submanifold of the form
xwH

◦
X(H ∩NP ). All points of this submanifold are critical for Fa,X , so that Fa,X is

constant along it. We see that

Fa,X(h) = Fa,X(xw) = 〈X,HP,q(x−1
w axw)〉 = 〈X,w−1 log a〉.

The Hessian of Fa,X at the critical point h must be positive semidefinite. It now
follows from Proposition 4.8.4 that

(a) ∀α ∈ Σ(P )+ : α(X)α(w−1(log a)) ≤ 0;

(b) ∀α ∈ Σ(P )− : α(X) ≥ 0.

By (a) and Lemma 4.8.17 below (applied to −X), it follows that

〈X,U1〉 ≥ 〈X,w−1 log a〉 = Fa,X(h),

for all U1 ∈ conv(WK∩H ·w−1 log a). From (b) it follows that 〈X,Hα〉 = α(X) ≥ 0
for all α ∈ Σ(P )−, so that

〈X,U2〉 ≥ 0 (∀ U2 ∈ Γ(P )).

Since every element U ∈ Ω may be decomposed as U = U1 +U2 with U1 and U2 as
above, the assertion follows.

Remark 4.8.15. It can be readily shown that the converse implication also holds,
namely if for every U ∈ Ω

〈X,U〉 ≥ 〈X,w−1(log a))〉,

then the two conditions of Proposition 4.8.4 hold.

Lemma 4.8.16. The set Σ(P )+ consists of all roots α ∈ Σ(P ) with α ∈ a∗h or
α|aq ∈ Σ(g, aq)+.

Proof. In view of Definition 4.8.3 it suffices to show that for α ∈ Σ(g, a) \ (a∗h ∪ a∗q)
we have α|aq ∈ Σ(g, aq)+. Assume α /∈ a∗h ∪ a∗q. Then α and σθα are distinct roots
that restrict to the same root ᾱ of Σ(g, aq). Thus, the sum gα + σθgα is direct and
contained in gᾱ and we see that gᾱ,+ 6= 0.

Lemma 4.8.17. Let P ∈ P(A). Let X,Y ∈ aq and assume that α(X)α(Y ) ≥ 0 for
all α ∈ Σ(P )+. Then

〈X,U〉 ≤ 〈X,Y 〉, for all U ∈ conv(WK∩H · Y ).

Proof. In view of Lemma 4.8.16, the hypothesis is equivalent to

α(X)α(Y ) ≥ 0

for all roots α ∈ Σ(g, aq)+. We may now fix a Weyl chamber a+
q for the root system

Σ(g, aq)+ such that X and Y belong to the closure of a+
q . Then it is well known

that 〈X,wY 〉 ≤ 〈X,Y 〉 for all w in the reflection group W (Σ(g, aq)+) generated by
Σ(g, aq)+. Since this reflection group is equal to WK∩H , by Proposition 2.2 in [5],
the result follows.
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4.9 Reduction by a limit argument

Before turning to the proof of our main theorem, Theorem 4.10.1, we will first prove
a lemma that reduces the validity of the theorem to its validity under the additional
assumption that the element a be regular inAq.We assume that P ∈ P(A) and recall
the definition of the closed convex polyhedral cone Γ(P ) given in Definition 3.1.4.

Lemma 4.9.1. Assume that the assertion

prq ◦ HP (aH) = conv(WK∩H · log a) + Γ(P ) (4.47)

is valid for all a ∈ Areg
q . Then assertion (4.47) holds for all a ∈ Aq.

Proof. Assume the assertion is valid for all a ∈ Areg
q , and let a ∈ Aq be an arbitrary

fixed element. Fix a sequence (aj)j≥1 in Areg
q with limit a. Let h ∈ H . By the

validity of (4.47) for aj in place of a, there exist, for each j ≥ 1, elements λw,j ∈
[0, 1] with

∑
w∈WK∩H

λw,j = 1 and elements γj ∈ Γ(P ) such that

HP,q(ajh) =
∑

w∈WK∩H

λw,iw(log aj) + γj .

By passing to a subsequence of indices we may arrange that the sequence (λw,j)j
converges with limit λw ∈ [0, 1] for each w ∈ WK∩H . It follows that the sequence
(γj) must have a limit γ ∈ aq such that

HP,q(ah) = lim
j→∞

HP,q(ajh) =
∑

w∈WK∩H

λww(log a) + γ.

By taking the limit we see that
∑

w λw = 1 and since Γ(P ) is closed, γ ∈ Γ(P ).
Hence, HP,q(ah) ∈ conv(WK∩H · log a) + Γ(P ), and we find that

HP,q(aH) ⊆ conv(WK∩H · log a) + Γ(P ).

