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A comparison of Paley–Wiener theorems
for real reductive Lie groups

By Erik P. van den Ban at Utrecht and Sofiane Souaifi at Strasbourg

Abstract. In this paper we make a detailed comparison between the Paley–Wiener the-
orems of J. Arthur and P. Delorme for a real reductive Lie group G. We prove that these
theorems are equivalent from an a priori point of view. We also give an alternative formulation
of the theorems in terms of the Hecke algebra of bi-K-finite distributions supported on K, a
maximal compact subgroup of G. Our techniques involve derivatives of holomorphic families
of continuous representations and Harish-Chandra modules.

Introduction

In this paper we make a detailed comparison between the Paley–Wiener theorem of
J. Arthur [1], and the one recently established by P. Delorme [6].

Let G be a real reductive Lie group of the Harish-Chandra class and let K be a maximal
compact subgroup. Let C1c .G;K/ denote the space of smooth compactly supported functions
on G which behave finitely under both left and right translation by K. The Paley–Wiener
theorem of each of the above mentioned authors describes the image of C1c .G;K/ under
Fourier transformation, in terms of a so called Paley–Wiener space. In this paper we will show
that the two Paley–Wiener spaces, denoted PWA.G;K/ and PWD.G;K/, respectively, are
equal, without using the proof or the validity of any of the associated Paley–Wiener theorems.
It thus follows that the two theorems are equivalent from an a priori point of view. Before
we proceed with discussing the contents of our paper let us briefly recall that Arthur’s proof
of the Paley–Wiener theorem in [1] relied on a result of W. Casselman which has remained
unpublished. In [3], the first named author and H. Schlichtkrull established a Paley–Wiener
theorem for reductive symmetric spaces which implied Arthur’s theorem in the special case of
the group. In particular, the proof in [3] used an appropriate substitute for Casselman’s result,
derived in [2, §16].

Delorme’s recent proof of a Paley–Wiener theorem for reductive groups in [6] is com-
pletely independent of the proofs just mentioned.

In order to be able to be more specific about the contents of this paper, we shall first give
a more detailed description of the two Paley–Wiener theorems mentioned above.

Let g D k˚p be a Cartan decomposition associated with the maximal compact subgroup
K. Here and in the following we use the convention to denote Lie groups by Roman capitals,
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100 van den Ban and Souaifi, Paley–Wiener theorems

and their Lie algebras by the corresponding lower case German letters. Let a be a maximal
abelian subspace of p, and let A D exp a be the associated vectorial closed subgroup of G.
We denote by P .A/ the (finite) set of cuspidal parabolic subgroups of G containing A. Each
parabolic subgroup P 2 P .A/ has a Langlands decomposition of the form P D MPAPNP ,
with AP � A. Let M^P;ds denote the set of (equivalence classes of) discrete series repre-
sentations of MP . For .�;H / 2 M^P;ds and � 2 a�

PC , we denote by ��;� D �P;�;� the
representation of G induced from the representation � ˝ .� C �P / ˝ 1 of P . The associ-
ated module of smooth vectors for ��;� has a realization on the space C1.KW �/ consisting of
smooth functions  W K ! H� , transforming according to the rule

 .mk/ D �.m/f .k/; for all k 2 K, m 2 K \MP :

Accordingly, each function f 2 C1c .G/ has an operator valued Fourier transform

Of .P; �; �/ WD ��;�.f / D

Z
G

f .x/ ��;�.x/ dx 2 End.C1.KW �//:

Moreover, the endomorphism Of .P; �; �/ depends holomorphically on the variable � 2 a�
PC .

If f is bi-K-finite, then Of .P; �; �/ belongs to the space �.P W �/ of bi-K-finite elements of
End.C1.KW �//. Moreover, the holomorphic maps � 7! Of .P; �; �/ are non-zero for only
finitely many of the pairs .P; �/. It follows that Of .P / may be viewed as an element of the
algebraic direct sum

(0.1)
M

�2M^P;ds

O.a�PC/˝ �.P W �/:

We agree to define the pre-Paley–Wiener space PWpre
P .G;K/ as the space of elements

.'.P; �/ j � 2 M^P;ds/ in (0.1) for which there exists a constant R > 0 and for every n > 0 a
constant Cn > 0 such that

(0.2) k'.P; �; �/k � Cn.1C j�j/
�neRjRe�j

for all �; �.
We can now describe the Paley–Wiener space involved in Arthur’s theorem in [1]. Let P0

be a fixed minimal parabolic subgroup in P .A/. Its Langlands decomposition is of the form
P0 DMAN0, where M is the centralizer of A in K. The Arthur Paley–Wiener space

(0.3) PWA.G;K/

is defined as the space of ' 2 PWpre
P0
.G;K/ satisfying all finite linear relations of the form

(0.4)
X
i

h'.P0; �i ; �i Iui /;  i i D 0;

with �i 2 M^,  i 2 �.P0W �i /
�
K�K , �i 2 a�C and with ui 2 S.a�/ acting as differential

operators in the �-variable (see Section 2.1 for notation), as soon as these relations are satisfied
by all families of functions .� 7! �P0;�;�.x/ j � 2 M

^/, for x 2 G. These are the so-called
Arthur–Campoli relations. In [1], Arthur defines a similar Paley–Wiener space involving all
minimal parabolic subgroups from P .A/. In [3] this space is shown to be isomorphic to the
one defined in (0.3).
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van den Ban and Souaifi, Paley–Wiener theorems 101

Next, let us describe the Paley–Wiener space introduced by Delorme [6]. The defini-
tion of this Paley–Wiener space involves the operation of taking successive derivatives of
a family �� of representations, depending holomorphically on a parameter � 2 a�

PC , for
some P 2 P .A/. Such an operation is encoded by a sequence � D .�1; : : : ; �N / in a�

PC ,
listing the directions in which the derivatives should be taken successively. The associated
family �.�/

�
is again a holomorphic family of representations. The operation of derivation

also applies to a holomorphic family � 7! '� of continuous endomorphisms of �� and then
gives a holomorphic family '.�/ of endomorphisms of �.�/

�
. Let D be the set of all 4-tuples

.P; �; �; �/ with P 2 P .A/, � 2M^P;ds, � 2 a�
PC and � a finite sequence of linear functionals

from a�
PC as above. Given a datum ı D .P; �; �; �/ we define �ı WD �

.�/

P;�;�
. Moreover, given

' 2 PWpre
P .G;K/we define 'ı in a similar fashion. Finally, given a sequence ı D .ı1; : : : ; ıN /

of data from D , we write �ı WD �ı1 ˚ � � � ˚ �ıN , and 'ı WD 'ı1 ˚ � � � ˚ 'ıN .
Delorme’s Paley–Wiener space is defined as the space PWD.G;K/ of functions

' 2
L
P2P .A/ PWpre

P .G;K/ such that

(a) for each finite sequence ı 2 DN the function 'ı preserves all invariant subspaces of �ı ;

(b) for any two finite sequences ı1 2 DN1 and ı2 2 DN2 , and any two sequences of closed
invariant subspaces Uj � Vj for �ıj (j D 1; 2), the induced maps N'ıj 2 End.Vj =Uj /
are intertwined by all G-equivariant operators T W V1=U1 ! V2=U2.

There is a natural map PWD.G;K/! PWpre
P0
.G;K/, given by

(0.5) .'.P; �/ j P 2 P .A/; � 2M^P;ds/ 7! .'.P0; �/ j � 2M
^/:

In this paper we show that the map (0.5) is a linear isomorphism from PWD.G;K/ onto
PWA.G;K/, see Theorem 5.11.

To understand better the conditions involving the derivatives in the definition of the
Paley–Wiener spaces, we start, in Section 2, with the study of holomorphic families and their
derivatives. Instead of focusing on first order derivatives, we replace a holomorphic family
by the associated holomorphic section in a suitable jet bundle. This idea also occurs in W.
Casselman’s paper [5, §9]. We reformulate it slightly, by using a suitable trivialization of the
jet bundle. Our construction starts with fixing a finite dimensional module E for the ring O0
of germs of holomorphic functions (of �) at zero. It then gives, for �� a holomorphic family
of representations in a fixed complete space V , a new holomorphic family �.E/

�
in the space

E ˝ V . The differentiation procedure of Delorme turns out to be a special case of this pro-
cedure, with E a suitable module of dimension 2. In the same Section 2 we study how the
functor �� 7! �

.E/

�
behaves with respect to analytic families of intertwining operators and

with respect to induction.
In Section 3 we give an equivalent definition of Arthur’s Paley–Wiener space by invok-

ing the functors �� 7! �
.E/

�
, instead of the derivations given by elements of S.a�/ in the

Arthur–Campoli relations. These relations may then be reformulated as linear relations on
differentiated families of representations.

In Section 4 we simplify the definition of PWD.G;K/. First of all, due to the intertwining
relations in the definition, the space can be defined in terms of just the minimal parabolic
subgroup P0. Next, the intertwining conditions (b) turn out to be a consequence of the invariant
subspace conditions (a).
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102 van den Ban and Souaifi, Paley–Wiener theorems

In the final Section 5, we bring into play the Hecke algebra H.G;K/ consisting of all bi-
K-finite distributions on G supported by K. The importance of this algebra for representation
theory is based on the fact that the category of Harish-Chandra modules is isomorphic to the
category of finitely generated admissible modules for this algebra.

A key lemma in this section is the following. For .�; V / a Harish-Chandra module, let
End.�/# denote the space of K � K-finite endomorphisms ' of V with the property that for
every positive integer n the Cartesian power '�n preserves all invariant subspaces of V �n. The
mentioned key lemma asserts that

End.�/# D image.H.G;K// � End.V /:

It follows from this lemma that the Paley–Wiener space PWD.G;K/ allows the following
description in terms of the Hecke algebra. For every finite dimensional O0-module E, and all
finite sets „ � M^ and ƒ � a�C , we define the representation �E;„;ƒ to be the direct sum of

the representations �.E/
P0;�;�

, for .�; �/ 2 „ � ƒ. Moreover, for ' 2 PWpre
P0
.G;K/, we define

the endomorphism 'E;„;ƒ of �E;„;ƒ by taking a similar direct sum. Then PWD.G;K/ maps
isomorphically onto the space of ' 2 PWpre

P0
.G;K/ such that for all E;„;ƒ as above,

(0.6) 'E;„;ƒ 2 �E;„;ƒ.H.G;K//:

On the other hand, it follows from its definition that Arthur’s Paley–Wiener space
PWA.G;K/ is equal to the space of ' 2 PWpre

P0
.G;K/ such that for all E;„;ƒ as above,

'E;„;� is annihilated by the annihilator of �E;„;ƒ.H.G;K// in the contragredient module.
Since this condition is equivalent to (0.6), it thus follows that the map (0.5) is a linear isomor-
phism onto PWA.G;K/ (Theorem 5.11).

Returning to the original formulation of Arthur’s Paley–Wiener theorem, we finally wish
to mention that the condition (0.4) may be replaced by the condition that for all �i ; ui ; �i as in
(0.4), there exists a h 2 H.G;K/ such that for all i ,

'.�i ; �i Iui / D �P0;�i ;�i Iui .h/:

This characterization is given in Section 5.5 where it is used to derive, from Arthur’s theorem,
the Paley–Wiener theorem for bi-K-invariant functions, due to S. Helgason [8] and R. Gangolli
[7].

Acknowledgement. We thank Pierre Baumann for a helpful discussion, which led to
a simpler proof of Lemma 5.3. The second named author was partially supported by a grant
of The Netherlands Organization for Scientific Research, NWO, under project number
613.000.213.

1. Notation and preliminaries

Throughout this paper, G will be a real reductive Lie group in the Harish-Chandra class
and K a maximal compact subgroup. Let U.g/ be the universal enveloping algebra of the
complexification gC of g. We denote by X 7! X_ the anti-automorphism of U.g/ which on g

is given by X 7! �X .
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van den Ban and Souaifi, Paley–Wiener theorems 103

In this paper, locally convex spaces will always be assumed to be Hausdorff and defined
over C.

For any continuous representation .�; V / ofK (in a quasi-complete locally convex space)
and any class 
 in the unitary dual K^ of K, the K-isotypic component of .�; V / of type 
 is
denoted by V
 . The associated K-equivariant projection onto V
 is denoted by P
 .

For every finite subset # of K^, we put

V# WD
M

2#

V
 and P# WD
M

2#

P
 :

For any continuous representation .�; V / of G, with V a quasi-complete locally convex
space, let V1 and VK denote the vector subspaces of smooth and K-finite elements of V ,
respectively. The first one gives rise to a subrepresentation of � and the second one to its
underlying .g; K/-module .�; VK/.

We say that a (continuous) G-representation or a .g; K/-module is admissible if all its
K-isotypic components are finite dimensional. A Harish-Chandra module is an admissible
.g; K/-module which is finitely generated as a U.g/-module.

The space C1.G/ of complex valued smooth functions on G is equipped with the left
and right regular actions of G; the subspace C1c .G/ of compactly supported functions is in-
variant for these actions. The actions are continuous for the usual locally convex topologies
on these spaces and may be dualized by taking contragredients. Let E 0.G/ denote the space
of compactly supported distributions on G, i.e., the topological linear dual of C1.G/. Fix a
(bi-invariant) Haar measure dx on G. Then the linear map

C1c .G/! E 0.G/; f 7! f dx

is an injective intertwining operator for both G-action. Accordingly, we will use this map to
view C1c .G/ as a submodule of E 0.G/. For any continuous representation .�; V / and any
f 2 C1c .G/, let �.f / denote the endomorphism of V defined by

�.f /v WD

Z
G

f .x/�.x/v dx; v 2 V:

Then for all v 2 V1 and � 2 .V1/�, the following equality holds:

�.�.f /v/ D hf dx; �.�. � /v/iI

the bracket on the right-hand side of the equation indicates the natural pairing between E 0.G/

andC1.G/. Let .�i ; Vi /, i D 1; 2, be two .g; K/-modules. The space Hom.V1; V2/ of (linear)
homomorphisms from V1 to V2 is naturally endowed with a .g � g; K �K/-module structure.
Indeed, for any T 2 Hom.V1; V2/,

.X1; X2/T D �2.X2/ ı T � T ı �1.X1/; X1; X2 2 g;

.k1; k2/T D �2.k2/ ı T ı �1.k
�1
1 /; k1; k2 2 K:

Accordingly, the subspace Hom.g;K/.V1; V2/ of .g; K/-homomorphisms consists of the ele-
ments of Hom.V1; V2/ which are invariant under the diagonal action.
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104 van den Ban and Souaifi, Paley–Wiener theorems

Lemma 1.1. Let .�; V / be an admissible representation ofG and let #1 and #2 be finite
subsets of K^. Then the linear map

C1c .G/! Hom.V#1 ; V#2/; f 7! P#2�.f /P#1

uniquely extends to a continuous linear map from E 0.G/ to Hom.V#1 ; V#2/.

Proof. Uniqueness of the extension follows by density of C1c .G/ dx in E 0.G/. Let
v 2 V#1 and � 2 V �

#2
. Then by finite dimensionality of Hom.V#1 ; V#2/ it suffices to show that

the linear map
L W C1c .G/! C; f 7! �.�.f /v/

extends continuously to E 0.G/. Define the function m 2 C1.G/ by m.x/ D �.�.x/v/. Then
L.f / D hf dx;mi, for f 2 C1c .G/. Thus, u 7! hu;mi defines a continuous linear extension
of L to E 0.G/.

We consider the convolution product � on C1c .G/ given by

f � g.x/ D

Z
G

f .y/g.y�1x/ dy;

for f; g 2 C1c .G/ and x 2 G. It defines an algebra structure on C1c .G/. The subspace
C1c .G;K/ of left and right K-finite elements in C1c .G/ is closed under convolution, hence
a subalgebra of C1c .G/. The convolution product has a unique extension to a separately con-
tinuous bilinear map E 0.G/ � E 0.G/ ! E 0.G/, denoted .u; v/ 7! u � v. This turns E 0.G/

into an algebra. It is readily seen that the subspace E 0.G;K/ of left and rightK-finite elements
in E 0.G/ is closed under convolution, hence a subalgebra. Likewise, the subspace E 0K.G/ of
distributions with support in K is a subalgebra, and so is the intersection

(1.1) H.G;K/ WD E 0K.G/ \ E 0.G;K/:

The latter is also called the Hecke algebra of the pair .G;K/ and is sometimes denoted by H
for simplicity. From Lemma 1.1, we obtain the continuous linear map

(1.2) E 0.G;K/! End.VK/K�K ; u 7! �.u/

which intertwines the .g� g; K �K/-actions. Here the space on the right is equipped with the
weakest topology for which the K � K-equivariant projections of finite rank are continuous.
By application of Fubini’s theorem we see that � is a morphism on the convolution algebra
C1c .G;K/, which is a dense subalgebra of E 0.G;K/.

