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Let & x4 W be the associated vector bundle to the K-representation {5, W) over
the Riemannian symmetric space G/K of rank one. In this paper a complete descrip-
tion of the eigensections of the Casimir operator is given using a generalization of
the Poisson transform. i 1994 Academic Press, Inc.

1. INTRODUCTION

Let G/K be a Riemannian symmetric space of the noncompact type with
Furstenberg boundary K/M. Let (o, W) be a finite dimensional representa-
tion of K and G x . W the associated vector bundle. When ¢ is the trivial
representation, which we refer to as the scalar case, there is a well-
developed theory describing the eigenfunctions of all invariant differential
operators on G/K using Poisson transforms. In this paper the first steps are
taken to generalize this theory to sections of the bundle G x, W. For
Riemannian symmetric spaces of rank one we give a complete description
of the eigensections of the Casimir operator using a generalization of the
Poisson transform.

The statement that all eigenfunctions on G/K are Poisson integrals of
hyperfunctions on the boundary K/M was conjectured by Helgason, who
proved it for G of real rank one in [7]. In its full generality the conjecture
was proven by Kashiwara e.a. ([14]). In [15] Oshima and Sekiguchi
described the image under the Poisson transform of distributions on K/M
as consisting of functions satisfying certain growth conditions towards the
boundary. In [2] Van den Ban and Schlichtkrull gave a new proof of this
description using asymptotic methods, introduced by Wallach ([20]),
rather than the advanced micro-local analysis of [14, 157.
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The generalization of these results to vector bundles has only just
started. In [17] Shimeno extended the results to line bundles over
Hermitian symmetric spaces using similar methods as in the scalar case. He
was able to describe the algebra of invariant differential operators and to
compute the c-functions involved, both of which, in general, we do not
know enough. For the example of differential forms on real and complex
hyperbolic spaces, Gaillard in [5, 6] gave a description of harmonic forms.
This paper extends his results to arbitrary bundles and gives a more precise
answer.

As we do not know the algebra of invariant differential operators on
G x . W, we restrict ourselves to the well known Casimir operator of G.
Although this is but a meager substitute for the whole algebra, the reader
shall see that the problem of describing eigensections of the Casimir has an
interesting answer which is a highly nontrivial generalization of the scalar
case. We are able to give a bijective transform from sections on a certain
simple bundle over the boundary K/M onto the eigensections of the
Casimir, no matter how the c-functions (mis)behave. However, we have to
impose the restrictive hypothesis on the eigenvalue that there are no tem-
pered eigensections for this eigenvalue which are not square integrable.
There remain, however, enough “difficult” eigenvalues.

For a generic eigenvalue it is fairly easy to realize the eigenspace as the
image of an injective Poisson transform. By a detailed analysis of the
behaviour of these Poisson transforms near a degenerate eigenvalue we are
able to use them to construct a bijective transform to the eigenspace for
this degenerate eigenvalue.

We make this more precise in the following outline of the results and
contents of the paper.

We can identify the space of smooth sections of G x, W with

C* Ind$(c)={f:G— W|fsmooth, f(xk)=a(k) ' f(x)}.

For peC, let C° Ind% (o) denote the subspace of eigensections of the
Casimir with eigenvalue u. For a fixed y, we want to describe C Ind$ (o).
For simplicity we assume that there are no tempered eigensections for this
eigenvalue (for a definition of tempered eigensections see Remark 5.5).

In Section 3 we define a Poisson transform as a continuous, linear, and
G-equivariant map from C > Ind$(r) to C* Ind$ (o). Here 1 is a represen-
tation of a minimal parabolic subgroup P and C* Ind$(t) are the smooth
vectors in Ind$(z).

In Section 4 we prove the existence of asymptotic expansions of eigen-
sections satisfying certain growth conditions. The main ideas of the proof
come from [20, 2, 1]. By mapping an eigenfunction in C;* Ind% (o) to the
sum of some of the coefficients in its expansion, where the choice of the
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coefficients depends on u,, we define a K-equivariant boundary value
operator

Buve: €7 Indf (o) — C™ Indy (o).
In a certain explicit sense the f§, , depend holomorphically on g in a
neighbourhood of y,.
For a certain direct sum C* Ind$(a,) of principal series representations,
for which ()4, =0, the Poisson transform 2, 0n C” Ind§(a,) defined
by

s MO

£.1()= | alk) fik) dk

maps into C.° Ind$(s). Since (0,), =0, we can lift clements in
C* Ind M(O"M) to elements in C™ Indf,"(a“), and composing this lift with
#, we obtain

2, C” Ind§(o,4) — CF Ind¥(o).