For the converse inclusion, assume that Y ∈ conv(WK∩H · log a)+Γ(P ). Then
there exist γ ∈ Γ(P ) and λw ∈ [0, 1] with

∑
w∈WK∩H

λw = 1 such that

Y =
∑

w∈WK∩H

λww(log a) + γ.

Put
Yj =

∑
w∈WK∩H

λww(log aj) + γ.

Then there exist hj ∈ H such that HP,q(ajhj) = Yj for every j. The sequence (Yj)
is convergent, hence contained in a compact set of aq. Likewise, the sequence (aj) is
contained in a compact subset A ⊆ Aq. By Corollary 4.4.12 there exists a compact
subsetK ofH/H∩P such that hj(H∩P ) ∈ K for all j. By passing to a subsequence
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we see that we may arrange that the sequence hj(H ∩P ) converges in H/H ∩P. By
replacing the hj with suitable other representatives, we may arrange that the sequence
(hj) converges to an element h ∈ H. It then follows that

Y = lim
j→∞

Yj = lim
j→∞

HP,q(ajhj) = HP,q(ah) ∈ HP,q(aH).

4.10 Proof of the main theorem

In this section we will prove our main result. For P ∈ P(A) we recall the definition
of the closed convex polyhedral cone Γ(P ) given in Definition 3.1.4.

Theorem 4.10.1. Let P be a minimal parabolic subgroup of G containing A and let
a ∈ Aq. Then

prq ◦ HP (aH) = HP,q(aH) = conv(WK∩H · log a) + Γ(P ). (4.48)

The proof of our main theorem proceeds by induction, for whose induction step
the following lemma is a key ingredient.

If X ∈ aq, we denote by GX the centralizer of X in G. This group belongs
to the Harish-Chandra class and is σ-stable. Moreover, by [5, Proposition 2.3], the
centralizer HX := H ∩ GX is an essentially connected open subgroup of (GX)σ.
From

P ∩GX = (ZK(a)ANP ) ∩ (KXANP,X) = ZK(a)ANP,X ,

see (4.19) for notation, we see that PX := P ∩GX is a minimal parabolic subgroup
of GX .

We agree to write Γ(PX) for the cone in aq spanned by prqHα, for α ∈ Σ(P )−
with α(X) = 0. Furthermore, for a given a ∈ Aq, we define Ωa,X = ΩX by

ΩX :=
⋃

w∈WK∩H

ΩX,w, where (4.49)

ΩX,w :=
(
conv(WK∩HX · w

−1 log a) + Γ(PX)
)
. (4.50)

Remark 4.10.2. It is clear from the definition that the set ΩX,w, for w ∈WK∩H , is a
closed convex polyhedral set, contained in the affine subset w−1 log a+ span {Hα :
α ∈ Σ(gX , aq)} of aq. In particular,

ΩX,w ⊆ w−1 log a+X⊥.

Lemma 4.10.3. Let X ∈ S, a ∈ Areg
q and let Ca,X ⊆ H be the set of critical points

of the function Fa,X : H → R; cf. Lemma 4.5.5 and (4.27). If the analogue of the
assertion of Theorem 4.10.1 holds for the data GX , HX , KX and PX in place of
G,H,K and P then

HP,q(aCa,X) = ΩX . (4.51)
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Proof. Using the characterization of Ca,X given in Lemma 4.5.5, we obtain

HP,q(aCa,X) =
⋃

w∈WK∩H

HP,q(awHX(NP ∩H))

=
⋃

w∈WK∩H

HP,q(awHX), (4.52)

where aw = w−1aw is regular in Aq, for each w ∈WK∩H .
By the compatibility of the Iwasawa decompositions for the two groups G and

GX we see that the restriction of HP,q : G→ aq to GX equals the similar projection
GX → aq associated with PX ; we denote the latter by HPX ,q. Hence,

HP,q(awHX) = HPX ,q(awHX).

In view of the hypothesis that the convexity theorem holds for the data GX , HX , PX ,
we infer that

HP,q(awHX) = conv(WK∩HX · log aw) + Γ(PX) = ΩX,w.

In view of (4.52) and (4.49) we now obtain (4.51).

Proof of Theorem 4.10.1. The proof relies on an inductive procedure, with induction
over the rank of the root system Σ(g, aq). The legitimacy of this procedure has been
discussed at length in [5, Sect. 2].

We start the induction with rk Σ(g, aq) = 0. Then, for every root α ∈ Σ(g, a) we
have that α|aq = 0. Thus, α ∈ Σ(g, a) ∩ a∗h, which implies that gα is stable under σ,
so that

gα = (gα ∩ h)⊕ (gα ∩ q).