By separate continuity of � and continuity of (1.2), it now follows that the map (1.2) is
a homomorphism of algebras. Let dk denote the normalized Haar measure of K. Then each
' 2 C.K/ defines a distribution ' dk in E 0K.G/, given by

h' dk; f i D

Z
K

'.k/f .k/ dk:

For a given representation 
 2 K^, we define the distribution ˛
 2 H by

˛
 D dim.
/�
_ dk;
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van den Ban and Souaifi, Paley–Wiener theorems 105

where �
_ denotes the character of the contragredient 
_ of 
 . Moreover, for # � K^ a finite
subset, we define the element ˛# 2 H by

˛# WD
X

2#

˛
 :

The functions ˛# , viewed as elements of H, will later be seen to define an approximation of
the identity in H. Let #1; #2 � K^ be finite subsets. We agree to write E 0.G;K/#1#2 for the
space of distributions ' 2 E 0.G;K/ satisfying

˛#1 � ' � ˛#2 D ':

Then E 0.G;K/#1#2 consists of the distributions in E 0.G;K/ of left K-type in #1 and of right
K-type in #_2 D ¹


_ j 
 2 #2º. Similarly, we write

C1c .G;K/#1#2 WD C
1
c .G;K/ \ E 0.G;K/#1#2

and
H#1#2 WD H \ E 0.G;K/#1#2 :

If U; V is a pair of admissible .g; K/-modules, we agree to write

Hom.U; V /#1#2 D ¹A 2 Hom.U; V / j P#1AP#2 D Aº

so that, for all admissible G-representations .�; V / and .�; U /,

Hom.U; V /#1#2 ' Hom.U#2 ; V#1/;

naturally. Viewing Hom.U; V /K�K ' VK ˝ .U �/K as a .g � g; K �K/-module in a natural
way, we see that

Hom.U; V /#1#2 D Hom.U; V /#1˝#_2 :

In particular, it is readily seen that

�.E 0.G;K/#1#2/ � End.V /#1#2 ' End.VK/#1#2 :

Here we note that End.VK/K�K � End.V /, naturally.

Proposition 1.2. For any admissible representation .�; V / of G,

�.C1c .G;K// D �.E
0.G;K// D �.H/:

Proof. We denote the three given subspaces of End.VK/K�K by E1, EE 0 and EH

respectively. Let ˇ be the K-equivariant bilinear form on End.VK/K�K given by

ˇ.A;B/ D tr.A ı B/:

By admissibility of � it follows that ˇ defines a non-degenerate pairing, which is perfect when
restricted to End.VK/## , for # any finite subset of K^. Therefore, it suffices to show that
the ˇ-orthocomplements E?1, E?

E 0
and H? are equal. Thus, let T 2 End.VK/K�K . Then it

suffices to show that the following assertions are equivalent:
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106 van den Ban and Souaifi, Paley–Wiener theorems

(i) tr.T �.x// D 0, for all x 2 G;

(ii) tr.T �.f // D 0, for all f 2 C1c .G;K/;

(iii) tr.T �.f // D 0, for all f 2 E 0.G;K/;

(iv) tr.T �.f // D 0, for all f 2 H.

Obviously, (i) implies (ii). By density of C1c .G;K/## in E 0.G;K/## , for every finite
subset # � K^, if follows that (ii) implies (iii). Moreover, (iii) implies (iv). We will finish the
proof by showing that (iv) implies (i). Assume (iv). For x 2 G, we defineM.x/ WD tr.T �.x//.
By admissibility and K � K-finiteness of T it follows that M is an analytic function on G.
From (iv) it follows that hf;M i D 0 for any f 2 H. Fix a finite subset # � K^ such that
M 2 C1c .G;K/## . Then M D ˛# �M � ˛# . Let u 2 U.g/, and set

f WD ˛# � .Luıe/ � ˛# 2 H;

where ıe is the Dirac measure at the unit element e of G. Then

0 D hf;M i D hLuıe;M i D .L LuM/.e/:

By analyticity this implies thatM vanishes on the identity componentG0 ofG. ByK-stability
of H, we deduce thatM vanishes onKG0. Since G is of the Harish-Chandra class, this means
that M D 0 on G.

Corollary 1.3. Let .�; V / be an admissible representation ofG and assume that #1 and
#2 are finite subsets of K^. Then

�.C1c .G;K/#1#2/ D �.E
0.G;K/#1#2/ D �.H#1#2/ D �.H/ \ End.VK/#1#2

Proof. This follows from Proposition 1.2 by using K-equivariant projections.

2. Holomorphic families of representations and their derivatives

Let v be a finite dimensional real linear space. For any open subset � of its complexifi-
cation vC , we denote by O.�/ the space of holomorphic C-valued functions on �, endowed
with the topology of uniform convergence on compact subsets.

For � 2 vC , we denote by O� the algebra of germs at � of holomorphic functions
defined on a neighborhood of �. For any � as above, � 2 � and f 2 O.�/, the germ of f at
� is denoted by 
�.f / 2 O�.

Let P D P .vC/ denote the algebra of polynomial functions vC ! C. Then the map
p 7! 
0.p/ is an embedding of algebras, P ,! O0. Accordingly, we shall view P as a
subalgebra of O0.

The ring O0 is local; its unique maximal ideal M consists of the elements vanishing at
0. An ideal I C O0 is said to be cofinite if the quotient O0=I is finite dimensional as a vector
space over C. For k 2 N, let Pk denote the space of polynomial functions vC ! C of degree
at most k. Then

(2.1) O0 D Pk ˚MkC1:

Therefore, the ideal MkC1 is cofinite in O0.
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van den Ban and Souaifi, Paley–Wiener theorems 107

Lemma 2.1. Let I be an ideal in O0. Then the following assertions are equivalent:

(a) The ideal I is cofinite.

(b) There exists a k 2 N such that MkC1 � I.

Proof. As MkC1 is cofinite, (b) implies (a). Conversely, assume (a).
The space V D O0=I is a finite dimensional vector space, and an O0-module for left

multiplication. The associated algebra homomorphism O0 ! End.V / is denoted byƒ. As O0
is a commutative algebra and V is finite dimensional, there exists a positive integer p such that
the module V decomposes as a finite direct sum of generalized weight spaces

V� WD
\
f 2O0

ker.ƒ.f / � �.f / idV /p

with � 2 bO0 WD Hom.O0;C/. Since O0 is a local ring with maximal ideal M, the set bO0
of characters consists of the single element �0 W g 7! g.0/. It follows that V D V�0 , so that
.f � f .0//p 2 I for all f 2 O0. In particular, f p 2 I for all f 2 M. As an ideal, M is
generated by n elements. Hence, MkC1 � I, for k � np � 1.

2.1. The derivation process. For each vector X 2 v we denote by @X the first order
differential operator given by @X'.a/ D d

dz
'.a C zX/jzD0 for a 2 vC and ' a holomorphic

function defined on a neighborhood of a in vC . The map X 7! @X has a unique extension
to an algebra isomorphism u 7! @u from the symmetric algebra S.v/ of vC onto the algebra
of constant coefficient (holomorphic) differential operators on vC . We will follow Harish-
Chandra’s convention to write

(2.2) '.aIu/ WD @u'.a/;

for ' a holomorphic function defined on a neighborhood of a.
We define the pairing h � ; � i between O0 and S.v/ by

(2.3) O0 � S.v/! C; .'; u/ 7! '.0Iu/:

For a given cofinite ideal I C O0, let SI.v/ denote the annihilator of I in S.v/ relative to this
pairing. For k 2 N, let Sk.v/ be the linear subspace of S.v/ consisting of the elements of
order at most k.

Lemma 2.2. Let k 2 N. Then

(a) Sk.v/ D SMkC1.v/;

(b) the pairing (2.3) induces a perfect pairing .O0=MkC1/ � Sk.v/! C.

Proof. The pairing h � ; � i, defined in (2.3), vanishes on MkC1 � Sk.v/. Thus, we have
Sk.v/ � SMkC1.v/.

From the decomposition O0 D MkC1 ˚ Pk , and non-degeneracy of the pairing, it fol-
lows that SMkC1.v/ ,! P �

k
. In particular, the dimension of SMkC1.v/ does not exceed the

dimension of Pk , which in turn equals the dimension of Sk.v/. Assertion (a) now follows.
It also follows that the induced embedding Sk.v/ D SMkC1.v/ ,! P �

k
' .O0=M

kC1/�

is an isomorphism onto. By finite dimensionality, this implies assertion (b).
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108 van den Ban and Souaifi, Paley–Wiener theorems

Lemma 2.3. Let I be a cofinite ideal of O0. Then the pairing (2.3) induces a linear
isomorphism SI.v/ ' .O0=I/

�.

Proof. By Lemma 2.1 there exists a k 2 N such that MkC1 � I. This inclusion induces
an embedding of .O0=I/� into .O0=MkC1/�. In view of Lemma 2.2, it follows that the pairing
induces an embedding .O0=I/� ,! S.v/. Its image is contained in the annihilator SI.v/, by
definition of the latter. On the other hand, the pairing induces an inclusion SI.v/ ,! O�0 and
elements of SI.v/ vanish on I, so that SI.v/ ,! .O0=I/

�. The result follows.

For � 2 vC we denote by T� the translation in vC given by � 7! � C �. We note that
the pull-back map T �� W ' 7! ' ı T� induces a ring isomorphism from O� onto O0.

Let I C O0 be a cofinite ideal and let � be an open subset of vC . Then for every
f 2 O.�/ and each � 2 � we define

(2.4) JIf .�/ WD prI.
0.T
�
�f // 2 O0=I;

where prI denotes the projection of O0 onto O0=I.
In the following lemma, which is a straightforward consequence of the definitions, h � ; � i

denotes the pairing induced by (2.3), see Lemma 2.3.

Lemma 2.4. Let f 2 O.�/. Then for all � 2 �,

hJIf .�/; ui D f .�Iu/; u 2 SI.v/:

Corollary 2.5. The map f 7! JIf defines a continuous algebra homomorphism from
O.�/ to O.�;O0=I/.

Proof. Let u 2 S.v/. For every f 2 O.�/, the function @uf D f . � Iu/ belongs to
O.�/. Moreover, the map @u is a continuous linear endomorphism of O.�/. In view of Lemma
2.4, it follows that for each � 2 .O0=I /� the map f 7! � ı ŒJI.f /� is a continuous linear
endomorphism of O.�/. By finite dimensionality of O0=I, it follows that JI is continuous.

The assertion that JI is an algebra homomorphism follows from combining the observa-
tions that T �� , 
0, and prI are algebra homomorphisms.

Example 2.6. Let � 2 v�C . Denote by e� the holomorphic function on vC given by

e�.�/ WD e�.�/; � 2 vC:

In terms of the canonical identification of the symmetric algebra S.v/ with the algebra P .v�C/

of polynomial functions on v�C we have @ue� D u.�/e� , for u 2 S.v/. Hence, if I is a cofinite
ideal in O0, then for all � 2 vC and u 2 SI.v/,

(i) hJIe
�.�/; ui D u.�/e�.�/,

(ii) JIe
�.�/ D e�.�/ prI ı
0.e

�/.

Definition 2.7. Let E be a finite dimensional O0-module. For every f 2 O.�/ and all
� 2 �, we define f .E/.�/ 2 End.E/ by

f .E/.�/e WD 
0.T
�
�f / � e; e 2 E:
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Example 2.8. If E D O0=I for some cofinite ideal I of O0, then, for any f 2 O.�/,

JIf .�/ D f
.E/.�/.1C I/; � 2 �:

Let A be an algebra and E an A-module. We denote by annA.E/ the annihilator of
E in A, i.e., the kernel of the natural algebra homomorphism A ! End.E/. If E is finite
dimensional, annA.E/ is a cofinite ideal of A.

Lemma 2.9. Let � � vC be open, and let E be a finite dimensional O0-module. Then
for every f 2 O.�/ and all � 2 �,

(a) f .E/.�/e D JannO0
.E/f .�/ � e, for all e 2 E;

(b) .T ��f /
.E/ D T ��f

.E/.

Proof. These formulas follow by straightforward computation.

Lemma 2.10. Let E be a finite dimensional O0-module and let � 2 End.E/�. Then
there exists an element u D u� 2 S.v/ such that

� ı f .E/ D @uf;

for every open � � vC and all f 2 O.�/.

Proof. It suffices to prove this for � D e� ˝ e, with e� 2 E� and e 2 E. Then, for
f 2 O.�/ and � 2 �,

(2.5) � ı f .E/.�/ D e�.
0.T
�
� f / � e/:

Let I be the (cofinite) annihilator of e in O0. Then the linear functional L W ' 7! e�.' � e/ on
O0 factors through a linear map O0=I ! C. Hence, in view of Lemma 2.3, there exists an
element u 2 SI.v/ such that L.'/ D @u'.0/ for all ' 2 O0. It follows that the expression on
the right-hand side of (2.5) equals @uf .�/.

We shall also need a kind of converse to the above lemma.

Lemma 2.11. Let F � S.v/ be a finite subset. Then there exists a finite dimensional
O0-module E, and linear functionals �u 2 End.E/�, for u 2 F , such that

�u ı f
.E/
D @uf

for every u 2 F , every open � � vC and all f 2 O.�/.

Proof. By taking direct sums of finite dimensional O0-modules we may reduce to the
case that F consists of a single element u 2 S.v/. Let k be the order of u. Then ' 7! '.0Iu/

defines a linear functional e� on O0=I, for I D MkC1. We put E D O0=I and let e denote
the image of 1 2 O0 in E. Let � D e� ˝ e be the linear functional on End.E/ defined by
T 7! e�.Te/. Then for all f 2 O.�/ and all � 2 � we have

� ı f .E/.�/ D �.
0.T
�
� f // D e

�.
0.T
�
� f / � e/ D @u.
0.T

�
� f //.0/ D @uf .�/:

We retain the assumption that � is an open subset of vC .
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110 van den Ban and Souaifi, Paley–Wiener theorems

Corollary 2.12. Let E be a finite dimensional O0-module. Then f 7! f .E/ is a con-
tinuous algebra homomorphism from O.�/ to O.�;End.E//.

Proof. The map is an algebra homomorphism by Lemma 2.9 (a) and Corollary 2.5. The
continuity is an immediate consequence of Lemma 2.10.

We agree to use the following notation for the map of Corollary 2.12,

(2.6) J .E/ W f 7! f .E/; O.�/! O.�;End.E//:

The following property is an immediate consequence of the definitions; here we keep in mind
that End.E/˚ End.F / ,! End.E ˚ F /, naturally.

Property 2.13. Let E, F be two finite dimensional O0-modules. Then for every
f 2 O.�/,

f .E˚F / D f .E/ ˚ f .F /:

To prepare for deriving more properties of the map J .E/, we formulate a few results on
finite dimensional O0-modules.

Lemma 2.14. Let E be a finite dimensional O0-module. Then E is cyclic if and only if
there exists a cofinite ideal I of O0 such that E ' O0=I.

Proof. Straightforward.

Corollary 2.15. LetE be a finite dimensional O0-module. Then there exist finitely many
cofinite ideals I1; : : : ; In of O0 such thatE is a quotient of the direct sum O0=I1˚� � �˚O0=In
of O0-modules. In particular, there exist k;N 2 N such that E is a quotient of the O0-module
.O0=M

kC1/N for some k;N 2 N.

Proof. The first assertion results from the previous lemma. The second follows from
Lemma 2.1.

Besides the decomposition (2.1), we have the following decomposition of P D P .vC/,
for k 2 N,

P D Pk ˚ .M \P /kC1:

Hence, the embedding P ,! O0 induces, for each k 2 N, an isomorphism of algebras

(2.7) �k W P =.M \P /kC1
�
! O0=M

kC1:

It follows that P =.M \ P /kC1 is a local ring, with unique maximal ideal equal to
.M \P /=.M \P /kC1. Thus, if QI � P is an ideal with .M \P /kC1 � QI, then QI �M.

Lemma 2.16. Let QI be an ideal of P . Then the following assertions are equivalent:

(a) There exists a k 2 N such that .M \P /kC1 � QI.

(b) There exists an ideal I C O0 of finite codimension, such that QI D I \P .

If any of these conditions is fulfilled, then the ideal I in (b) is unique and the embedding
of P into O0 induces an isomorphism of algebras P= QI ! O0=I.
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Proof. Assume (a). The image QI0 of QI in P =.M \ P /kC1 is an ideal. Its image �k. QI0/
is an ideal of O0=M

kC1. Let I be the preimage of �k. QI0/ in O0. Then the following diagram
commutes:

P =.M \P /kC1

p

��

�k // O0=M
kC1

q

��

P = QI
i // O0=I:

Here i is induced by the inclusion map P ,! O0. The kernel of p equals QI0 and the kernel
of q equals �k. QI0/. As �k is an isomorphism of algebras, it follows that i is an isomorphism of
algebras, and (b) is immediate.

Conversely, assume (b). Let Ij C O0 be ideals such that QI D Ij \ P , for j D 1; 2. We
will complete the proof by showing that (a) holds and that I1 D I2.

Since I1 and I2 are cofinite, there exists a constant k 2 N such that MkC1 � Ij , for
both j D 1; 2. Therefore,

.M \P /kC1 � .MkC1
\P / � QI

and (a) follows. Moreover, for each j D 1; 2 we have the following commutative diagram:

P=.M \P /kC1

p

��

�k // O0=M
kC1

qj

��

P = QI
ij

// O0=Ij :

From the assumption on Ij it follows that the map ij is injective. Moreover, since �k and qj
are surjective, it follows that ij is an isomorphism of algebras, for j D 1; 2. This implies that
�k.kerp/ D ker.qj /. Since Ij equals the preimage of ker.qj / in O0, for j D 1; 2, it follows
that I1 D I2.