An easy computation now shows that gα ∩ q = {0} which implies that gα ⊆ h. As
this holds for any a-root α, it follows that nP ⊆ h, hence

h = n̄P ⊕ (m ∩ h)⊕ ah ⊕ nP

and we see that h centralizes aq. It follows that H◦ centralizes aq. Since H is essen-
tially connected, this implies that H centralizes aq. In particular, WK∩H = {1}. It
also follows that Σ(P )− = ∅, so that Γ(P ) = {0}. Hence, in this case, the set on the
right-hand side of (4.48) equals {log a}.

On the other hand, the Iwasawa decomposition G = KANP is σ-stable so that

H = (K ∩H)(A ∩H)NP .

We thus see that

HP,q(aH) = HP,q(Ha) = HP,q(H ∩A) + log a = log a.

Hence, the equality (4.48) holds in case rk Σ(g, aq) = 0.
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Now assume that m is a positive integer, that rk Σ(g, aq) = m and that the asser-
tion of the theorem has already been established for the case that rk Σ(g, aq) < m.

By Lemma 4.9.1 it suffices to prove the validity of (4.48) under the assumption
that a ∈ Areg

q .We will first do so under the additional assumption that Σ(g, aq) spans
a∗q. In the end, the general case will be reduced to this.

Our assumption that Σ(g, aq) is spanning guarantees that for each non-zero X ∈
aq not all roots of Σ(g, aq) vanish on X . Therefore, the rank of Σ(gX , aq) is strictly
smaller than m = rkΣ(g, aq). By the induction hypothesis, the convexity theorem
holds for (GX , HX ,KX , PX). Hence, by Lemma 4.10.3, the set HP,q(aCa,X) equals
ΩX . By Remark 4.10.2 the complement aq \ ΩX is open and dense in aq.

Let S0 ⊆ S be a finite subset as in Lemma 4.6.6. Then it follows by application
of Lemma 4.10.3 that

HP,q(aCa) = ∪X∈S0ΩX . (4.53)

In particular, the complement of this set in aq is dense. Moreover, it follows from
(4.53) that

HP,q(aCa) ⊆ conv(WK∩H · log a) + Γ(P ) = Ω. (4.54)

From Lemma 4.6.8 we see that HP,q(aH) and HP,q(aCa) are closed subsets of aq and
that HP,q(aH)\HP,q(aCa) is an open and closed subset of the (open and dense) subset
aq \ HP,q(aCa), hence a union of connected components of the latter set. Lemma
4.6.9 ensures that at least one connected component of aq \ HP,q(aCa) must belong
to HP,q(aH) \ HP,q(aCa).

From (4.54) it follows that

aq \ Ω ⊆ aq \ HP,q(aCa).

Now aq \ Ω is connected hence must be contained in a connected component Λ of
aq \ HP,q(aCa).

There are two possibilities:

(a) Λ ⊆ HP,q(aH) \ HP,q(aCa);

(b) Λ ∩ (HP,q(aH) \ HP,q(aCa)) = ∅.

From its definition, one sees that Ω is strictly contained in half-space, which implies
that aq \ Ω, and therefore Λ, must contain a line of aq. From Corollary 4.4.15 we
know that HP,q(aH) does not contain such a line, so that we may exclude case (a)
above. From (b) it follows that

(aq \ Ω) ∩ HP,q(aH) \ HP,q(aCa) = ∅,

which implies that HP,q(aH) \ HP,q(aCa) ⊆ Ω. Combining this with (4.54) we
conclude that

HP,q(aH) ⊆ Ω. (4.55)

We now turn to the proof of the converse inclusion.
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In the above we concluded that the set HP,q(aH) \HP,q(aCa) is open and closed
as a subset of aq \ HP,q(aCa). In view of (4.55) the set is also open and closed as
a subset of Ω \ HP,q(aCa). Thus, HP,q(aH) \ HP,q(aCa) is a union of connected
components of Ω \ HP,q(aCa). We will establish the converse of (4.55) by showing
that all connected components of Ω \ HP,q(aCa) are contained in HP,q(aH).

Again by the use of Lemma 4.6.9 we infer that at least one connected component
Λ1 of Ω \ HP,q(aCa) is contained in HP,q(aCa). Arguing by contradiction, assume
this were not the case for all components. Then there exists a second connected
component Λ2 of Ω \ HP,q(aCa) = Ω \ ∪X∈S0ΩX such that Λ2 ∩ HP,q(aH) = ∅.
In view of Remark 4.10.2, we may apply Lemma 4.10.4 below to the set Ω and the
finite collection of subsets ΩX,w, where X ∈ S0 and w ∈ WK∩H , and obtain a line
segment with the properties of Lemma 4.10.4, connecting Λ1 and Λ2. By following
intersections along this line segment, we see that we may assume that the connected
components Λ1 and Λ2 exist with the additional property that they are adjacent, i.e.,
there exists a codimension 1 subset ΩX,w ⊆ Ω together with a point Y ∈ ΩX,w

and a positive number ε > 0 such that B(Y ; ε) \ ΩX,w consists of two connected
components Λ′1 and Λ′2 such that Λ′j ⊆ Λj for j = 1, 2. In particular, this implies
that Λ′1 and Λ′2 are on different sides of the hyperplane aff(ΩX,w) = Y + X⊥. We
may replace X by −X if necessary, to arrange that Y + tX ∈ Λ1 for t ↓ 0.

By (4.53) there exists a point h ∈ Ca,X such that HP,q(ah) = Y. For a sufficiently
small neighborhood U of h in H we have HP,q(aU) ⊆ B(Y ; ε), hence HP,q(aU) ⊆
Λ1 ∩ B(Y ; ε). It follows that Fa,X ≥ 〈X,Y 〉 = Fa,X(h) on U. Hence, Fa,X has a
local minimum at h. By what we established in Lemma 4.8.14 this implies that Ω
should be on one side of the hyperplane Y +X⊥, contradicting the observation that
Λ′1 and Λ′2 are non-empty open subsets on different sides of this hyperplane, but both
contained in Ω.

In view of this contradiction we conclude that all components of Ω \ HP,q(aCa)
are contained in HP,q(aH).

This finishes the proof in case Σ(g, aq) has rank m and spans a∗q. We finally
consider the case with rk Σ(g, aq) = m in general.

Let c be the intersection of the root hyperplanes kerα ⊆ aq for α ∈ Σ(g, aq).
Then c is contained in aq and central in g. Let 8p be the orthocomplement of c in p.
Then 8g := k⊕ 8p is an ideal of g which is complementary to c.

By the Cartan decomposition and the fact that c is central, it follows that the map
K × 8p × c → G, (k,X,Z) 7→ k expX expZ is a diffeomorphism onto. It readily
follows that 8G = K exp 8p is a group of the Harish-Chandra class, with the indicated
Cartan decomposition for the Cartan involution 8θ = θ|8G. The restricted map 8σ :=
σ|8G is an involution of 8G which commutes with 8θ. The group 8H := H is an open
subgroup of (8G)

8σ, which is essentially connected. Furthermore, 8aq := 8p ∩ aq is
maximal abelian in 8p ∩ q and 8a = 8p ∩ a is maximal abelian in 8p. The root system
Σ(8g, 8aq) consists of the restrictions of the roots from Σ(g, aq), hence spans the dual
of 8aq.

114



The group 8P = 8G∩P is a minimal parabolic subgroup of 8G containing 8A. We
note that 8P = M 8ANP .

We note that Areg
q ' 8Areg

q ×C. Let a ∈ Areg
q . Then we may write a = 8a · c, with

8a ∈ 8Areg
q and c ∈ C. By the convexity theorem for 8G and since c is central in G, it

now follows that

HP,q(aH) = HP,q(8aHc)

= H8P ,q(8aH) + log c

= conv(WK∩H · log 8a) + Γ(8P ) + log c

= conv(WK∩H · log a) + Γ(P ).

We recall that the relative interior of a convex subset S of a finite dimensional
real linear space is defined to be the interior of S in its affine span aff(S).

Lemma 4.10.4. Let V be a finite dimensional real linear space and C ⊆ V a closed
convex polyhedral subset with non-empty interior. Let Ci (i ∈ {1, . . . , n}) be closed
convex polyhedral subsets of C, of positive codimension. Then the following state-
ments are true.

(a) The complement C ′ := C \ ∪ni=1Ci is dense in C.

(b) Let A and B be open subsets of V contained in C ′. Then for each a ∈ A there
exists b ∈ B such that for each i with Ci ∩ [a, b] 6= ∅ the following assertions
are valid,

(1) codim(Ci) = 1;

(2) [a, b]∩Ci consists of a single point p which belongs to the relative interior
of Ci. Furthermore, if p ∈ Cj for some 1 ≤ j ≤ n, then aff(Cj) =
aff(Ci).

Proof. (a) Clearly, for every 1 ≤ i ≤ n, the set C \ Ci is open and dense in C. The
same holds for their intersection, which equals C \ ∪1≤i≤nCi.