Let FMO0 denote the category of finite dimensional O0-modules and FMP the category
of finite dimensional P -modules E for which there exists a k 2 N such that

.M \P /kC1 � annP .E/:

If E;F belong to FMP then the FMP -morphisms are defined to be the P -module homomor-
phismsE ! F . We observe that their kernels and images belong to the category FMP as well.
If E is a finite dimensional O0-module, then its annihilator I is cofinite. Since P ,! O0, the
space E is a finite dimensional P -module as well and its annihilator QI WD annP .E/ in P is
given by QI D I \P . Furthermore, by Lemma 2.1 there exists a k 2 N such that

.M \P /kC1 � annP .E/:

We conclude that there is a well-defined forgetful functor F W FMO0 ! FMP .

Lemma 2.17. The forgetful functor F W FMO0 ! FMP is an isomorphism of cate-
gories.
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Proof. Let E be a non-trivial P -module from the category FMP and let
' W P ! End.E/ be the associated algebra homomorphism. As the ideal QI D ker' satis-
fies condition (a) of Lemma 2.1 it follows that there exists a (unique) cofinite ideal I C O0
such that I \ P D QI. Via the isomorphism P = QI ' O0=I we equip E with a compatible
structure of O0-module.

A compatible O0-module structure on E corresponds to an algebra homomorphism
 W O0 ! End.E/ which restricts to ' on P . For such a  we have ker' D QI \ P ,
hence ker D I. In view of the isomorphism P= QI ' O0=I, it follows that  is uniquely
determined by '. We conclude that E has a unique compatible structure of O0-module.

Let now F be a second P -module from the category FMP . If f W E ! F is a linear
map, then it readily follows from the above that f is a P -module morphism if and only if f is a
morphism for the compatible structures of O0-modules. This implies that F is an isomorphism
of categories.

Corollary 2.18. For every pair E;F of finite dimensional O0-modules,

HomO0.E; F / D HomP .E; F /:

Our next objective is to consider tensor products in the categories FMP and FMO0 .
Let n 2 N� and consider the n-fold Cartesian product vnC of vC . Projection onto

the j -th coordinate is denoted by prj . Pull-back by prj defines an embedding of algebras
pr�j W p 7! p ı prj , P ! P .vnC/. The multi-linear map

.p1; : : : ; pn/ 7!

nY
jD1

pr�j .pj /

induces an isomorphism of algebras P˝n ! P .vnC/, via which we shall identify the elements
of these spaces. Accordingly,

.p1 ˝ � � � ˝ pn/.�1; : : : ; �n/ D p1.�1/ � � �pn.�n/;

for pj 2 P and �j 2 vC . The maximal ideal MP˝n in P .vnC/ consisting of the polynomials
vanishing at 0 is now given by MP˝n D

Pn
iD1MP ;n;i , where

MP ;n;i WD P ˝ � � � ˝P ˝

i‚ …„ ƒ
.M \P /˝P ˝ � � � ˝P :

Lemma 2.19. LetE1; : : : ;En be finite dimensional P -modules from the category FMP .
Then E1 ˝ � � � ˝En is a P˝n-module from the category FMP˝n .

Proof. There exists a k 2 N such that .M\P /kC1 annihilates each of the modules Ei ,
for 1 � i � n. It is now readily checked that

.MP˝n/
n.kC1/

� annP˝n.E1 ˝ � � � ˝En/:

We consider the map

˛n W v
n
C ! vC; .�1; : : : ; �n/ 7! �1 C � � � C �n:

Pull-back by ˛n induces an algebra homomorphism

(2.8) ˛�n W P ! P˝n:
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Lemma 2.20. The homomorphism ˛�n maps the maximal ideal M \ P of P into the
maximal ideal MP˝n of P˝n.

Proof. The ideal M \P is generated by the first order polynomials � 2 v�C . Now

(2.9) ˛�n.�/ D

nX
iD1

1˝ � � � ˝ 1˝
i

� ˝ 1˝ � � � ˝ 1;

and the result follows.

Corollary 2.21. Let n 2 N�. Via the homomorphism (2.8), every finite dimensional
P˝n-module from the category FMP˝n becomes a P -module from the category FMP .

Proof. Straightforward.

Remark 2.22. If E is a finite dimensional P -module, we define

mE W P ! End.E/

by mE .p/e WD p � e, for p 2 P and e 2 E.
IfE1; : : : ; En are finite dimensional modules from the category FMP , then by combining

Lemma 2.19 and Corollary 2.21 we may equip the tensor product E1 ˝ � � � ˝ En with the
structure of a module from the same category FMP . The module structure is given by the rule

mE1˝���˝En D .mE1 ˝ � � � ˝mEn/ ı ˛
�
n :

In view of (2.9) this module structure is completely determined by the rule

(2.10) mE1˝���˝En.�/ D

nX
iD1

idE1 ˝ � � � ˝ idEi�1 ˝mEi .�/˝ idEiC1 ˝ � � � ˝ idEn

for � 2 v�C � P .
Accordingly, if E1; : : : ; En are finite dimensional O0-modules, then in particular they

are P -modules from the category FMP . We equip the module E1˝ � � � ˝En from FMP with
the unique compatible structure of O0-module.

Lemma 2.23. LetE1; : : : ; En be finite dimensional O0-modules. Then, as O0-modules:

E1 ˝ � � � ˝En ' E1 ˝ .E2 ˝ � � � ˝En/:

Proof. In view of Remark 2.22, it suffices to establish the identity as an identity of
P -modules. Thus, it suffices to show that

mE1˝���˝En D mE1˝.E2˝���˝En/:

Since v�C generates P , it suffices to check this identity on any element � 2 v�C . This is easily
done by using the identity (2.10).

We return to the setting of an open subset � � vC and resume our study of the map
J .E/ W f 7! f .E/, O.�/ ! O.�;End.E//, introduced in (2.6), for E a finite dimensional
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O0-module. In the following we shall use the natural identification

O.�;End.E// ' O.�/˝ End.E/:

Lemma 2.24. The restriction to P of the map J .E/ is given by

J .E/jP D .idP ˝mE / ı ˛
�
2 :

In particular, this restriction maps P into P ˝ End.E/.

Proof. Let p 2 P . For any � 2 vC , we have T ��p 2 P , and for any e 2 E,

p.E/.�/e D .T ��p/ � e D mE .T
�
�p/e:

Hence,
.ev�˝ idEnd.E// ı J

.E/
jP D mE ı T

�
� jP :

Viewing ev�˝ idP as a P -valued function on P ˝ P , we may identify the map T �� with
.ev�˝ idP / ı ˛

�
2 on P . Using the relation

mE ı .ev�˝ idP / D .ev�˝ idEnd.E// ı .idP ˝mE /;

we obtain the assertion of the lemma.

Proposition 2.25. Let E1 and E2 be two finite dimensional O0-modules. Then, for
every f 2 O.�/,

.J .E1/ ˝ idEnd.E2//f
.E2/ D f .E1˝E2/:

Proof. By density of the subspace P in O.�/ and continuity of the maps J .E1˝E2/ and
.J .E1/˝idEnd.E2//ıJ

.E2/, see Corollary 2.12, it suffices to establish the validity of the identity
on a fixed element p 2 P . By definition of J .E1/, we have ev0 ı J .E1/q D mE1.q/ for each
q 2 P . Using Lemma 2.24 we obtain

.J .E1/ ˝ idEnd.E2//p
.E2/.0/ D .mE1 ˝ idEnd.E2//p

.E2/

D .mE1 ˝ idEnd.E2// ı .idP ˝mE2/.˛
�
2p/

D .mE1 ˝mE2/ ı ˛
�
2 .p/

D mE1˝E2.p/ D p
.E1˝E2/.0/:

The result now follows by translation invariance; see Lemma 2.9 (b).

Proposition 2.26. Let E1; : : : ; En be finite dimensional O0-modules. Then, for every
f 2 O.�/,

.J .E1/ ı � � � ı J .En//.f / D f .E1˝���˝En/:

In the formulation of this proposition we have slightly abused notation, by using the
abbreviation J .Ek/ for J .Ek/ ˝ idEnd.EkC1/˝ � � � ˝ idEnd.En/.

Proof. In view of Lemma 2.23, the result follows by repeated application of Proposition
2.25.
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Let � 2 vC . By I� we denote the subset of O0 consisting of all elements ' 2 M

satisfying

(2.11) @�' 2M:

By the Leibniz rule, I� is an ideal of O0 containing M2.

Lemma 2.27. Assume � ¤ 0. Then I� is an ideal in O0 of codimension 2. If � 2 v�C is
such that �.�/ ¤ 0, then O0 D C1˚C� ˚ I�.

Proof. Consider the linear mapL W O0 ! C2 defined byL.'/ D .'.0/; @�'.0//. Then
I� equals the kernel of L, hence is of codimension at most 2. On the other hand, L is readily
seen to be injective on C1˚C�, and the result follows.

Let QI1; : : : ; QIn be a collection of ideals from P containing .M\P /kC1 for some k 2 N.
Then the algebra homomorphism ˛�n W P ! P˝n induces an algebra homomorphism

N̨
�
n W P ! .P = QI1/˝ � � � ˝ .P = QIn/

by composition with the natural projection from P˝n onto the quotient algebra on the right.

Lemma 2.28. Let � 2 vC n ¹0º, and let QI C P be an ideal with .M \P /kC1 � QI for
some k 2 N. Then the kernel of

N̨
�
2 W P ! P = QI ˝ .P =I� \P /

is equal to ¹p 2 QI j @�p 2 QIº. In particular, this kernel contains .M \P /kC2.

Proof. The last assertion follows from the first one by application of the Leibniz rule.
We turn to the proof of the first assertion.

We fix � 2 v�C such that �.�/ D 1. By Lemma 2.27 we have P D .C1˚C�/˚.P \I�/

as a linear space. Let � W P ! C1˚ C� denote the associated projection operator. Then it is
readily checked that

�.p/ D p.0/C @�p.0/�; p 2 P :

This implies that for all p 2 P we have

.idP ˝�/ ı ˛
�
2 .p/ D p ˝ 1C @�p ˝ �:

It follows that N̨�2 .p/ D 0 if and only if p 2 QI and @�p 2 QI.

Lemma 2.29. Let �1; : : : ; �n 2 vC n ¹0º. If n > 1, the kernel of

N̨
�
n W P ! .P =I�1 \P /˝ � � � ˝ .P=I�n \P /

equals the kernel of
N̨
�
2 W P ! .P = ker N̨�n�1/˝ .P =I�n \P /;

where N̨�n�1 denotes the composition on the left of the algebra homomorphism ˛�n�1 with the
projection P˝.n�1/ ! .P=I�1 \P /˝ � � � ˝ .P =I�n�1 \P /.
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Proof. The map N̨�n�1 induces an embedding (denoted by the same symbol)

N̨
�
n�1 W P= ker N̨�n�1 ,! .P =I�1 \P /˝ � � � ˝ .P=I�n�1 \P /:

Moreover, the following diagram commutes:

P

N̨�2
��

N̨�n // .P=I�1 \P /˝ � � � ˝ .P =I�n \P /

.P= ker N̨�n�1/˝ .P =I�n \P /

$ �
N̨�n�1˝idP=.I�n

\P /

22

Thus, ker N̨�n D ker N̨�2 .

Lemma 2.30. Let �1; : : : ; �n 2 vC n ¹0º. Then the kernel of

N̨
�
n W P ! .P =I�1 \P /˝ � � � ˝ .P=I�n \P /

consists of the elements p of M \ P satisfying p. � I�j1 � � ��jl / 2 M, for all 1 � l � n,
1 � j1 < � � � < jl � n. In particular, this kernel contains .M \P /nC1.

Proof. The final statement follows from the first by repeated application of the Leibniz
rule. The first statement follows by induction on n, by application of Lemmas 2.28 and 2.29.

Proposition 2.31. (a) Let E1; : : : ; En be finite dimensional O0-modules. There exist
N; k 2 N such that E1 ˝ � � � ˝ En is a quotient of the O0-module CN ˝ O0=M

kC1

(action on the second tensor component).

(b) Let I be a cofinite ideal of O0. There exist �1; : : : ; �n 2 vC such that the algebra
homomorphism

N̨
�
n W P ! .P =I�1 \P /˝ � � � ˝ .P=I�n \P /

satisfies ker N̨�n � I. In particular, the O0-module O0=I is a subquotient of

.O0=I�1/˝ � � � ˝ .O0=I�n/:

Proof. Assertion (a) follows from Corollary 2.15 and (2.7). For the second assertion, we
note that by Lemma 2.17, there exists a number k 2 N such that .M\P /kC1 � I\P �M.
Fix a basis ¹X1; : : : ; XN º of v. Put n WD kN and

�kjCi WD Xj for 0 � j � N � 1 and 1 � i � k:

By Lemma 2.30, the ideal ker N̨�n is equal to®
p 2M \P j p. � I�j1 � � ��jl / 2M; 1 � l � n; 1 � j1 < � � � < jj � n

¯
:

Hence, if p 2 ker N̨�n , then
p.0IXˇ / D 0; jˇj � k:

This implies that p 2 .M \ P /kC1. Thus, ker N̨�n � I. In particular, it follows that the
P -module P =.I \ P / is a subquotient of .P =I�1 \ P / ˝ � � � ˝ .P =I�n \ P /. The final
assertion now follows by application of Lemmas 2.16 and 2.17.
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2.2. Holomorphic families of continuous representations. We retain our assumption
that � is an open subset of the finite dimensional complex linear space vC .

IfX is a locally compact Hausdorff space, and V a locally convex (Hausdorff) space, then
by C.X; V / we denote the space of V -valued continuous functions on X , equipped with the
topology of uniform convergence on compact subsets. If V is quasi-complete, then C.X; V / is
quasi-complete as well.

Let V be a quasi-complete locally convex space. The subspace O.�; V / of V -valued
holomorphic functions on � is closed in C.�; V / hence quasi-complete of its own right. For
our further considerations, it is important to note that the algebraic tensor product P .vC/˝ V

is dense in O.�; V /, see Lemma A.1.
If V;W are locally convex spaces, we write Hom.V;W / for the space of continuous

complex linear maps V ! W . This space, equipped with the strong operator topology, is
locally convex again. Moreover, if V is barrelled and W quasi-complete, then Hom.V;W / is
quasi-complete as well, see the paragraph before Lemma A.4. As usual, we write End.V / for
Hom.V; V /. Let U be a third locally convex space. Then the composition map

ˇ W Hom.U; V / � Hom.V;W /! Hom.U;W /; .A;B/ 7! B ı A

is bilinear and separately continuous. Moreover, if V is barrelled, then by the principle of
uniform boundedness, ˇ is continuous relative to (i.e., when restricted to) sets of the form
Hom.U; V /�C , with C � Hom.V;W / compact; see Lemma A.4. Now assume that U; V and
W are quasi-complete locally convex spaces. If U and V are barrelled, then it follows from
the material in the appendix, see Lemma A.6, that the natural pointwise composition defines a
bilinear map

ˇ� W O.�;Hom.U; V // �O.�;Hom.V;W //! O.�;Hom.U;W //:

Definition 2.32. A holomorphic family of continuous representations of G over � is a
pair .�; V / such that the following conditions are fulfilled:

(a) V is a Fréchet space.

(b) � is a continuous map from G to O.�;End.V // satisfying:

(1) �.g1g2/ D �.g1/�.g2/, for g1; g2 2 G,
�.eG/ D 1� , where 1�.�/ D idV for all � 2 �;

(2) for every k 2 K, the End.V /-valued function �.k/ is constant on �.

A holomorphic family of smooth representations ofG over� is a family .�; V / as above
such that in addition

(2.12) .g; �/ 7! �.g/.�/v; G ��! V

is smooth for every v 2 V .

Remark 2.33. Given g 2 G and � 2 � we agree to write ��.g/ WD �.g/.�/. The
condition that V is Fréchet ensures that the principle of uniform boundedness is valid. By
application of this principle it follows that the map

G �� � V ! V; .g; �; v/ 7! ��.g/v
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118 van den Ban and Souaifi, Paley–Wiener theorems

is continuous and holomorphic in �. More generally we could have given the definition of
a holomorphic family of continuous representations under the weaker assumption that V be
quasi-complete and barrelled. All results of the present section and the next are in fact valid
under this weaker assumption. However, in Section 2.4 the assumption that V is Fréchet will
really be needed.

Definition 2.34. Let .�; V�/ and .�; V�/ be two holomorphic families of continuous
representations of G over �. A holomorphic family of intertwining operators, T , between
.�; V�/ and .�; V�/ is an element of O.�;Hom.V� ; V�// satisfying

T�.g/ D �.g/T; g 2 G:

Definition 2.35. The category HFG is defined as follows.

(a) The objects are the holomorphic families of continuous representations of G over �.

(b) The morphisms are the holomorphic families of intertwining operators between two ob-
jects.

For any .�; V�/ 2 HFG , the identity morphism is the holomorphic family 1� of intertwining
operators defined by

1�.�/ WD idV� ; � 2 �:

The composition T 0 ı T of two (composable) morphisms is given by pointwise composition:
.T 0 ı T /� D T

0
�
ı T�. It is again a holomorphic family of intertwining operators, by virtue of

Lemma A.6.