(b) We begin by enlarging the set {Ci | 1 ≤ i ≤ n} of closed convex polyhedral
subsets. We add to this set intersections of elements, Ci ∩ Cj , and the boundaries of
elements, ∂Ci. These sets are closed convex polyhedral sets as well. We repeat this
step as many times as necessary, until nothing more gets added to the set. We denote
the new set similarly: {Ci | 1 ≤ i ≤ m}, m ≥ n.

Observe that codim(∂Ci) > codim(Ci) (since Ci has non-empty interior) and
that the same holds forCi∩Cj , namely codim(Ci∩Cj) > codim(Ci) and codim(Ci∩
Cj) > codim(Cj), unless aff(Ci) = aff(Cj) or one set is contained in the other,
Cj ⊂ Ci. These observations insure that the second assertion of (b) will follow
automatically from the first.
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By (a) we may choose a ∈ A \ ∪mi=1Ci. Denote by

Ωi :=

{
Ci , if codim(Ci) = 1

{a+ r(c− a) : c ∈ Ci, r ≥ 0} , otherwise.

Then the sets Ωi (1 ≤ i ≤ m) satisfy the conditions of the lemma and thus, by (a)
we conclude that the complement C \ ∪mi=1Ωi is open and dense in C. Hence, there
exists b ∈ B \ ∪mi=1Ωi which satisfies b 6∈ Ci for all 1 ≤ i ≤ m. It remains to show
that the segment [a, b] does not intersect any of the convex polyhedral cones Cj of
codimension greater than 1.

Assume [a, b] ∩ Cj 6= ∅ for some Cj of codimension greater than 1. Then, there
exists t ∈ [0, 1] such that c := (1− t)a+ tb ∈ Cj . Since a 6∈ Cj it follows that t 6= 0
and thus

b = a+
1

t
(c− a) ∈ Ωj .

We arrived at a contradiction.
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Appendix A

Proof of Lemma 4.2.10

Finally, we prove Lemma 4.2.10.
We begin by showing that the result holds for the case that G is a complex semi-

simple Lie group, connected with trivial center. That proof will be based on the
following general lemma, inspired by [41, Proposition 1].

Let h be a Cartan subalgebra of the Lie algebra g and let N be the class of
complex finite dimensional nilpotent Lie algebras n, equipped with a representation
of h by derivations, such that the following conditions are fulfilled

(a) the representation of h in n is semi-simple;

(b) all weight spaces of h in n have complex dimension one.

If n belongs to the class N , we write Λ(n) for the set of h-weights in n. If λ ∈ Λ(n),
then the associated weight space is denoted by nλ.

Lemma A.0.5. Let n ∈ N and let N be the connected, simply-connected Lie group
with Lie algebra n. Let λ1, . . . , λm be the distinct weights of h in n. Then the map

ψ : (X1, . . . , Xm) 7→ expX1 · · · · · expXm

defines a diffeomorphism

nλ1 × . . .× nλm
'−→ N.

Proof. We will use induction on dimC(n). If dimC n = 1 then n is abelian and the
result holds trivially.

Next, assume that m > 1 and assume that the result has been established for n
with dimC n < m. Assume that n ∈ N has dimension m.

Denote by n1 the center of n, which is non-trivial. If n1 = n then n is abelian
and the result is trivially true. Thus, we may as well assume that 0 ( n1 ( n. In
particular, this implies that both n1 and n/n1 have dimensions at most m − 1. Put
l := dim n1.
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The ideal n1 is stable under the action of h and it is readily verified that n1 and
n/n1 with the natural h-representations belong to N . Furthermore, since all weight
spaces are 1-dimensional, we see that

Λ(n) = Λ(n1) t Λ(n/n1).

We will first prove that ψ is a diffeomorphism under the assumption that the h-
weights in n are numbered in such a way that

Λ(n1) = {λ1, . . . , λl} and Λ(n/n1) = {λl+1, . . . , λm}.

Since N is simply-connected, the map exp : n → N is a diffeomorphism so that
N1 := exp(n1) is the connected subgroup of N with Lie algebra n1. In particular,
N1 is simply connected as well. Since n1 is an ideal, N/N1 has a unique structure of
Lie group for which the natural map N → N/N1 is a Lie group homomorphism. We
now observe that N → N/N1 is a principal fiber bundle with fiber N1. By standard
homotopy theory we have a natural exact sequence

π1(N)→ π1(N/N1)→ π0(N1).

Since N is simply-connected, and N1 connected, we conclude that N/N1 is the sim-
ply connected group with Lie algebra n/n1.

By the induction hypothesis, the maps

ψn1 : nλ1 × . . .× nλl → N1

ψn/n1
: (n/n1)λl+1

× . . .× (n/n1)λm → N/N1

are diffeomorphisms. For every j ∈ {l + 1, . . . ,m} the canonical projection n →
n/n1 induces the isomorphisms of weight spaces nλj → (n/n1)λj , for j > l. Let
ψ̄ : nλl+1

× . . .× nλm → N/N1 be defined by ψ̄(Xl+1, . . . , Xm) = expXl+1 · . . . ·
expXmN1. Then the following diagram commutes:

nλl+1
× . . .× nλm

ψ̄−−−−−−−−→ N/N1

'
y ∥∥∥

(n/n1)λl+1
× . . .× (n/n1)λm

ψn/n1−−−−−−−−→ N/N1

From this we infer that ψ̄ is a diffeomorphism. We now obtain that the map ψ̃ :
nλl+1

× . . .× nλm ×N1 → N ,

(Xl+1, . . . , Xm, n1) 7→ (expXl+1 · . . . · expXm)n1,

is a diffeomorphism onto N. Since

ψ(X1, . . . , Xl, Xl+1, . . . , Xm) = ψ̃(Xl+1, . . . , Xm, ψn1(X1, . . . , Xl))
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it follows that ψ is a diffeomorphism as well. Clearly, the above proof works for every
enumeration of the weights in Λ(n/n1). Since the weight spaces (n1)λ for λ ∈ Λ(n1)
are all central in n, we conclude that the result holds for any enumeration of the
weights in Λ(n).

Corollary A.0.6. Let G be a connected complex semi-simple Lie group and nB the
nilpotent radical of a Borel subalgebra b of g. Let h be a Cartan subalgebra con-
tained in b. Let n1, . . . , nk be linearly independent subalgebras of nB , each of which
is a direct sum of h-root spaces, and assume that their direct sum n := n1 ⊕ . . .⊕ nk
is again a subalgebra. Put N := exp n, N1 := exp n1, . . . , Nk := exp nk.

Then the multiplication map

µ : N1 × . . .×Nk → N

is a diffeomorphism.

Proof. This is an immediate consequence of Lemma A.0.5.

Proof of Lemma 4.2.10. We assume that G is a real reductive Lie group of the
Harish-Chandra class. Define

g1 := [g, g],

the semi-simple part of the Lie algebra of G. Let G1 be the analytic subgroup of G
with Lie algebra g1. Since the nilpotent radical NP of P is completely contained in
G1, we may assume from the start that G = G1, i.e. G is connected semi-simple
with finite center.

Since Ad is a Lie group diffeomorphism from G onto Aut(g)◦, a real form of
Aut(gC)◦, and Ad(NP ) is diffeomorphic to NP , we may assume that G is a real
form of a complex semi-simple Lie group GC, which is connected with trivial center.
Let τ be the conjugation on GC, such that

G = (GτC)◦.

Let gC denote the Lie algebra ofGC, then gC = g⊕ig.Note that the complexification
nPC of nP equals nP ⊕ inP and that

NP = (NPC)τ .

Take a Cartan subalgebra of gC, containing aC = a⊕ ia. It is of the form

hC = tC ⊕ aC,

where t is a maximal abelian subspace of m := Zk(a). Since t centralizes a, all
a-root spaces are invariant under ad(t). This implies that the subalgebras njC :=
nj ⊕ inj (j ∈ {1, . . . , k}) of nPC are direct sums of hC-root spaces. Furthermore,
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their direct sum equals nC = n ⊕ in, hence is a subalgebra. Finally, there exists a
Borel subalgebra containing hC + nC. By Corollary A.0.6, the multiplication map

µC : N1C × . . .×NkC → NC

is a diffeomorphism. It readily follows that µC restricts to a bijection from (N1C)τ ×
· · · × (NkC)τ onto (NC)τ . Since

(NC)τ = N and (NjC)τ = Nj for all 1 ≤ j ≤ k,

it follows that µ is a bijective embedding from N1 × · · · × Nk onto N, hence a
diffeomorphism.
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Summary

This thesis presents two new results in Lie theory, and accordingly is composed of
two parts. The first part deals with n-Lie algebras, and is more algebraic in nature,
whereas the second part generalizes a well known result of Kostant to the setting of
symmetric spaces, and is of a geometric nature. These results represent the outcome
of two independent research projects.