If V and W are locally convex spaces, and E a finite dimensional complex linear space,
then the map .A1; A2/ 7! A1 ˝ A2 induces a linear isomorphism

End.E/˝ Hom.V;W / ' Hom.E ˝ V;E ˝W /;

which we shall use for identifying these spaces. Accordingly, if V and W are quasi-complete,
and V barrelled, then

J .E/ W T 7! T .E/

defines a continuous linear map

O.�;Hom.V;W //! O.�;Hom.E ˝ V;E ˝W //

(see Remark A.7).

Definition 2.36. Let E be a finite dimensional O0-module.

(a) For .�; V / 2 HFG , we define �.E/ to be the continuous map

�.E/ D J .E/ ı � W g 7! �.g/.E/; G ! O.�;End.E ˝ V //:

(b) For any morphism T W .�; V�/! .�; V�/ of HFG , we define

T .E/ WD J .E/.T / 2 O.�;Hom.E ˝ V� ; E ˝ V�//:
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Proposition 2.37. Let E be a finite dimensional O0-module. Then J .E/ defines a func-
tor from HFG to itself.

Proof. Let .�; V / 2 HFG . We will first show that .�.E/; E˝V / 2 HFG . Let ˇ denote
the composition map in End.V /. It is a bilinear map, which preserves holomorphy on � by
Lemma A.6. Moreover, by Corollary A.12 we have, for all g1; g2 2 G,

�.E/.g1g2/ D �.g1g2/
.E/
D .�.g1/�.g2//

.E/

D �.g1/
.E/�.g2/

.E/
D �.E/.g1/�

.E/.g2/:

Also, �.E/.eG/ D 1
.E/
� D 1�.E/ . For k 2 K, the End.V /-valued function �.k/ is a con-

stant on �, and therefore, so is the End.E ˝ V /-valued function �.E/.k/ D �.k/.E/. Hence
(1) and (2) of Definition 2.32 (b) are fulfilled. It remains to show that, for any morphism
T W .�; V�/ ! .�; V�/ of HFG , T .E/ is a morphism of HFG from .�.E/; E ˝ V�/ to
.�.E/; E ˝ V�/. For this it suffices to show that, for g 2 G,

T .E/�.E/.g/ D �.E/.g/T .E/:

This follows from Corollary A.12, see also the first part of the present proof.

The category HFG has a null object, .0; ¹0º/, and one can define a biproduct in HFG as
follows. Let .�; V�/; .�; V�/ 2 HFG . Set, for any g 2 G, � 2 � and .v; w/ 2 V� ˚ V�,

.� ˚ �/�.g/.v; w/ WD .��.g/v; ��.g/w/:

Then .�˚�; V�˚V�/ defines an object of HFG . We define the full subcategory HF1G of HFG
by stipulating that the objects are the holomorphic families of smooth representations over �
(the set of morphisms between objects in HF1G coincides with the set of morphisms between
the objects viewed as objects for the bigger category HFG . Likewise, the full subcategory
HF1;adm

G of HF1G consists of the objects .�; V / of HF1G with VK admissible.
If .�; V / 2 HFG , then the identity morphism 1� is constant as an End.V /-valued func-

tion on �. This enables us to define a particular subcategory.

Definition 2.38. The subcategory ıHFG of HFG is defined as follows.

(a) The objects are the objects of HFG .

(b) If .�; V / and .�;W / are objects of HFG , then the associated collection of ıHFG-mor-
phisms consists of all HFG-morphisms T in O.�;Hom.V;W // which are constant as a
function on �.

In a similar fashion, we define the subcategories ıHF1G of HF1G and ıHF1;adm
G of HF1;adm

G .

Note that ıHF1;adm
G is a full subcategory of ıHF1G , which in turn is a full subcategory of

ıHFG .

Remark 2.39. For every E 2 FMO0 , the functor J .E/ W HFG ! HFG leaves all
subcategories HF1G , HF1;adm

G , ıHFG , ıHF1G and ıHF1;adm
G invariant.
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Lemma 2.40. Let  W E ! E 0 be a morphism in FMO0 and let .�; V�/ be a holomor-
phic family of representations. Then  ˝ 1� intertwines the families �.E/ and �.E

0/.

Proof. If f 2 O.�/, then from the definitions it readily follows that

 ı f .E/.�/ D f .E
0/.�/ ı  ; � 2 �:

From this and the identification End.E/ ˝ End.V�/ ' End.E ˝ V�/, it follows that for all
g 2 G the map  ˝ 1� W E ˝ V� ! E 0 ˝ V� intertwines �.E/� .g/ D �.g/.E/.�/ with
�
.E 0/
� .g/ D �.g/.E

0/.�/.

The above lemma justifies the following definition.

Definition 2.41. Given any .�; V�/ 2 obj.HFG/, we define the functor X� from FMO0

to ıHFG as follows.

(a) For an object E 2 FMO0 , the associated object of ıHFG is given by

X�.E/ WD .�
.E/; E ˝ V�/:

(b) For a morphism  W E ! E 0 of FMO0 , the associated morphism of ıHFG is given by

X�. / WD  ˝ 1� W .�
.E/; E ˝ V�/! .�.E

0/; E 0 ˝ V�/:

Remark 2.42. It is readily checked that X� is a functor. Indeed, X� respects composi-
tion of morphisms, and X�.idE / D idE˝V� D 1�.E/ .

As FMO0 is an abelian category, we have the usual notion of finite direct sums and exact
sequences in FMO0 .

The category Vect of complex vector spaces is abelian. If T W .�; V / ! .�;W / is a
morphism in ıHFG , then there exists a unique linear map T0 W V ! W such that T .�/ D T0
for all � 2 �. By abuse of notation we will write T for T0. We thus have a forgetful functor
ıHFG ! Vect.

The category ıHFG is not abelian. Nevertheless, we may use the forgetful functor to
define exact sequences.

Definition 2.43. A sequence ..�k; Vk/; Tk/, p � k � q, in the category ıHFG , where
p; q 2 Z; p < q, will be called exact if its image under the forgetful functor ıHFG ! Vect is
exact, i.e., the image of Tk�1 equals the kernel of Tk for all p < k � q.

Lemma 2.44. Let .�; V�/ 2 obj.HFG/. Then the functor X� W FMO0 !
ıHFG has the

following properties.

(a) It sends every short exact sequence 0 ! E ! E 0 ! E 00 ! 0 to a similar short exact
sequence in ıHFG .

(b) It sends every exact sequence of the form 0! E ! E 0 in FMO0 to an exact sequence of
similar form in ıHFG .
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(c) It sends every exact sequence of the form E 0 ! E 00 ! 0 in FMO0 to an exact sequence
of similar form in ıHFG .

(d) It sends a direct sum of the formE D E1˚E2 in FMO0 to a similar direct sum in ıHFG .

Proof. Let FDVect denote the (abelian) category of finite dimensional complex linear
spaces. Then we have a forgetful functor F from FMO0 to FDVect. A sequence in FMO0 is
exact if and only if its image under F is exact in FDVect. According to the definition above,
the forgetful functor F 0 W ıHFG ! Vect has a similar property. Given U 2 Vect we define the
functor XU W FDVect ! Vect by XU .E/ D E ˝ U for an object E of FDVect. A morphism
f W E ! E 0 in FMO0 is mapped to XU .f / WD f ˝ idU W E ˝ U ! E 0 ˝ U . It is readily
seen that the functor XU is exact, and has the obvious properties analogous to (a)–(d). Since
F 0 ı X� D XF 0.�;V / ı F , assertions (a), (b) and (c) of the lemma follow. For assertion (d)
it remains to be shown that each natural embedding ij W Ej ! E, for j D 1; 2, is mapped
to an embedding X�.ij / from X�.Ej / onto a closed subspace of X�.E/. Let pj W E ! Ej
be the natural projection. Then by exactness of the sequence 0 ! E1 ! E ! E2 ! 0 it
follows from the established assertion (a) that 0 ! X�.E1/ ! X�.E/ ! X�.E2/ ! 0 is
exact. This implies that X�.i1/ has closed image in X�.E/. Likewise, X�.i2/ is seen to have
close image.

Remark 2.45. In view of Remark 2.39, Lemma 2.44 has an obvious generalization to
objects from HF1G and from HF1;adm

G .

Proposition 2.46. (a) Let E1; : : : ; En 2 FMO0 and set E WD E1 ˝ � � � ˝ En. Then
there exist N; k 2 N such that, for any object .�; V�/ in HFG (resp. HF1G ;HF1;adm

G ),
the family .�.E/; E ˝ V�/ is a quotient of�

idCN ˝�
.O0=M

kC1/;CN
˝ .O0=M

kC1
˝ V�/

�
in the category ıHFG (resp. ıHF1G ;

ıHF1;adm
G ).

(b) Let E 2 FMO0 . Then there exist �1; : : : ; �n 2 vC such that, for any object .�; V�/ in
HFG (resp. HF1G ;HF1;adm

G ), the family .�.E/; E ˝ V�/ is a subquotient of�
�..O0=I�1 /˝���˝.O0=I�n //; .O0=I�1/˝ � � � ˝ .O0=I�n/˝ V�

�
in the category ıHFG (resp. ıHF1G ;

ıHF1;adm
G ).

Proof. This follows from Proposition 2.31 combined with Lemma 2.44.

2.3. Holomorphic families of admissible .g; K/-modules. For the purpose of this
paper, it is convenient to introduce the following notion of holomorphic families of admissible
.g; K/-modules. Recall that� is an open subset of the finite dimensional complex linear space
vC .

Definition 2.47. A holomorphic family of admissible .g; K/-modules over� is a triple
.�1; �2; V / satisfying the following conditions.

(a) V is a complex vector space.
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(b) �1 is a map from U.g/ �� to End.V / such that

(1) for each � 2 �, the map �1. � ; �/ is a Lie algebra homomorphism;

(2) for each u 2 U.g/ and every v 2 V , the vector subspace of V generated by the
�1.u; �/v, � 2 �, is finite dimensional and the map � 7! �1.u; �/v is holomorphic
from � into this subspace.

(c) �2 is a Lie group homomorphism from K to GL.V / such that

(1) for each v 2 V , the vector subspace of V generated by the �2.k/v, k 2 K, is finite
dimensional;

(2) for all v 2 V , � 2 �, u 2 U.g/, k 2 K and X 2 k,

�1.Ad.k/u; �/v D �2.k/�1.u; �/v;
d

dt

�
�2.exp .tX//v

�
jtD0 D �1.X; �/v:

(d) For every ı 2 K^; the K-isotypic component �2;ı of �2 of type ı is finite dimensional.

Remark 2.48. Let .�1; �2; V / be as in the above definition. Given � 2 � we agree
to write �1� for the map �1. � ; �/ W U.g/ ! End.V /. Then .�1�; �2; V / is an admissible
.g; K/-module.

We also need the following notion of holomorphic family of intertwining operators.

Definition 2.49. Let .�1; �2; V / and .�1; �2; W / be two holomorphic families of ad-
missible .g; K/-modules over �. A holomorphic family of intertwining operators between
.�1; �2; V / and .�1; �2; W / is a function T W � ! Hom.V;W / satisfying the following con-
ditions.

(a) T .�/�1.u; �/ D �1.u; �/T .�/, for all � 2 � and u 2 U.g/.

(b) T .�/�2.k/ D �2.k/T .�/, for all � 2 � and k 2 K.

(c) For any finite dimensional subspace QV of V , there exists a finite dimensional subspace QW
of W such that T .�/. QV / � QW for all � 2 �, and the associated function � 7! T .�/j QV
belongs to O.�;Hom. QV ; QW //.

Let HFadm
.g;K/

denote the corresponding category of holomorphic families of admissible
.g; K/-modules.

Let .�; V / be an object in the category HF1;adm
G . Then for each � 2 �, u 2 U.g/ and

v 2 V we may define
�.u/.�/v WD Lu_.g 7! �.g/.�/v/jgDe:

We put �1.u; �/ D �.u/.�/jVK and �2.k/ D �.k/jVK .

Lemma 2.50. Let .�; V / 2 HF1;adm
G and let �1; �2 be defined as above. Then

.�; V /K WD .�1; �2; VK/

is a holomorphic family in HFadm
.g;K/

. Moreover, . � /K W .�; V / 7! .�; V /K defines a functor
HF1;adm

G ! HFadm
.g;K/

.
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Proof. It follows from the smoothness of the map (2.12), the continuity of the map
Lu_ W C

1.G/ ! C1.G/ and the holomorphy with respect to �, that ' W � 7! �.u/.�/v

defines a holomorphic function � ! V . Let now v 2 VK and let #2 � bK denote the
set of K-types appearing in the �.K/-span of v. Moreover, let #1 be the set of K-types
which appear in the Ad.K/-span of u. Finally, let # be the union of the sets of K-types of
ı1 ˝ ı2, for ıj 2 #j , j D 1; 2. Then ' has its image contained in the finite dimensional
subspace V# � VK . It follows that ' is holomorphic as a function � ! V# . This shows
that .�1; �2; VK/ satisfies condition (2) of Definition 2.47 (b). The other conditions of that
definition are pointwise in �, and therefore consequences of the standard theory of assigning
the .g; K/-module of K-finite vectors to an admissible smooth Fréchet representation, see for
instance [10, Lemma 3.3.5]. The latter assignment is a functor from the category of admissible
smooth Fréchet representations to the category of Harish-Chandra modules. This implies that
.�; V / 7! .�; V /K has functorial properties which are pointwise in �. This in turn is readily
seen to imply that . � /K is a functor as stated.

We will now discuss the functor J .E/ on the level of holomorphic families of admissible
.g; K/-modules.

Definition 2.51. Let E 2 FMO0 . For any .�1; �2; V / 2 HFadm
.g;K/

the triple�
J .E/�1; J

.E/�2; J
.E/V

�
;

also denoted .�.E/1 ; �
.E/
2 ; V .E//, is defined as follows.

(a) J .E/V WD E ˝ V .

(b) J .E/�1 is the map from U.g/ �� to End.E ˝ V / given by

J .E/�1.u; �/e ˝ v WD .�1.u; � /v/
.E/.�/e;

for u 2 U.g/; � 2 �; e 2 E, and v 2 V .

(c) J .E/�2 WD idE ˝�2.

We now have functors J .E/ on HF1;adm
G and HFadm

.g;K/
. They are linked as follows.

Lemma 2.52. (a) For any E 2 FMO0 , the assignment J .E/ defines a functor from
HFadm

.g;K/
to itself.

(b) The following diagram commutes:

HF1;adm
G

J .E/

��

. � /K // HFadm
.g;K/

J .E/

��

HF1;adm
G . � /K

// HFadm
.g;K/

:

Proof. Assertion (a) follows by similar arguments as in the proof of Proposition 2.37.
For (b), assume that .�; V / is a family in HF1;adm

G . Put .�; V /K D .�1; �2; VK/, then

J .E/..�; V /K/ D
�
�
.E/
1 ; �

.E/
2 ; .VK/

.E/
�
:
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On the other hand, J .E/.�; V / D .�.E/; V .E// and�
J .E/.�; V /

�
K
D
�
.�.E//1; .�

.E//2; .V
.E//K

�
Now V .E/ D E ˝ V is equipped with the K-action on the second component, so that
.V .E//K D E ˝ VK D .VK/

.E/. Moreover,

�
.E/
2 .k/ D 1E ˝ �2.k/ D 1E ˝ �.k; �/jVK D �

.E/.k; �/jE˝VK D .�
.E//2.k/:

It remains to establish the identity

(2.13) �
.E/
1 D .�.E//1:

Since both are representations of U.g/ in E � VK , it suffices to check the identity on a fixed
element X 2 g. Fix e 2 E and v 2 V . We first observe that

�
.E/
1 .X/v D .�1.X; � /v/

.E/
D

h d
dt
�.exp tX/. � /v

i.E/
jtD0:

In view of the natural identification End.E/˝ V ' Hom.E;E ˝ V /, we note that

.�.E//1.X; � /v D
d

dt

�
�.E/.exp tX/. � /v

�
jtD0

D
d

dt

�
.�.exp tX/. � /v/.E/

�
jtD0:

The identity (2.13) now follows by application of the lemma below.

Lemma 2.53. Let V be a quasi-complete locally convex space, and let ' W R��! V

be a C 1-map which is holomorphic in the second variable. Then

(2.14)
d

dt

�
'.t; � /.E/

�
D

h@'
@t
.t; � /

i.E/
:

Proof. Let S be the space of C 1-maps R � � ! V , equipped with the usual quasi-
complete topology. Let S0 be the subspace consisting of functions in S which are holomorphic
in the second variable. Then S0 is closed in S , hence quasi-complete. The identity (2.14) at
.t; �/ can be viewed as an identity of continuous linear functionals on S0. Hence, it suffices
to check the identity on the dense subspace C 1.R/ ˝ O.�/ ˝ V . This amounts to checking
whether � d

dt
˝ I ˝ I

�
ı .I ˝ J .E/ ˝ I / D .I ˝ J .E/ ˝ I / ı

� d
dt
˝ I ˝ I

�
:

The latter is obvious.

2.4. Parabolic induction. Let g D k ˚ p be a Cartan decomposition associated with
the maximal compact subgroup K and let � be the associated involution of G. Let a � p be
a maximal abelian subspace, and let A D exp a. Let P .A/ denote the collection of parabolic
subgroups of G containing A. Let L.A/ denote the collection of � -stable Levi components of
parabolic subgroups from P .A/.
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Let v be a finite dimensional real linear space, and � an open subset of its complexifi-
cation. For L 2 L.A/ we denote by HFL the category defined as in Definition 2.32, with the
group L in place of G.