Lie theory is the branch of mathematics concerned with symmetries and transfor-
mations of a large variety of mathematical objects, and is named after the Norwegian
mathematician Sophus Lie (1842-1899). Shapes, bodies, mechanical systems, and
even equations can have ’few’ or ’many’ symmetries. An equilateral triangle, for
instance, has only six symmetries (three rotations and three reflections) whereas a
circle has infinitely many: a reflection with respect to any diameter of the circle gives
a symmetry and any rotation around the center of the circle gives a symmetry as well.
The mathematical notion that encodes the symmetries of an object is that of a group,
and if the object has a continuous family of symmetries (like the circle), then the
group of symmetries is called a Lie group. Lie algebras have been introduced as the
infinitesimal counterparts of Lie groups; they consist of infinitesimally small sym-
metries of an object, and form the tangent directions in the Lie group at the identity
(the symmetry which fixes every point of the object). Lie algebras and Lie groups
have been studied extensively and are central to contemporary mathematics. One of
the greatest achievements, which came as early as the end of the 19th century, is the
classification of the simple Lie algebras. Later, the development of representation
theory of Lie groups and Lie algebras had a strong impact on quantum mechanics.

A generalization of the notion of a Lie algebra is that of a n-Lie algebra (here
n = 2, 3, 4, . . . is a natural number). The first part of this thesis (Chapter 1) studies
the representation theory of simple n-Lie algebras.

The theory of n-Lie algebras was first introduced in 1985 by Filippov. Alge-
braically, a Lie algebra is a binary operation (called the Lie bracket) on a vector
space which satisfies certain axioms: bilinearity, skew-symmetry and the famous Ja-
cobi identity. Generalizing this notion, an n-Lie algebra is an operation which is
not binary, but n-ary, and satisfies similar conditions as a Lie bracket. Many of the
classical concepts in the theory of Lie algebras have very natural counter-parts in the
theory of n-Lie algebras; for instance Ling classified in his PhD thesis the simple
n-Lie algebras and showed that for n ≥ 3 there is up to isomorphism a unique n-Lie
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algebra, which has dimension n+ 1, and is the higher dimensional vector product.
In the first part of this thesis we classify the irreducible highest weight represen-

tations of the simple n-Lie algebra. A partial answer to this problem was given by
Dzhumadil’daev, who classified such representations which are finite dimensional.
The theorem in this thesis treats both finite and infinite dimensional irreducible high-
est weight representations.

In the second part of this thesis (Chapters 2,3 and 4) we focus on Lie groups.
In particular, we present here a generalization of the famous non-linear convexity
theorem of Kostant.

As an example, Kostant’s theorem can be used to prove that the diagonal part of
all Hermitian matrixes with fixed eigenvalues {λ1, . . . , λn} is the convex polytope in
Rn whose vertices are the permutations of the eigenvalues. This theorem was proven
first by Schur and Horn, but Kostant’s theorem adds a geometric perspective to the
problem, and can be applied to more general situations. Taking the diagonal part of a
matrix is a special case of the infinitesimal Iwasawa projection, which can be defined
for all semisimple Lie algebras, and can be lifted on the Lie group to the so-called
Iwasawa projection. Kostant’s (non-linear) convexity theorem says that the image
under the Iwasawa projection of a left-translate of the maximal compact subgroup is
a convex polytope.

The second part of the thesis presents an extension of Kostant’s convexity theo-
rem to semisimple symmetric spaces, generalizing also a result of van den Ban. As
the name suggests, a symmetric space is a space which has ’many’ symmetries, in
particular, there are central reflections in each of its points. Such spaces come with
an Iwasawa projection, as they can be described also via Lie groups. The theorem in
the thesis shows that, also in this setting, the Iwasawa projection of certain translates
of groups are convex sets.
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Samenvatting

In dit proefschrift presenteren we twee resultaten in de Lie-theorie. Het is bijgevolg
opgebouwd uit twee delen. In het eerste deel behandelen we n-Lie-algebra’s, een
onderwerp dat een algebraı̈sch karakter heeft. In het tweede deel veralgemeniseren
we een beroemd resultaat van Kostant naar symmetrische ruimtes. Dit deel heeft
een meetkundig karakter. De resultaten zijn voortgekomen uit twee onafhankelijke
onderzoeksprojecten.

Lie-theorie is een tak van de wiskunde die de symmetriën en verschuivingen van
veel meetkundige objecten beschrijft. Het is vernoemd naar de Noorse wiskundige
Sophus Lie (1842 – 1899). Vormen, hemellichamen, mechanische systemen en zelfs
vergelijkingen hebben symmetriën. Een gelijkzijdige driehoek heeft bijvoorbeeld zes
symmetriën (drie rotaties en drie spiegelingen), terwijl een cirkel er oneindig veel
heeft: Elke rotatie rond het middelpunt geeft namelijk een symmetrie.