The parabolic induction functor from HF1L to HF1G is defined as follows. Let
.�; V�/ 2 HF1L be a holomorphic family of smooth representations of L defined over �. De-
note by N�P;�� the right regular representation of G on C1.GWP W ��/, where

C1.GWP W ��/ WD
®
 2 C1.G; V�/ j  .nmg/ D ��.m/ .g/; .g;m; n/ 2 G � L �NP

¯
:

Let

C1.KW �/ WD
®
 2 C1.K; V�/ j  .mk/ D �.m/ .k/; .k;m/ 2 K � .K \ L/

¯
:

(2.15)

Restriction of functions to K induces a continuous linear isomorphism between these spaces.
Let �P;�� denote the representation of G on C1.KW �/, obtained from N�P;�� by transfer of
structure, and set, for g 2 G, � 2 vC ,

�P;�;�.g/ WD �P;��.g/:

Then it is readily seen that .�P;� ; C1.KW �// belongs to HF1G . Here, the information that V�
is a Fréchet space is needed to conclude that C1.KW �/ is Fréchet, in particular barrelled.

Let W1; W2 and W3 be quasi-complete locally convex spaces, and let ˛ be a continuous
linear map from W2 to W3. Then the map

L˛ W ' 7! ˛ ı '; Hom.W1; W2/! Hom.W1; W3/

is continuous linear. It readily follows that the map

idO.�/ b̋ L˛ W O.�;Hom.W1; W2//! O.�;Hom.W1; W3//

given by f 7! L˛ ı f is continuous linear. The notation for this map is explained by the fact
that it may be viewed as the unique continuous linear extension of idO.�/˝L˛.

Lemma 2.54. Let L˛ be as above and let E be a finite dimensional O0-module. Then
we have the identity

J .E/ ı .idO.�/ b̋ L˛/ D .idO.�/ b̋ idEnd.E/ b̋ L˛/ ı J
.E/

of maps
O.�;Hom.W1; W2//! O.�;End.E/˝ Hom.W1; W3//:

Proof. By continuity of the expressions on both sides of the identity it suffices to prove
the identity on the dense subspace O.�/˝ Hom.W1; W2/ of O.�;Hom.W1; W2//. But then
the identity becomes obvious, in view of Remark A.7, last line.

The following result may be phrased as ‘derivation commutes with induction’.

Proposition 2.55. Let E be a finite dimensional O0-module, P a parabolic subgroup
with Levi component L, and .�; V�/ 2 HF1L . Then

�
.E/

P;�
D �P;�.E/ :
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126 van den Ban and Souaifi, Paley–Wiener theorems

Proof. Let g 2 G and k 2 K. Put ˛.k/ WD evk W C1.KW �/! V� . Let

L˛.k/ W End.C1.KW �//! Hom.C1.KW �/; V�/

be defined as in the previous lemma. Accordingly,

(2.16) .idO.�/ b̋ idE b̋ L˛.k//.�
.E/

P;�
.g// D

�
.idO.�/ b̋ L˛.k//.�P;�.g//

�.E/
:

Write g D np.g/�.g/ uniquely via the decomposition G D NPAP .MP \ exp p/K, where
n 2 NP , p.g/ 2 AP .M \ exp p/ and �.g/ 2 K. We then have the following identity:

.idO.�/ b̋ L˛.k//.�P;�.g// D �.p.kg// ı L˛.�.kg//:

Hence, it follows from (2.16) that

.idO.�/ b̋ idE b̋ L˛.k//.�
.E/

P;�
.g// D

�
�.p.kg// ı L˛.�.kg//

�.E/
D
�
�.E/.p.kg// ı L˛.�.kg//

�
D .idO.�/ b̋ idE b̋ L˛.k//.�P;�.E/.g//

and the statement follows.

3. The Arthur–Campoli relations

Given a parabolic subgroup P 2 P .A/ we denote its Langlands decomposition by
P DMPAPNP .

Let .�; V�/ be a smooth, irreducible and admissible Fréchet representation ofMP . Given
� 2 a�

PC we denote by � ˝ � the smooth representation of LP WDMPAP in V� defined by

� ˝ �.ma/ D a�C�P �.m/:

As usual, here �P 2 a�P is defined by �P D 1
2

tr.ad. � /jnP /. The associated induced represen-
tation N�P;�˝� of G in C1.GWP W � ˝ �/ is defined as in Section 2.4, with v D a�; � D a�C
and �� D � ˝ �. The family of these representations may be viewed as a holomorphic family
�P;�˝. � / of smooth representations of G over � D a�C on the fixed space C1.KW �/, defined
in (2.15). As in the mentioned section, we agree to write �P;�;� D �P;�˝�. If P is a minimal
parabolic subgroup, the representations �P;�;� just defined are called representations of the
smooth minimal principal series of G.

Let now P 2 P .A/ be arbitrary again. Then MP is a group of the Harish-Chandra
class, with maximal compact subgroup KP WD MP \ K. Two continuous admissible MP -
representations of finite length in a quasi-complete locally convex space are said to be infinites-
imally equivalent if their Harish-Chandra modules are equivalent as .mP ; KP /-modules. For
each equivalence class ! of irreducible unitary representations of MP , we fix a smooth admis-
sible Fréchet representation � D �! which is infinitesimally equivalent to a representation of
class !, and which is topologically equivalent to a closed subrepresentation of a representation
of the smooth minimal principal series ofMP . Indeed, this is possible by the subrepresentation
theorem for the group MP . The set of all these chosen representations �! is denoted by M^P .
Thus, ! 7! �! defines a bijection from the set of equivalence classes of irreducible unitary
representations of MP onto M^P .
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Remark 3.1. In view of the theory of the Casselman–Wallach globalization functor, see
[11, Section 11], the representation �! is a smooth Fréchet globalization of moderate growth of
the Harish-Chandra module of any representative of !. This characterization makes the choice
of M^P more natural, but will not be needed in the present paper.

We denote by M^P;ds the subset of M^P consisting of the representations �! , with ! a
discrete series representation. In particular, if P 2 P .A/ is minimal, then MP equals the
centralizer M of a in K, and M^ds DM

^. For each .�; V�/ 2M^P;ds we put

�.P; �/ WD End.C1.KW �//K�K ;

and we define the algebraic direct sum of linear spaces

(3.1) �.P / WD
M

�2M^P;ds

�.P; �/:

3.1. The Arthur–Campoli relations. Fix a minimal parabolic subgroup P0 in P .A/

and let P0 D MAN0 be its Langlands decomposition. In [1, Chapter III, §4], Arthur defines a
Paley–Wiener space involving all minimal parabolic subgroups containingA. This definition is
given in terms of Paley–Wiener growth conditions on the one hand, and the so-called Arthur–
Campoli conditions on the other. In [3, Theorem 3.6] it is shown that the Arthur Paley–Wiener
space is isomorphic to one defined in terms of the single minimal parabolic subgroup P0. We
shall now describe the Arthur–Campoli relations in the context of the operator valued Fourier
transform f 7! Of .P0/.

For f 2 C1c .G;K/ and � 2 M^, the Fourier transform Of .P0; �/ 2 O.a�C/˝ �.P0; �/

is defined by

(3.2) Of .P0; �; �/ WD

Z
G

f .x/�P0;�;�.x/ dx; � 2 a�C:

Then f 7! Of .P0/ maps C1c .G;K/ into O.a�C/˝ �.P0/.
We define † to be the set of 4-tuples .�;  ; �; u/ with � 2 M^,  2 �.P0; �/

�
K�K ,

� 2 a�C and u 2 S.a�/. An Arthur–Campoli sequence in † is defined to be a finite family
.�i ;  i ; �i ; ui / in † such thatX

i

h�P0;�i ;�i Iui .x/;  i i D 0; x 2 G:

By integration over x it follows that this condition is equivalent to the condition that

(3.3)
X
i

h Of .P0; �i ; �i Iui /;  i i D 0; f 2 C1c .G;K/:

Definition 3.2. A function ' 2 O.a�C/˝ �.P0/ is said to satisfy the Arthur–Campoli
relations if X

i

h'�i ;�i Iui ;  i i D 0

for any Arthur–Campoli sequence .�i ;  i ; �i ; ui / in †.
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128 van den Ban and Souaifi, Paley–Wiener theorems

3.2. Reformulation of the Arthur–Campoli relations. In the following, O0 denotes
the ring of germs at 0 of holomorphic functions defined on a neighborhood of 0 in a�C .

Let E be a finite dimensional O0-module and let „ � M^ and ƒ � a�C be finite sets.
We define the representation �E;„;ƒ of G by

(3.4) �E;„;ƒ D
M

.�;�/2„�ƒ

�
.E/

P0;�;�
:

Note that this representation is admissible and of finite length. Its underlying space is given by

VE;„;ƒ D
M

.�;�/2„�ƒ

E ˝ C1.KW �/:

For each element ' 2 O.a�C/˝ �.P0/ we define the K �K-finite endomorphism 'E;„;ƒ of
VE;„;ƒ by taking the similar direct sum

(3.5) 'E;„;ƒ WD
M

.�;�/2„�ƒ

'
.E/

�
.�/:

We note that �E;„;ƒ.C1c .G;K// is a subset of the space End.VE;„;ƒ/ and agree to write
�E;„;ƒ.C

1
c .G;K//

? for its annihilator in the space

End.VE;„;ƒ/�K�K :

Proposition 3.3. Let � 2 O.a�C/˝ �.P0/. Then the following conditions are equiva-
lent:

(a) � satisfies the Arthur–Campoli relations.

(b) For every finite dimensional O0-module E, every pair of finite sets „ � M^, ƒ � a�C
and all ‰ 2 �E;„;ƒ.C1c .G;K//

?,

h�E;„;ƒ; ‰i D 0:

We prove the result through a number of lemmas. In the following results a complica-
tion is caused by the circumstance that End.VE;„;ƒ/K�K is not the direct sum of the spaces
End.VE;�;�/K�K , but rather that of the spaces Hom.VE;�1;�1 ; VE;�2;�2/K�K , for �1; �2 2 „
and �1; �2 2 ƒ. For .�; �/ 2 „ �ƒ, let

i�;� W End.VE;�;�/K�K ! End.VE;„;ƒ/K�K

denote the associated embedding, and let

pr�;� W End.VE;„;ƒ/K�K ! End.VE;�;�/K�K

denote the associated projection map.

Lemma 3.4. Let E;„;ƒ be as above. Then for each ‰ 2 End.VE;„;ƒ/�K�K there
exists a finite sequence .�i ;  i ; �i ; ui / in † such that for all ' 2 O.a�C/˝ �.P0/,

(3.6) h'E;„;ƒ; ‰i D
X
i

h'�i ;�i Iui ;  i i:
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Proof. Put
�.P0; „;ƒ/ WD

M
.�;�/2„�ƒ

�.P0; �/:

We observe that End.VE;„;ƒ/�K�K may be viewed as the direct sum of the K �K-submodule
End.E/� ˝ �.P0; „;ƒ/

�
K�K and a unique K � K-submodule End.E/� ˝ T (consisting of

the ‘cross terms’). Since every element of End.E/� ˝ T annihilates 'E;„;ƒ, we may assume
that ‰ 2 End.E/� ˝ �.P0; „;ƒ/

�
K�K . By linearity, we may then reduce to the situation that

„ D ¹�º and ƒ D ¹�º. Again by linearity we may assume that ‰ is of the form �˝  , with
� 2 End.E/� and  2 �.P0; �/

�
K�K . Let u 2 S.a�/ be associated with � as in Lemma 2.10.

Then for all ' 2 O.a�C/˝ �.P0/,

h'E;�;�; ‰i D h'
.E/

�;�
; �˝  i D h'�;�Iu;  i:

This finishes the proof.

Lemma 3.5. Let .�i ;  i ; �i ; ui / be a finite sequence in †. Then there exists a finite di-
mensional O0-module E, finite sets„�M^,ƒ� a�C and an element ‰ of End.VE;„;ƒ/�K�K
such that for all ' 2 O.a�C/˝ �.P0/,

(3.7)
X
i

h'�i ;�i Iui ;  i i D h'E;„;ƒ; ‰i:

Proof. Let E and �i 2 End.E/� be associated to the finite sequence ui as in Lemma
2.11. Then ‰i D �i ˝  i belongs to End.E/� ˝ �.P0; �i /

�
K�K ' End.VE;�i ;�i /

�
K�K . Let „

be the finite set of all �i and letƒ be the finite set of all �i . Let pr�i ;�i be defined as above. We
define ‰ 2 End.VE;„;ƒ/�K�K by

‰ D
X
i

pr��i ;�i .�i ˝  i /:

Then for all ' 2 O.a�C/˝ �.P0/ we haveX
i

h'�i ;�i Iui ;  i i D
X
i

h'
.E/

�i ;�i
; �i ˝  i i

D

X
i

hpr�i ;�i 'E;„;ƒ; �i ˝  i i D h'E;„;ƒ; ‰i:

Proof of Proposition 3.3. Let � be as stated and assume (a). Let E;„;ƒ and ‰ be
as asserted in (b). In particular, ‰ 2 End.VE;„;ƒ/�K�K . Let .�i ;  i ; �i ; ui / be a sequence
in †, associated to ‰ as in Lemma 3.4. Then using the relation (3.6) with ' D Of .P0/ for
f 2 C1c .G;K/, we see that .�i ;  i ; �i ; ui / is an Arthur–Campoli sequence (see (3.3)). Hence,

h�E;„;ƒ; ‰i D
X
i

h��i ;�i Iui ;  i i D 0:

We have proved (b).
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Conversely, assume (b) and let .�i ;  i ; �i ; ui / be an Arthur–Campoli sequence in †. Let
E;„;ƒ;‰ be associated with this sequence as in Lemma 3.5. Then it follows from (3.7) with
' D Of .P0/ for f 2 C1c .G;K/ that ‰ belongs to �E;„;ƒ.C1c .G;K//

?. This implies thatX
i

h��i ;�i Iui ;  i i D h�E;„;ƒ; ‰i D 0:

Hence (a).

4. Delorme’s intertwining conditions

4.1. Successive derivatives. Let v be a finite dimensional vector space over R, let
� � v�C be an open subset and let V be a quasi-complete locally convex space. Follow-
ing Delorme [6], we define, for ˆ 2 O.�;End.V // and � 2 v�C , the holomorphic function
ˆ.�/ W �! End.V ˚ V / by

ˆ.�/.�/.v1; v2/ WD
�
ˆ.�/v1 C

d

dz
.ˆ.�C z�/v2/jzD0; ˆ.�/v2

�
;

for all � 2 � and v1; v2 2 V . Still following [6], we agree to define, for any finite sequence
� D .�1; : : : ; �N / in v�C , the iterated derivative

ˆ.�/ WD .� � � .ˆ.�N //.�N�1/ � � � /.�1/

ofˆ along �. Thenˆ.�/ is a holomorphic function on� with values in End.V .�//, where V .�/

denotes the direct sum of 2N copies of V . Now assume that V is Fréchet (or more generally,
barrelled). If � is a holomorphic family of continuous representations of G in V over the
parameter set v�C then it follows by application of the methods of [6] that for each � 2 �,

�
.�/

�
.x/ WD �.x/.�/.�/; x 2 G;

defines a continuous representation of G in V .�/.

4.2. The intertwining conditions. Let D be the set of 4-tuples ı D .P; �; �; �/, with
P 2 P .A/, � 2 M^P;ds, � 2 a�

PC and � a finite sequence in a�
PC . Given ı 2 D , we define the

representation �ı of G in V�ı WD C
1.KW �/.�/ by

�ı WD �
.�/

P;�;�

For P 2 P .A/ we define the space FP WD O.a�
PC/ ˝ �.P /, with �.P / defined as in (3.1).

Furthermore, we put

(4.1) F WD
M

P2P .A/

FP :

Given ' 2 F and ı D .P; �; �; �/ 2 D , we define 'ı 2 End.C1.KW �/.�// in a similar
fashion as �ı , by

'ı WD '
.�/

P;�
.�/:

Finally, given a sequence ı D .ı1; : : : ; ıN / of data from D , we define

�ı WD �ı1 ˚ � � � ˚ �ıN ; V�ı WD V�ı1 ˚ � � � ˚ V�ıN ; 'ı WD 'ı1 ˚ � � � ˚ 'ıN :
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Definition 4.1. We say that a function ' 2 F satisfies Delorme’s intertwining condi-
tions (see [6, Definition 3 (4.4)]) if

(a) for every N 2 ZC and each ı 2 DN the function 'ı preserves all invariant subspaces of
�ı ;

(b) for all N1; N2 2 ZC, all ı1 2 DN1 and ı2 2 DN2 , and any two sequences of closed in-
variant subspaces Uj � Vj for �ıj , the induced maps N'ıj 2 End.Vj =Uj / are intertwined
by all intertwining operators T W V1=U1 ! V2=U2.

The space of functions ' 2 F satisfying (a) and (b) is denoted by F .D/.

4.3. A simplification of the intertwining conditions. In this section we will show that
condition (b) of Definition 4.1 is in fact a consequence of condition (a) of the same definition.

Lemma 4.2. Let ' 2 F . Then ' 2 F .D/ if and only if ' satisfies condition (a) of
Definition 4.1.

Proof. Assume that ' satisfies condition (a) of the mentioned definition. Then we must
show that ' satisfies condition (b) as well. Let ıj ; �ıj ; Uj ; Vj be as in (b), for j D 1; 2. Let
T W V1=U1 ! V2=U2 be an intertwining operator. Let pj W Vj ! Vj =Uj denote the canonical
projection, for j D 1; 2, and let p WD p1 ˚ p2. Since T is equivariant, its graph W is an
invariant subspace of V1=U1 ˚ V2=U2. Hence, p�1.W / is an invariant subspace of V1 ˚ V2.
Since ' satisfies (a), it follows that p�1.W / is a 'ı1˚'ı2-invariant subspace of V1˚V2. This
in turn is easily seen to imply that T ı N'ı1 D N'ı2 ı T .

4.4. Reduction to a single minimal parabolic subgroup. In this section, we will show
that the space F .D/ of functions satisfying Delorme’s intertwining conditions is naturally
isomorphic to a space of functions defined in terms of just the minimal parabolic subgroup P0.
We denote by DP0 the set of 4-tuples .P; �; �; �/ in D for which P D P0.

Definition 4.3. We say that a function ' 2 F satisfies Delorme’s intertwining condi-
tions associated with P0 if conditions (a) and (b) of Definition 4.1 are valid with everywhere
D replaced by DP0 .

The space of functions ' 2 F satisfying all such intertwining conditions is denoted by
F .DP0/.

The following analogue of Lemma 4.2 is now valid, with essentially the same proof.

Lemma 4.4. Let ' 2 F . Then ' 2 F .DP0/ if and only if ' satisfies condition (a) of
Definition 4.1 for every N 2 ZC and all ı 2 .DP0/

N .

We consider the component

FP0 WD O.a�C/˝ �.P0/

of the direct sum F defined in (4.1), and denote the natural projection F ! FP0 by pr.
Moreover, we define

FP0.DP0/ WD FP0 \ F .DP0/:
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Proposition 4.5. The natural projection pr W F ! FP0 restricts to a linear isomor-
phism from F .D/ onto FP0.DP0/.

Proof. If ' 2 F and if ı is a finite sequence in DP0 , then 'ı D .'P0/ı . Hence
' 2 F .DP0/ if and only if pr.'/ 2 F .DP0/.

From DP0 � D it follows that F .D/ � F .D0/. Therefore, pr maps F .D/ into
FP0 \ F .DP0/ D FP0.DP0/. The proof will be completed by showing that the restricted
projection prD WD prjF .D/ W F .D/! FP0.DP0/ is a linear isomorphism. We will do this by
defining a map

� W FP0 ! F

which will turn out to induce a two-sided inverse for prD .
Each parabolic subgroup P 2 P .A/ has a Langlands decomposition P D MPAPNP .

Here MP is a real reductive group of the Harish-Chandra class, with Cartan decomposition
MP D .MP \K/ exp.mP \ p/. Moreover, �a WD mP \ a is maximal abelian in mP \ p, and
the centralizer of �a in KP WD MP \ K equals M D ZK.a/. We select a minimal parabolic
subgroup

�Q DM �A �N

of MP . In addition, we fix a minimal parabolic subgroup Q of G containing A such that
�Q D Q\MP , and we fix an element w 2 NK.a/ such that P0 D w�1Qw. In case P D P0,
we agree to make the special choice Q D P0 and w D e.

Then by the subrepresentation theorem applied to the group MP , for each � 2 M^P;ds
we may fix a representation � 2 M^ and an element � 2 �a�C such that � is equivalent to
a subrepresentation of the parabolically induced (smooth) representation �MP�Q;�;� of MP . In
addition, we fix an MP -equivariant embedding

j� W .�; V�/ ,!
�
�
MP
�Q;�;�; C

1.K \MP W �/
�
:

Through induction by stages, this embedding induces an embedding

(4.2) jG�P W C
1.KW �/! C1.KW �/

which intertwines �P;�;� with �Q;�;�C�, for all � 2 a�
PC . Here �a�C and a�

PC are viewed as
subspaces of a�C via the direct sum decomposition a D �a˚ aP . Thus, (4.2) is a morphism in
the category ıHFG , see Definition 2.38. In the special case P D P0, we agreed that Q D P0
and w D e. In this case, we have � D 0, and as � must be equivalent to � , it follows that
� D w � � D � . It is now readily verified that jG

�P
is the identity map of C1.KW �/.

Left translation by w induces a topological linear isomorphism

L.w/ W C1.KW �/! C1.KWw�/

which intertwines the induced representation �Q;�;�C� with �P0;w�;w.�C�/, for all � 2 a�
PC .

Here w� denotes the representation of M in V� , given by w�.m/ D �.w�1mw/. We denote
by .w ��; Vw �� / the unique element ofM^ which is equivalent to .w�; V� /. Fix an equivalence
tw W V� ! Vw �� and denote the induced map C1.KWw�/ ! C1.KWw � �/ by Tw . Then
writing Lw D Tw ı L.w/, we obtain a continuous linear injection

(4.3) Lw ı j
G
�P W C

1.KW �/! C1.KWw � �/
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which intertwines the representation �P;�;� with �P0;w ��;w.�C�/, for all � 2 a�
PC . In the

special case P D P0, where Q D P0; w D e; � D 0 and � D �, we may take tw D idV� and
then Lw and hence (4.3) become the identity map of C1.KW �/.

We are now ready to define the map � . Let P; �; � be as above, and let ' 2 FP0.D0/.
Then the invariant subspace im.Lw ı j

G
�P
/ of the representation �P0;w ��;w.�C�/ is preserved

by 'P0;w ��;w.�C�/ in view of condition (a) of Definition 4.1. Thus, we may define

�.'/P;�;� W C
1.KW �/! C1.KW �/

to be the unique linear map such that the following diagram commutes:

(4.4) C1.KW �/

�.'/P;�;�
��

Lwıj
G
�P
// C1.KWw � �/

'P0;w��;w.�C�/

��

C1.KW �/
Lwıj

G
�P

// C1.KWw � �/:

Since 'P0;w �� 2 O.a�C/ ˝ End.C1.KWw � �//K�K , it is readily seen that �.'/P;� defines a
holomorphic function on a�

PC , with values in �.P; �/. Accordingly, � defines a linear map
FP0 ! F .

We will now finish the proof by showing that

(i) � maps FP0.DP0/ into F .D/,

(ii) � restricts to a linear isomorphism �D W FP0.DP0/ ! F .D/ which is a two-sided
inverse for prD .

We will first establish (i). Let ' 2 FP0.D0/, and let N 2 ZC and ı 2 DN . We claim
that it suffices to show that there exists a ı0 2 DN

P0
and a linear embedding j W Vı ! Vı 0

intertwining �ı with �ı 0 such that

(4.5) 'ı 0 ı j D j ı �.'/ı :

Indeed assume the claim to hold, and let W � Vı be an invariant subspace. Then j.W / is
an invariant subspace of Vı 0 . Moreover, since ' 2 FP0.D0/, it follows that 'ı 0 leaves j.W /
invariant. As j is injective, it now follows from (4.5) that �.'/ı leaves W invariant. Thus, the
validity of the claim would imply that the above condition (i) holds.

We turn to the proof of the claim. It clearly suffices to prove the claim in case N D 1,
so that ı 2 D . Thus, ı is a 4-tuple of the form .P; �; �0; �/ with notation as in the beginning
of Section 4.2. In particular, � is a finite sequence in a�

PC . Let Q; �;�;w be associated with
the data P; � as in the first part of this proof, where the definition of � was given. Then the
injective linear map (4.3) intertwines �P;�;� with �P0;w ��;w.�C�/ for all � 2 a�

PC .
It follows that the map

j W C1.KW �/.�/ ! C1.KWw � �/.�/

induced by (4.3) intertwines �ı with �ı 0 , where ı0 D .P0; w � �;w.�0 C �/;w�/. Moreover,
the commutativity of the diagram (4.4) implies that

j ı �.'/
.�/

P;�;�
D '

.w�/

P0;w ��;w.�C�/
ı j;

or, abbreviated, j ı �.'/ı D 'ı 0 ı j . This establishes the claim.

Brought to you by | University Library Utrecht
Authenticated

Download Date | 7/14/15 10:10 AM



134 van den Ban and Souaifi, Paley–Wiener theorems

We now consider the induced map �D W FP0.D0/ ! F .D/, obtained by restriction of
� , and will finish the proof by establishing (ii).

Let ' 2 FP0.DP0/. Moreover, let Q; �;�;w be associated to P D P0 as above. By the
special choices we made for this particular parabolic subgroup, the diagram (4.4) becomes

C1.KW �/

�.'/P0;�;�
��

id // C1.KW �/

'P0;�;�

��

C1.KW �/
id

// C1.KW �/:

It follows that pr ı �.'/ D ', and we see that �D is a right inverse to prD .
We will finish the proof by showing that �D is also a left inverse. Let  2 F .D/, and

let P 2 P .A/ and � 2 M^P;ds. Let Q; �;�;w be as above. As  satisfies condition (b) of
Definition 4.1, it follows that the following diagram commutes, for all � 2 a�

PC ,

C1.KW �/

 P;�;�
��

Lwıj
G
�P

// C1.KWw � �/

 P0;w��;w.�C�/
��

C1.KW �/
Lwıj

G
�P

// C1.KWw � �/:

By comparison with (4.4) we see that  P;� D �. P0/P;� . Hence, � ı pr. / D  , for
 2 F .D/. Therefore, �D is a left inverse to prD .

4.5. Reformulation in our setting. We shall now compare Delorme’s derivation pro-
cess with the process defined in the present paper. In the following we shall identify V ˚ V
with C2 ˝ V via the map .v1; v2/ 7! .1; 0/ ˝ v1 C .0; 1/ ˝ v2. This identification induces
an identification End.V ˚ V / ' End.C2/˝ End.V /. Let now � 2 a�C and let � be an open
subset of a�C . For ' 2 O.�/ we define D.�/' 2 O.�/˝ End.C2/ by

D.�/'.�/ D

 
'.�/ '.�I �/

0 '.�/

!
:

Let V be a quasi-complete locally convex space. Then for ˆ 2 O.�/ ˝ End.V /, Delorme’s
derivative ˆ.�/ is given by

ˆ.�/ D .D.�/ ˝ idEnd.V //ˆ:

Here we note that

(4.6) V .�/ D C2
˝ V;

so that End.V .�// D End.C2/˝ End.V /. It follows that Delorme’s differentiation map . � /.�/

from O.�;End.V // to O.�;End.V .�/// is the unique continuous linear extension of the map
D.�/ ˝ idEnd.V /.

Now assume that � ¤ 0 and let I� be the cofinite ideal of O0 D O0.a
�
C/ defined in

(2.11). Then I� has codimension 2 by Lemma 2.27. More precisely, let X 2 aC be such that
�.X/ D 1. Then the map .z1; z2/ 7! z1 C z2X C I� defines a linear isomorphism � from C2

onto the O0-module
E� WD O0=I�:
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van den Ban and Souaifi, Paley–Wiener theorems 135

Now assume that V is barrelled. Then in view of (4.6) the isomorphism � induces an isomor-
phism from O.�;End.V .�/// onto O.�;End.E� ˝ V //, denoted ��.

Lemma 4.6. With notation as above, the following diagram commutes:

O.�;End.V //

. � /.�/

��

J .E�/

**

O.�;End.V .�///
��

// O.�;End.E� ˝ V //:

Proof. By the same calculation as in the proof of Lemma 2.28, it follows that the multi-
plication action m.'/ of an element ' 2 O0 on E� with respect to the basis ¹N1; NXº is given by
the matrix

M.'/ WD

 
'.0/ '.0I �/

0 '.0/

!
:

Let Q� be the isomorphism End.C2/ ! End.E�/ induced by �. Then it follows that for all
' 2 O.�/ and � 2 �,

J .E�/'.�/ D m.
0.T�'// D Q�.M.
0.T�'/// D Q�.D
.�/'.�//:

This immediately implies the commutativity of the diagram in case V D C. From this we
see that the diagram commutes with the spaces O.�;End.W // replaced by the subspaces
O.�/ ˝ End.W /, for W equal to V; V .�/ or E� ˝ V . By density of the mentioned spaces
and continuity of the maps involved, the result follows.

Given a finite sequence � D .�1; : : : ; �N / of elements in a�C , we define the O0-module
E� WD E�1 ˝ � � � ˝E�N .

Corollary 4.7. For every finite sequence � as above, and all � 2M^ and � 2 a�C ,

�
.�/

P0;�;�
' �

.E�/

P0;�;�
:

Proof. For � of length one this follows from the above lemma. For arbitrary sequences
it follows from the recurrent nature of the definition of �.�/ and Proposition 2.26.

Definition 4.8. Let V be a Harish-Chandra module. We denote by End.V /# the space of
endomorphisms ' 2 End.V /K�K such that for every n 2 N the product map '�n 2 End.V �n/
leaves all .g; K/-invariant subspaces of V �n invariant. If .�; V�/ is an admissible representa-
tion of G of finite length, we define End.�/# WD End..V�/K/#.

For E a finite dimensional O0-module (where O0 D O0.a
�
C/), and for „ � M^ and

ƒ � a�C finite subsets, we recall the definition of the representation �E;„;ƒ by (3.4). More-
over, given ' 2 FP0 D O.a�C/˝ �.P0/, we recall the definition of 'E;„;ƒ in (3.5).

Lemma 4.9. Let E;E 0 be finite dimensional O0-modules such that E is a subquotient
of E 0. Let „ � „0 �M^ and ƒ � ƒ0 � a�C be finite subsets. Then for all ' 2 FP0 ,

'E 0;„0;ƒ0 2 End.�E 0;„0;ƒ0/# H) 'E;„;ƒ 2 End.�E;„;ƒ/#:
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136 van den Ban and Souaifi, Paley–Wiener theorems

Proof. The result follows from the crucial observation that the representation �E;„;ƒ
is a subquotient of �E 0;„0;ƒ0 and the map 'E 0;„0;ƒ0 induces the map 'E;„;ƒ. Obviously, it
suffices to prove this observation for „ D „0 and ƒ D ƒ0. In this case, we put, for � 2 a�C ,

�� WD
M
�2„

�P0;�;�:

Then � is a holomorphic family of admissible smooth representations of G over a�C , so that
the functor X� W E 7! �.E/ has the exactness properties of Lemma 2.44. Hence, �.E/

�
is a

subquotient of �.E
0/

�
, and 'E;„;� is induced by 'E 0;„;�, for all � 2 ƒ. The result now follows

by taking the direct sum over � 2 ƒ.

Proposition 4.10. Let ' 2 FP0 . Then the following conditions are equivalent:

(a) ' 2 FP0.DP0/.

(b) For every finite dimensional O0-module E and every pair of finite sets „ � M^ and
ƒ � a�C , the endomorphism 'E;„;ƒ belongs to End.�E;„;ƒ/#.

Proof. First assume (b). Let ı D .ı1; : : : ; ıN / be a sequence of data in DP0 . Then for
(a) it suffices to show that

(4.7) 'ı 2 End.V�ı /
#;

in view of Lemma 4.4. We note that, with ıj D .P0; �j ; �j ; �j /,

�ı D

nM
jD1

�
.E�j /

P0;�j ;�j
:

Let E be the direct sum of the modules E�j . Put „ WD ¹�1; : : : ; �N º and ƒ WD ¹�1; : : : ; �N º.
For each 1 � j � N and � 2 a�C , let .�j /� WD �P0;�j ;�. Then �j is a holomorphic family of
admissible smooth representations of G over a�C , so that Lemma 2.44 applies to the functors
X�j W E 7! �

.E/
j . It follows that

�ıj � �
.E/

j�j
; and 'ıj D '

.E/

P0;�j ;�j
jVıj

in a natural fashion (here � � � indicates that � is a subrepresentation of �). This in turn
implies that

�ı � �E;„;ƒ; and 'ı D 'E;„;ƒjVı :

Hence (4.7) follows.
Conversely, assume (a). Let E;„;ƒ be as stated in (b). First we consider the case that

E is of the form E�, with � a finite sequence in a�C . Then

�E�;„;ƒ D
M

�2„;�2ƒ

�
.�/

P0;�;�

and it follows from (a) that 'E�;„;ƒ belongs to End.�E�;„;ƒ/
#. In view of Lemma 2.44, this

implies that 'E;„;ƒ belongs to End.�E;„;ƒ/# for E a direct sum of copies of E�. Finally, let
E be arbitrary. Then by Proposition 2.31 the module E is a subquotient of EN� for a suitable
finite sequence � and a suitable N 2 N. This implies, again by Lemma 2.44, that �E;„;ƒ is a
subquotient of �EN� ;„;ƒ and that 'E;„;ƒ is induced by 'EN� ;„;ƒ. From this and Lemma 4.9 it
follows that 'E;„;ƒ belongs to End.�E;„;ƒ/#. Hence (b).
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5. Conditions in terms of the Hecke algebra

Let k be a field and A a k-algebra with an approximate identity . j̨ /j2J . This means that

(a) J is a partially ordered set;

(b) for all j1; j2 in J with j1 � j2 we have j̨1 j̨2 D j̨2 j̨1 D j̨1 ;

(c) for every a 2 A there exists a j 2 J such that j̨a D a j̨ D a.