Het ’groep’ is het wiskunige begrip dat de symmetriën van een object beschrijft.
Als het object een cotinuë familie van symmetriën heeft, dan geeft dit een Lie-groep.
Lie-algebra’s zijn de ’infinitesimale’ tegenhangers van Lie-groepen. Zij bestaan uit
infinitesimaal kleine symmetriën van een object en geven alle richtingen aan waarin
het object symmetriën heeft.

Lie-groepen en Lie-algebra’s zijn door de jaren heen uitvoerig bestudeerd en
spelen een centrale rol in de moderne wiskunde. Eén van de belangrijkste resul-
taten, welke terug gaat naar het einde van de negentiende eeuw, is de classificatie
van enkelvoudige Lie-algebra’s. Later heeft de theorie van voorstellingen van Lie-
groepen en Lie-algebra’s een grote invloed gehad op de ontwikkeling van de kwan-
tummechanica.

n-Lie-algebra’s, waar n een positief geheel getal is (n ≥ 3), veralgemeniseren
Lie-algebra’s. In het eerste deel van dit proefshrift worden de voorstellingen van
n-Lie-algebra’s bestudeerd. Het concept van een n-Lie-algebra werd in 1985 door
Filippov geı̈ntroduceerd. Algebraı̈sch gezien bestaat een Lie-algebra uit een binaire
operatie, een operatie waar twee waardes ingevuld kunnen worden, genaamd het
Lie-haakje dat aan bepaalde axioma’s voldoet. Een n-Lie-algebra heeft een operatie
waar n waardes ingevuld kunnen worden en die aan vergelijkbare axioma’s voldoet.
Maar het is meer dan een analogie; Veel klassieke concepten laten zich naar n-Lie-
algebra’s vertalen. In het bijzonder geeft Ling in zijn proefschrift een classificatie
van alle enkelvoudige n-Lie-algebra’s. Voor n ≥ 3 toont hij aan dat er slechts één
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enkelvoudige n-Lie-algebra bestaat, dat deze dimensie n+ 1 heeft en dat de operatie
gegeven wordt door een hoger-dimensionaal vectorproduct.

In het eerste deel van het proefschrift (hoofdstuk 1) classificeren we de irre-
ducibele voorstellingen van het hoogste gewicht voor de enkelvoudige n-Lie-algebra.
Een gedeeltelijk antwoord op dit vraagstuk werd reeds gegeven door Dzhumadil’daev.
Hij classificeerde namelijk alle zulke voorstellingen die eindigdimensionaal zijn. De
stelling in dit proefschrift behandelt eindig- en oneindigdimensionale voorstellingen
op gelijke voet.

In het tweede deel van dit proefschrift (hoofdstukken 2, 3 en 4) concentreren we
ons op Lie-groepen. In het bijzonder presenteren we een veralgemenisering van de
beroemde niet-lineaire convexiteitsstelling van Kostant. Kostant’s stelling kan bi-
jvoorbeeld gebruikt worden om te bewijzen dat de diagonalen van alle Hermietse
matrices met gegeven eigenwaarden {λ1, . . . , λn} een convexe veelhoek vormen
wiens hoekpunten gegeven worden door alle mogelijke permutaties van de eigen-
waarden. Dit was al reeds bewezen door Schur en Horn, maar Kostant’s stelling
voegt er een meetkundige interpretatie aan toe en is toepasbaar in veel algemenere
situaties. Het uitlezen van de diagonaal van een matrix is een speciaal geval van de
infinitesimale Iwasawa-projectie, die gedefinieerd is voor alle halfenkelvoudige Lie-
algebra’s. De Iwasawa-projectie kent ook een definitie voor de bijbehorende Lie-
groepen. Kostant’s niet-lineaire convexiteitsstelling vertelt ons dat het beeld onder
de Iwasawa-projectie van het linksverschovene van de maximale compacte deelgroep
een convexe veelhoek is.

We hebben Kostant’s convexiteitsstelling naar halfenkelvoudige symmetrische
ruimtes veralgemeniseerd. Dit is tevens een veralgemenisering van een stelling van
Van den Ban. Zoals de naam mogelijk suggereert is een symmetrische ruimte een
ruimte met veel symmetriën. In het bijzonder zijn er zogenaamde centrale spiegelin-
gen in elk punt. De Iwasawa-projectie kent óók een definitie voor deze ruimtes en
de stelling in dit proefschrift laat zien dat ook hier bepaalde linksverschoven groepen
een convexe verzameling als beeld hebben.
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