The Hecke algebra H.G;K/ is an example of such an algebra (see [9, Chapter I, §6]).
Indeed, let .#j /j2N be an increasing sequence of finite subsets of K^, whose union is K^.
Then

j̨ WD

X
ı2#j

dim.ı/�ı_ ; j 2 N;

defines an approximate identity in H.G;K/.
We denote the opposite algebra of A by Aopp. It is readily seen that the elements j̨ ˝ j̨

form an approximate identity for the algebra A ˝ Aopp, so that this algebra is approximately
unital.

For j 2 J , let Aj be the set of a 2 A with j̨a D a j̨ D a. Then it is readily seen
that Aj is a subalgebra of A. Moreover, (b) implies that Aj1 � Aj2 whenever j1 � j2, and (c)
implies that A is the union of the subalgebras Aj .

5.1. Some general facts on approximately unital A-modules. Let V be a left (or
right) A-module (in particular, V is a k-linear space). We say that V is approximately unital if,
for every v 2 V , there exists a j 2 J such that j̨ � v D v.

For j 2 J , let
Vj WD ¹ j̨ � v j v 2 V º:

Then Vj1 � Vj2 whenever j1 � j2. We note that V is approximately unital if and only if
[j2JVj D V .

Let End.V / denote the algebra of k-linear endomorphisms of V and let

� W A! End.V /

denote the canonical algebra homomorphism. Then Vj is the image of �. j̨ /. We note that Vj
is invariant under the action of Aj , turning this space into a left Aj -module. Let V j denote the
kernel of �. j̨ /. Then since j̨ is an idempotent, it follows that

(5.1) V D V j ˚ Vj :

For any A-module V , the submodule Vau WD A � V is approximately unital, and it is in
fact the maximal submodule with this property. Note that

Vau D
[
j2J

Vj :

We now assume that V is an approximately unital A-module. The k-linear space
Homk.V; k/ has a natural Aopp-module structure. Accordingly, we define

V _ WD .Homk.V; k//au:

We denote by End.V /0 the image of the natural linear map V ˝ V _ ! End.V / induced by
v ˝ v0 7! .u 7! v0.u/v/.
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138 van den Ban and Souaifi, Paley–Wiener theorems

We will say that an A-module V is admissible if Vj is finite dimensional for every j 2 J .

Lemma 5.1. Let V be an admissible approximately unitalA-module. Then, asA˝Aopp-
modules,

End.V /0 D End.V /au:

Proof. It is readily seen that End.V /0 is an A ˝ Aopp-submodule of End.V / which is
approximately unital. This implies that End.V /0 � End.V /au.

Conversely, let j 2 J . We consider the inclusion map �j W Vj ! V and the epimor-
phism pj W V ! Vj determined by �j ı pj D �. j̨ /. These maps induce linear maps
Sj W End.V /! End.Vj / and Tj W End.Vj /! End.V / given by

Sj W f 7! pj ı f ı �j and Tj W g 7! �j ı g ı pj :

It is readily checked that

Sj ı Tj D idEnd.Vj /; Tj ı Sj .f / D �. j̨ / ı f ı �. j̨ / D �End.V /. j̨ /f:

Hence, Tj is an injective linear map End.Vj / ! End.V / with image End.V /j . One now
readily checks that the following diagram commutes:

End.V /j
ij

// End.V /

End.Vj /

tj

OO

Vj ˝ .Vj /
�:oo

ij˝p
�
j

OO

Here ij is the inclusion map, and tj is the map uniquely determined by ij ı tj D Tj . The map
at the bottom is the canonical inclusion.

We now observe that the map at the bottom is a linear isomorphism by admissibility of V .
Moreover, p�j maps .Vj /� into .V �/j � V _, and we infer that End.V /j � End.V /0. Finally,
by taking the union over all j , we conclude that End.V /au � End.V /0.

5.2. A double commutant theorem.

Definition 5.2. Let .�; V / be an approximately unital A-module. We define End.�/#

to be the space of ' 2 End.V /0 such that for every n 2 N n ¹0º and every A-submodule
W � V �n we have '�n.W / � W .

Lemma 5.3. Let .�; V / be an admissible approximately unital A-module. Then

�.A/ D End.�/#:

Proof. Since �.A/ is an approximately unital A ˝ Aopp-submodule of End.V /, it is
contained in End.V /au D End.V /0. Moreover, if a 2 A, then for every n 2 N n ¹0º and every
invariant subspace W of V �n we have �.a/�n.W / � W . Hence, �.A/ � End.�/#.

We now turn to the converse inclusion. By definition E WD End.�/# is a subspace of
End.V /0 D End.V /au. Moreover E is A ˝ Aopp-invariant, hence an approximately uni-
tal A ˝ Aopp-module. Fix ' 2 E . Then it follows that there exists a j 2 J such that
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. j̨ ˝ j̨ / �' D '. By admissibility, the space Vj has a finite basis u1; : : : ; un over k. LetW be
the A-submodule of V �n generated by .u1; : : : ; un/. Then by definition of End.�/#, the space
W is '�n-invariant. This implies the existence of an element a 2 A such that '.uk/ D �.a/uk
for all 1 � k � n. Hence ' D �.a/ on Vj . It follows that ' D �.a j̨ / on Vj . On the other
hand, both ' D . j̨ ˝ j̨ / �' D �. j̨ / ı ' ı �. j̨ / and �.a j̨ / vanish on V j . In view of (5.1)
this implies that ' D �.a j̨ / on V . Hence ' D �.a j̨ / 2 �.A/ and the proof is complete.

5.3. Application to Harish-Chandra modules. Every admissible .g; K/-module V
is a module for the Hecke algebra H.G;K/ in a natural way, and as such it is admissible
and approximately unital. This assignment of an H.G;K/-module to an admissible .g; K/-
module defines a functor which establishes an isomorphism of categories, from the category
of admissible .g; K/-modules onto the category of admissible approximately unital H.G;K/-
modules (see [9, Chapter I, §6, Theorem 1.117]).

Accordingly, if V is an admissible .g; K/-module, then the associated algebra End.�/#

consists of all K � K-finite endomorphisms ' of V with the property that, for every positive
integer n, the map '�n preserves all .g; K/-invariant subspaces of V �n. In particular, the
present notation is compatible with the notation introduced earlier in Definition 4.8.

Corollary 5.4. Let .�; V / be an admissible .g; K/-module. Then

�.H.G;K// D End.�/#:

Proof. This follows from Lemma 5.3.

5.4. Proof of the main theorem. For P 2 P .A/ we define PWpre
P .G;K/ to be the

subspace of FP (see (4.1)), consisting of all functions ' 2 FP such that there exist an R > 0

and for all n 2 N a constant Cn > 0 such that the estimate (0.2) holds for all � 2 M^P;ds and
all � 2 a�

PC . Furthermore, we define

PWpre.G;K/ D
M

P2P .A/

PWpre
P .G;K/:

Then PWpre.G;K/ is a subspace of F . We recall that P0 2 P .A/ is a fixed minimal parabolic
subgroup of G.

Definition 5.5. (a) The Delorme Paley–Wiener space PWD.G;K/ is defined to be
the intersection PWpre.G;K/ \ F .D/.

(b) The restricted Delorme Paley–Wiener space PWD
P0
.G;K/ is defined to be the intersection

PWpre
P0
.G;K/ \ FP0.DP0/.

Theorem 5.6. The natural projection pr W F ! FP0 restricts to an isomorphism of
PWD.G;K/ onto PWD

P0
.G;K/.

Proof. It is clear that pr maps PWpre.G;K/ into PWpre
P0
.G;K/. Combining this with

Proposition 4.5, we see that prD maps PWD.G;K/ injectively into PWD
P0
.G;K/.

Let � W FP0 ! F be defined as in the proof of Proposition 4.5. Then it is readily
checked that � maps PWpre

P0
.G;K/ into PWpre.G;K/. This implies that �D maps PWD

P0
.G;K/
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140 van den Ban and Souaifi, Paley–Wiener theorems

into PWD.G;K/. As prD ı �D D id on PWD
P0
.G;K/, it follows that prD maps the space

PWD.G;K/ surjectively onto PWD
P0
.G;K/.

Definition 5.7. We define PWH .G;K/ to be the space of functions ' 2 PWpre
P0
.G;K/,

such that for every finite dimensional O0-module E, and every pair of finite sets „ � M^,
ƒ � a�C , we have

'E;„;ƒ 2 �E;„;ƒ.H.G;K//:

Theorem 5.8. The space PWD
P0
.G;K/ equals PWH .G;K/.

Proof. Both spaces are subspaces of PWpre
P0
.G;K/. Let ' be an element of the latter

space. Then ' 2 PWD
P0
.G;K/ is equivalent to ' 2 FP0.DP0/, which in turn is equivalent to

condition (b) of Proposition 4.10. In view of Corollary 5.4, the latter condition is equivalent to
' 2 PWH .G;K/.

Definition 5.9. We define the Arthur Paley–Wiener space PWA.G;K/ to be the space of
functions ' 2 PWpre

P0
.G;K/ such that ' satisfies the Arthur–Campoli relations (see Definition

3.2).

Theorem 5.10. The space PWH .G;K/ equals PWA.G;K/.

Proof. Both are subspaces of PWpre
P0
.G;K/. Let ' be a function in the latter space. Then

by Proposition 3.3 the assertion ' 2 PWA.G;K/ is equivalent to the assertion that for every
finite dimensional O0-module, and every pair of finite subsets „ �M^, ƒ � a�C , we have

(5.2) 'E;„;ƒ 2
�
�E;„;ƒ.C

1
c .G;K//

?
�?
:

As every function from PWpre
P0
.G;K/ has values inM

�2M^

End.C1.KW �//##

for some finite subset # � K^, it follows by admissibility that (5.2) is equivalent to

'E;„;ƒ 2 �E;„;ƒ.C
1
c .G;K//:

By Proposition 1.2 this in turn is equivalent to

'E;„;ƒ 2 �E;„;ƒ.H.G;K//:

If follows that ' 2 PWA.G;K/ ” ' 2 PWH .G;K/.

We now come to the main result of our paper.

Theorem 5.11. The map pr W ' 7! 'P0 defines a linear isomorphism from PWD.G;K/

onto PWA.G;K/.

Proof. This follows from combining Theorems 5.6, 5.8 and 5.10.
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5.5. Another useful characterization of the Paley–Wiener space. In this subsection
we will obtain another useful characterization of the Paley–Wiener space PWA.G;K/. This
will allow us to derive the Paley–Wiener theorem due to Helgason [8] and Gangolli [7] from
Arthur’s Paley–Wiener theorem.

We define the Fourier transform F W C1c .G;K/K�K ! O.a�C/˝ �P0 by

F.f /�.�/ D Of .P0; �; �/;

see (3.2). From this definition it is immediate that F is a K �K-equivariant linear map.
In terms of this Fourier transform, Arthur’s Paley–Wiener theorem may be stated as fol-

lows (see [1, 3]).

Theorem 5.12 (Arthur’s Paley–Wiener theorem). The map F is a K � K-equivariant
linear isomorphism from C1c .G;K/K�K onto PWA.G;K/.

By Theorem 5.10 the Paley–Wiener space PWA.G;K/ equals the space PWH .G;K/

introduced in Definition 5.7. We shall now give another characterization of that space.
We use the notation PW.a/ for the (Euclidean) Paley–Wiener space associated with a,

i.e., PW.a/ is the image of the classical Fourier transform C1c .a/ ! O.a�C/. Then the space
PWpre

P0
.G;K/, introduced in the beginning of Section 5.4, equals PW.a/˝ �.P0/.

Proposition 5.13. The space PWH .G;K/ is equal to the space of all functions
' 2 PW.a/˝ �.P0/ with the following property.

For each finite number of triples .uj ; �j ; �j / 2 S.a�/ �M^ � a�C , 1 � j � n, there
exists an element h 2 H.G;K/ such that

'.�j ; �j Iuj / D �P0;�j ;�j Iuj .h/ for all 1 � j � n:

Proof. We first assume that ' 2 PWH .G;K/. Then ' 2 PW.A/ ˝ �.P0/. Let a
finite number of triples .uj ; �j ; �j / be given. For each uj there exists a finite dimensional
O0-module Ej , and a linear functional �j 2 End.Ej /� such that �j ı f .Ej / D f .�j Iuj /, for
all f 2 O.a�C/; see Lemma 2.11. Put E D ˚Ej , and let prj W E ! Ej denote the associated
projection maps. There exists an element h 2 H.G;K/ such that 'E;„;ƒ D �E;„;ƒ.h/.
This implies that 'E;�j ;�j D �E;�j ;�j .h/. for each j . By application of �j ı prj ˝I to the
latter expression it follows that '.�j ; �j Iuj / D �P0;�j ;�j Iuj .h/, for all j . This proves that
PWH .G;K/ is included in the space described.

To obtain the other inclusion, let ' 2 PW.a/˝ �.P0/ satisfy the conditions of the space
described. Let E be a finite dimensional O0-module, and let „ � M^ and ƒ � a�C be
finite sets. Fix a basis ¹�kº of End.E/�. We may number the elements of ƒ by �j . Then for
each j; k there exists a ukj 2 S.a

�/ such that �kf .E/.�j / D f .�j Iu
k
j / for all f 2 O.a�C/,

see Lemma 2.10. By the assumption on ', there exists an element h 2 H.G;K/ such that
'.�; �j Iu

k
j / D �P0;�;�j Iukj

.h/ for all � 2 „ and all j; k. It follows that

.�k ˝ 1/ ı 'E;�;�j D .�
k
˝ 1/ ı �E;�;�j .h/;

for all k; j and � 2 „. This implies that 'E;�;�j D �E;�;�j .h/ for all j and all � 2 „. Hence,
'E;„;ƒ D �E;„;ƒ.h/, and we conclude that ' 2 PWH .G;K/.
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142 van den Ban and Souaifi, Paley–Wiener theorems

Corollary 5.14. The space PWH .G;K/11 of K � K-fixed elements in PWH .G;K/

consists of all functions ' 2 PW.a/ ˝ �.P0; 1/11 such that for each finite number of pairs
.ui ; �i / 2 S.a

�/ � a�C , 1 � j � n, there exists an element h 2 H.G;K/11 such that

'.�j Iuj / D �P0;1;�j Iuj .h/ for all 1 � j � n:

Proof. Since �.P0/11 D �.P0; 1/11, this follows from the previous result by projection
onto the K �K-type .1; 1/.

Let P1 2 End.C1.KW 1// denote theK-equivariant projection onto the one-dimensional
subspace of C1.MnK/ consisting of the constant functions. Then we observe that

�.P0; 1/11 ' End.C1.KW 1//11 D CP1:

Accordingly, we may view PWH .G;K/11 as a subspace of PW.a/˝CP1.
The inclusion map � W K ! G induces a continuous linear map �� W C1.G/! C1.K/

by pull-back. The transposed of �� is an injective continuous linear map �� W E 0.K/! E 0.G/.
Accordingly, we shall use this map to view E 0.K/ as a subspace of E 0.G/. In particular,
the normalized Haar measure dk will be viewed as the element of H.G;K/ given by
dk.'/ D

R
K '.k/ dk, for ' 2 C1.G/. Clearly, dk 2 H.G;K/11.

In the following we will use the notationR (resp.L) for the right (resp. left) regular action
of G on E 0.G/. The associated representations of U.g/ are denoted by the same symbols.

Lemma 5.15. The map u 7! Rudk induces a linear isomorphism from the space
U.g/K=U.g/K \ U.g/k onto H.G;K/11.

Proof. We define the linear map ˛ W U.g/˝ E 0.K/! E 0.G/ by

˛.u˝ T / D RuT:

Then ˛ factors to a linear isomorphism

N̨ W U.g/˝U.k/ E 0.K/! H.G;K/;

see [9, Chapter I, §6]. This map intertwines theK �K-actions .Ad˝R/� .1˝L/ and R�L,
hence restricts to an isomorphism

.U.g/˝U.k/ E 0.K//11
'
�! H.G;K/11

The space of left K-invariants in E 0.K/ equals Cdk. As dk is also right K-invariant, we see
that

.U.g/˝U.k/ E 0.K//11 ' U.g/
K
˝U.k/ Cdk ' U.g/K=U.g/K \ U.g/k:

The result now follows.

In the following lemma, W denotes the Weyl group of a in g.

Lemma 5.16. The image of H.G;K/11 under Fourier transform h 7! Oh equals the
subspace P.a�C/

W ˝CP1 of O.a�C/˝ �.P0/.
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Proof. Denote the image by S . Then S is contained in

O.a�C/˝ �.P0/11 ' O.a�C/˝CP1:

Let h 2 H.G;K/11. Then it follows that the Fourier transform of h is of the form  ˝ P1,
with  2 O.a�C/. In view of the previous result, h D Ru.dk/, with u 2 U.g/K . Hence, for
all � 2 a�C ,

 .�/1MnK D . .�/˝ P1/1MnK D �P0;1;�.h/1MnK

D �P0;1;�.u/1MnK D 
.u; �/1MnK ;

where 
 denotes the Harish-Chandra algebra homomorphism U.g/K ! S.a/which has image
S.a/W D P.a�C/

W . The result now follows by application of Lemma 5.15.

Corollary 5.17. The space PWH .G;K/11 equals PW.a/W ˝CP1.

Proof. Let ' 2 PWH .G;K/11. Let � 2 a�C and w 2 W . Then by Corollary 5.14 there
exists an element h 2 H.G;K/11 such that '.�/ D Oh.P0; 1; �/ and '.w�/ D Oh.P0; 1; w�/.
As Oh.P0; 1; �/ D Oh.P0; 1; w�/ by Lemma 5.16, we see that ' isW -invariant. Hence, it follows
that ' 2 PW.a/W ˝CP1.

Conversely, assume that ' 2 PW.a/W ˝ CP1. Write ' D  ˝ P1, then  is a
W -invariant holomorphic function. Let .uj ; �j / 2 S.a�/ � a�C , 1 � j � n. Then there
exists an element p 2 P.a�/W such that

 .�j Iuj / D p.�j Iuj / for all 1 � j � n:

In view of Lemma 5.16 there exists an element h 2 H.G;K/11 such that Oh.P0; 1; �/ D p˝P1.
Hence,

'.�j Iuj / D Oh.P0; 1; �j Iuj / D �P0;1;�j Iuj .h/ for all 1 � j � n:

In view of Corollary 5.14 it follows that ' 2 PWH .G;K/11.

We now note that the spherical Fourier transform

F11 W C
1
c .G;K/11 ! O.a�C/

is given by the formula
F11f .�/1K=M D �P0;1;�.f /1K=M :

This implies that for all f 2 C1c .G;K/11 we have

F11f .�/˝ P1 D Ff .�/:

We can now finally deduce the Paley–Wiener theorem of Helgason [8] and Gangolli [7].

Corollary 5.18. F11.C
1
c .G;K/11/ D PW.a/W .

Proof. By K �K-equivariance, it follows from Arthur’s Paley–Wiener theorem that

F11.C
1
c .G;K/11/˝CP1 D F.C1c .G;K/11/ D PWA.G;K/11:

The latter space equals PWH .G;K/11, by Theorem 5.10. Now apply Corollary 5.17.
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A. Some topological results

In this appendix, all locally convex spaces will be assumed to be complex and Hausdorff.
If X is a locally compact Hausdorff space, and V a quasi-complete locally convex space, then
C.X; V /, equipped with the topology of uniform convergence on compact subsets, is quasi-
complete as well. Let � be an open subset of a finite dimensional complex linear space vC .
Then O.�; V /, the space of holomorphic functions �! V , is a closed subspace of C.�; V /.
Moreover, the map .f; v/ 7! .z 7! f .z/v/ induces an embedding of the algebraic tensor
product O.�/˝V onto a subspace of O.�; V /. Accordingly, we shall view this tensor product
as a subspace. Let P.vC/ denote the space of polynomial functions vC ! C.

Lemma A.1. The algebraic tensor product P .vC/˝ V is dense in O.�; V /.

In particular, O.�/˝ V is a dense subspace of O.�; V /.

Proof. By using partitions of unity, one readily sees that C.�/˝V is dense in C.�; V /.
On the other hand, by application of the Stone–Weierstrass theorem, it follows that P.vC/ is
dense in C.�/. The lemma now readily follows.

Let V1, V2 and V3 be quasi-complete locally convex spaces and let ˇ W V1 � V2 ! V3 be
a bilinear map. If X is a set, then ˇ induces a CX -bilinear map

ˇ� W V
X
1 � V

X
2 ! V X3 ; .f1; f2/ 7!

�
x 7! ˇ.f1.x/; f2.x//

�
:

If X is a locally compact Hausdorff space, we will say that ˇ preserves continuity on X if ˇ�
mapsC.X; V1/�C.X; V2/ intoC.X; V3/. We note that ˇ� W C.X; V1/�C.X; V2/! C.X; V3/

is C.X/-bilinear. Similarly, if � is an open subset of vC , we will say that ˇ preserves holo-
morphy on � if ˇ� maps O.�; V1/ � O.�; V2/ into O.�; V3/. Note that the map ˇ� is
O.�/-bilinear. If X; Y are topological spaces, and A � X , then a map f W X ! Y is said
to be continuous relative to A if f jA W A ! Y is continuous (with respect to the restriction
topology on A).

Lemma A.2. Assume that ˇ is separately continuous and in addition continuous rela-
tive to every compact subset of V1 � V2. Let X be a locally compact Hausdorff space. Then ˇ
preserves continuity on X . Moreover,

(a) if V1 is barrelled, then ˇ� W C.X; V1/ � C.X; V2/! C.X; V3/ is continuous in the first
variable;

(b) if V2 is barrelled, then ˇ� W C.X; V1/ � C.X; V2/ ! C.X; V3/ is continuous in the
second variable.

Proof. Let K � X be compact, and f1 2 C.X; V1/, f2 2 C.X; V2/. Put C1 WD f1.K/,
C2 WD f2.K/. Since ˇ is continuous relative to C1 � C2 and x 7! .f1.x/; f2.x// has contin-
uous restriction to K, with values in C1 � C2, it follows that ˇ�.f1; f2/ is continuous relative
to K. Since X is locally compact, we see that ˇ� has values in C.X; V3/. This establishes the
first assertion.

We now turn to the remaining assertions. By symmetry, it suffices to establish (a). Thus,
assume that V1 is barrelled and let f2 2 C.X; V2/ be fixed. From the first part of the proof
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we know that f1 7! ˇ�.f1; f2/ is a linear map from C.X; V1/ to C.X; V3/. To establish
its continuity, fix a seminorm q3 of V3, and a compact subset K of X . Put C2 D f2.K/.
Then the family of continuous linear maps ˇ. � ; v2/ 2 Hom.V1; V3/ is pointwise bounded, for
v2 2 C2. By barrelledness of V1 it follows that the family is equicontinuous. Hence, there
exists a continuous seminorm q1 on V1 such that

q3.ˇ.v1; v2// � q1.v1/; v1 2 V1; v2 2 C2:

Let f1 2 C.X; V1/. Then substituting f1.x/ for v1 and f2.x/ for v2 (x 2 K) in the above
estimate, we find that

sup
x2K

q3.ˇ�.f1; f2/.x// � sup
x2K

q1.f1.x//:

This establishes the continuity.

Lemma A.3. Assume that V1; V2 are barrelled, and let ˇ be as in Lemma A.2. If
� � vC is open, then ˇ preserves holomorphy on �. Moreover, the map

ˇ� W O.�; V1/ �O.�; V2/! O.�; V3/

is a separately continuous O.�/-bilinear map.

Proof. It is readily seen that ˇ� maps the subspace .O.�/˝ V1/ � .O.�/˝ V2/ into
the closed subspace O.�; V3/ of the quasi-complete space C.�; V3/. By continuity of ˇ� in
the first variable (see Lemma A.2), and by density and closedness, it follows that ˇ� maps
O.�; V1/ � O.�/˝ V2 into O.�; V3/. By the same kind of argument applied to the second
variable, the result follows.

Examples of a different nature are provided by the composition of maps. If V;W are two
locally convex spaces then by Hom.V;W / we denote the space of continuous complex linear
maps V ! W . Unless otherwise specified this space is equipped with the strong operator
topology. If W is quasi-complete, and V barrelled, then by application of the principle of
uniform boundedness, it follows that Hom.V;W / is quasi-complete (see, e.g., [4, Chapitre III,
27, §4, no. 2, Corollaire 4]). Assume now that V1; V2 and V3 are arbitrary locally convex
spaces, not necessarily quasi-complete.

Lemma A.4. The map

(A.1) ˇ W Hom.V1; V2/ � Hom.V2; V3/! Hom.V1; V3/; .A;B/ 7! B ı A

is bilinear and separately continuous. If V2 is barrelled, then ˇ is continuous relative to subsets
of the form Hom.V1; V2/ � C , with C � Hom.V2; V3/ compact.

Proof. As V2 is barrelled, every compact subset of Hom.V2; V3/ is equicontinuous. The
result now follows from [4, Chapitre III, 33, § 5, no. 5, Proposition 9].

Corollary A.5. Let V1; V2; V3 be quasi-complete, and assume V2 is barrelled. Let ˇ be
as in (A.1). Then ˇ preserves continuity on X , for any locally compact Hausdorff space X .

Proof. This follows from Lemma A.4 combined with Lemma A.2.
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Lemma A.6. Let V1; V2; V3 be quasi-complete, and assume both V1 and V2 to be bar-
relled. Let ˇ be the composition map given by (A.1) and let� � vC be open. Then ˇ preserves
holomorphy on �.

Proof. Let A 2 O.�;Hom.V1; V2// and B 2 O.�;Hom.V2; V3//. Then by the pre-
vious result it follows that ˇ�.A;B/ W � 7! B.�/A.�/ is continuous. By barrelledness of
V1, the function f W .�; v/ 7! A.�/v, � � V1 ! V2 is continuous and holomorphic in �.
Similarly, the function g W .�; v2/ 7! B.�/v2, �� V2 ! V3 is continuous and holomorphic in
�. It follows that h W .�; �; v1/ 7! g.�; f .�; v1// is continuous, and separately holomorphic
in �; �. In particular, for fixed v1, the map .�; �/ 7! h.�; �; v1/ is holomorphic in each of the
two variables. If � 2 V 03 then .�; �/ 7! �h.�; �; v1/ is continuous and separately holomorphic,
hence holomorphic. It follows that .�; �/ 7! h.�; �; v1/ is weakly holomorphic, hence holo-
morphic. We conclude that � 7! h.�;�; v1/ is holomorphic. This implies that the function
.�; v1/ 7! ˇ�.A;B/.�/v1 is continuous on �� V1, holomorphic in � and linear in v. This in
turn implies that ˇ�.A;B/ is holomorphic as a function with values in Hom.V1; V3/.

Given an element u of the symmetric algebra S.v/ of vC , we will write @u for the natu-
rally associated constant coefficient (holomorphic) differential operator on vC , see Section 2.1.
This operator acts on the space of holomorphic functions O.�/, for any open subset � � vC .
We agree to write f . � Iu/ D @uf , for f 2 O.�/, see (2.2).

If V is a quasi-complete locally convex space, then @u ˝ idV has a unique extension to
a continuous linear endomorphism of O.�; V /. Indeed, uniqueness is obvious from density of
O.�/˝ V in O.�; V /. Existence follows for instance by application of the Cauchy integral
formula. Let A be a finite dimensional associative algebra. Suppose

M W O.�/! O.�;A/

is a continuous algebra homomorphism which can be represented by an element from S.v/˝A,
i.e., there exist ui 2 S.v/ and ai 2 A such that

(A.2) Mf D
X
i

@uif � ai :

Then it follows from the above that the map M ˝ idV has a unique extension to a continuous
linear map O.�; V /! O.�;A˝V /. The extension is denoted byM b̋ idV , or more briefly
by M again.

Remark A.7. In the present paper, the following examples are of particular impor-
tance. Let V be a quasi-complete locally convex space and let I be a cofinite ideal in O0.
Then M D JI is of the form (A.2), see (2.4), and defines an algebra homomorphism
O.�/ ! O.�;O0=I/. It follows that JI ˝ idV W O.�/ ˝ V ! O.�;O0=I/ ˝ V has a
unique extension to a continuous linear map

JI b̋ idV W O.�; V /! O.�;O0=I ˝ V /;

which will often briefly be denoted by JI again. Similarly, let E be a finite dimensional
O0-module. Then J .E/ W O.�/ ! O.�;End.E// is an algebra homomorphism of the form
(A.2), see Definition 2.7 and Corollary 2.12. Hence, J .E/ ˝ idV has a unique extension to a
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continuous linear map

J .E/ b̋ idV W O.�; V /! O.�;End.E/˝ V /;

which will often briefly be denoted by J .E/ W f 7! f .E/.

Lemma A.8. Let V1; V2 and V3 be quasi-complete locally convex Hausdorff spaces,
and let ˇ W V1 � V2 ! V3 be a bilinear form which preserves holomorphy on the open subset
� of vC . Let ˇ0 W E1 � E2 ! E3 be a bilinear form of finite dimensional spaces. Then the
bilinear form ˇ0 ˝ ˇ W E1 ˝ V1 �E2 ˝ V2 ! E3 ˝ V3 preserves holomorphy on � as well.

Proof. This is an easy consequence of the finite dimensionality of the spaces Ej .

Let mA denote the (continuous) bilinear product map

mA W .a; b/ 7! ab; A � A! A:

Proposition A.9. Let V1, V2, V3 be quasi-complete locally convex Hausdorff spaces,
and let ˇ W V1 � V2 ! V3 be a bilinear form which preserves holomorphy on �. Let A be a
finite dimensional associative algebra, and let M W O.�/ ! O.�;A/ be as in (A.2). Then,
for all fj 2 O.�; Vj /, j D 1; 2,

Mˇ�.f1; f2/ D .m
A
˝ ˇ/�.Mf1;Mf2/:

The following lemma prepares for the proof. Given � 2 �, let M� be the maximal ideal
of the algebra O.�/ consisting of the functions vanishing at �.

Lemma A.10. Let M be as in (A.2). There exists a number d 2 N with the following
property. Let V be a quasi-complete locally convex Hausdorff space. Then for every k � d ,
the operator M b̋ idV maps Mk

�O.�; V / into Mk�d
� O.�;A˝ V /.

Proof. It suffices to show that, for any element u 2 S.v/ of order d , the differentiation
@u maps Mk

�O.�; V / into Mk�d
� O.�; V /. Clearly, it suffices to do this for u D X 2 v and

d D 1. In this case the result follows from the Leibniz rule

.@u b̋ idV /.'F / D .@u'/F C '.@u b̋ idV /.F /;

for all ' 2 O.�/ and F 2 O.�; V /.

Proof of Proposition A.9. We will first prove the identity for fj 2 O.�/˝Vj , j D 1; 2.
Let m W O.�/ �O.�/! O.�/ denote the multiplication map. Then

ˇ�.f1; f2/ D .m˝ ˇ/.f1; f2/ 2 O.�/˝ V3:

Moreover, since M W O.�/! O.�;A/ is an algebra homomorphism, it follows that

Mˇ�.f1; f2/ D .M ˝ idV3/ ı .m˝ ˇ/.f1; f2/

D .mA ˝ ˇ/�
�
ŒM ˝ idV1 �f1; ŒM ˝ idV2 �f2

�
D .mA ˝ ˇ/�.Mf1;Mf2/:
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We will now establish the identity for general fj 2 O.�; Vj /. Clearly, it suffices to prove
the identity of holomorphic functions at a fixed point � of �. Moreover, since the operations
.f1; f2/ 7! ˇ�.f1; f2/ and M commute with restriction, we may assume that � is a polydisk
centered at �. Let d be as in Lemma A.10. Fix k > d . From the power series expansions of
f1; f2 at the point � it follows that there exist polynomials pj 2 P.v/˝ Vj and holomorphic
functions rj 2Mk

�O.�; Vj / such that

fj D pj C rj ; j D 1; 2:

From the O.�/-bilinearity of ˇ� it readily follows that

(A.3) ˇ�.f1; f2/ D ˇ�.p1; p2/CR;

with R 2 Mk
�O.�; V3/. From the O.�/-bilinearity of ˇ� combined with Lemma A.10 it

follows that

(A.4) .mA ˝ ˇ/�.Mf1;Mf2/ D .m
A
˝ ˇ/�.Mp1;Mp2/C �;

with � 2 Mk�d
� O.�; V3 ˝ A/. Evaluation at the point � gives ev�.R/ D R.�/ D 0 and

ev�.�/ D �.�/ D 0. Combining this with (A.3), (A.4) and the first part of the proof applied to
.p1; p2/ we find

ev�Mˇ�.f1; f2/ D ev�Mˇ�.p1; p2/

D ev�.mA ˝ ˇ/�.Mp1;Mp2/

D ev�.mA ˝ ˇ/�.Mf1;Mf2/:

This establishes the desired identity at the point �.

Corollary A.11. Let V1; V2; V3 and ˇ;� be as in Proposition A.9.

(a) For any cofinite ideal I of O0,

JI ı ˇ� D .m
O0=I ˝ ˇ/� ı .JI; JI/

on O.�; V1/ �O.�; V2/.

(b) For any finite dimensional O0-module E,

J .E/ ı ˇ� D .m
End.E/

˝ ˇ/� ı .J
.E/; J .E//

on O.�; V1/ �O.�; V2/.

Proof. In view of Remark A.7, this follows from Proposition A.9.

Corollary A.12. Let V1; V2; V3 be quasi-complete locally convex Hausdorff spaces, and
assume that V1; V2 are barrelled. Let S 2 O.�;Hom.V1; V2// and T 2 O.�;Hom.V2; V3//.
Then the map TS W � 7! T .�/S.�/ belongs to O.�;Hom.V1; V3//. Moreover, the following
holds.

(a) For any cofinite ideal I of O0,

JI.TS/ D JI.T /JI.S/:
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(b) For any finite dimensional O0-module E,

.TS/.E/ D T .E/S .E/:

The expression on the right-hand side of (a) should be read as the natural pointwise
product of the functions

JIS 2 O.�;O0=I ˝ Hom.V1; V2// and JIT 2 O.�;O0=I ˝ Hom.V2; V3//:

For (b) we note that S .E/ is holomorphic on � with values in

End.E/˝ Hom.V1; V2/ ' Hom.E ˝ V1; E ˝ V2/:

Likewise, T .E/ is a Hom.E ˝ V2; E ˝ V3/-valued holomorphic function on �. Accordingly,
the expression on the right-hand side of (b) should be read as the pointwise composition.

Proof. This follows from the previous corollary combined with Lemma A.6.
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