For generic p, the transform 2, is an isomorphism and in this case it is
essentially inverted by §, ..
For a degenerate u, one only has that the composite map

ﬁu o ° /1- c Ind (UIM)_)C IndM(aM,,)

is invertible for u# y, in a neighbourhood of ug.

In Section 5 we prove that the possible poles of (8, ,,<#,) ' at u=yu,
are precisely cancelled by the zeroes of £, at u=pu,. Moreover, the
transform [2,0 (B, ,,°2) '], is an 1somorph1sm onto C.» Ind§ (o).
This essentially gives the Poisson transform. The constructlon of
P (B, o P) " is not just a normalization by the c-function; the map
B.. .o 2, is a differential operator. We see that for certain degenerate values
of the eigenvalue we have to construct a transform which really differs from
the generic transform. This is a procedure quite different from the scalar
case where the generic Poisson transform works for all eigenvalues, but the
problem is to prove that it works for the degenerate values.

In Section 6 we give two applications of the Main Theorem. In the first
we compute the composition factors of C Ind% (o). The second gives an
embedding of the G-representation on C* Ind% (g ,) defined by the
isomorphism 2,0 (f, ,,>%,) "' into an induced representation on G/P, and
so we get a G-equivariant embedding from C Ind%(o) into an induced
representation space over G/P. The representation of P involved has non-
trivial restriction to N.
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2. NOTATIONS AND PRELIMINARIES

Let G be a connected real semisimple Lie group with finite center, and
of real rank one. Let K be a maximal compact subgroup of G. Then G/K
is a Riemannian symmetric space of rank one. Let g and t be the Lie
algebras of G and K (in general, italic capitals denote Lie groups and
german lower case letters Lie algebras). Let G=KAN be an Iwasawa
decomposition, and for xe G define x(x)e K, H(x)ea and n{x)eN, by
x=kr(x)exp(H(x)} n(x). Let 2 be the restricted root system of a in g and
2* be the system of positive roots associated to N. Let « be the indivisible
root in 2" and p half the sum of the positive roots counted with multi-
plicities. On the complexified dual ad of a we define a partial order < by
u<i if and only if i—u=/le for leZ.,. Define M=2Z,(A4) and
P=MAN. Then P is a minimal parabolic subgroup. If Aea¥ and ae 4 we
define a* = ¢*!'°8 %),

Let (o, W) be a (not necessarily irreducible) continuous representation of
K in a finite dimensional complex vector space. The smooth sections of the
associated vector bundle G x . W can be identified with elements of the
function space

C” IndS(o)={f G- W] f(xk)=0(k) ' f(x), xeG, ke K;fsmooth}.

Throughout this paper (o, W) is fixed.

Let #(g) denote the universal enveloping algebra of the complexification
of g. Let Z(g) be the center of %(g). Through the left regular representa-
tion an element Z € Z(g) acts as an G-invariant differential operator L, on
C” Ind§(a).

Choose t maximal abelian in m. Then h:=(a®t), is a Cartan sub-
algebra for g¢. Choose an order on I such that # is contained in g, the
sum of the negative root spaces. Let p,, be half the sum of positive roots
for (mg,tc) Let py: Z(g)—#(bh) be defined by Z—"y(Z)egs%(g)
for ZeZ(g). Then we recall that for Aeb* ZeZ(q), we have
that 3 (Z)A) :="y(ZNA — pp —p) defines the usual Harish-Chandra
isomorphism onto the Weyl group invariant polynomials on h*.

Denote by M"~ the set of equivalence classes of irreducible
M-representations. Let W, ,, =25_,,» W(J) be the decomposition of ¢ into
M-isotypical parts. We write

deo

if W(3)#0. Let n;: W— W(J) denote the projection according to this
direct sum decomposition. For each de o let

(05, W(d))
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be the M-representation o ,, restricted to W(o). Let 4,et¥ cb¥ denote
the infinitesimal character of 4.

Let 7 be a finite dimensional representation of P on the vector space V..
Define

C* IndS(z) (1)
to be the space of smooth functions f: G — V, transforming according to
the rule

f(xman)=a*t(man)” ' f(x) (2)
for all xe G and mane M AN (note the p-shift). The group G acts on (1)

by the left regular representation L.
If (8, V;) is a finite dimensional representation of M let

C™ Ind¥(8) = { £ K— V| ftkm)=58(m)~" f(k), k€ K, me M; f smooth}

be equipped with the left regular representation of X.

3. PoissoN TRANSFORMS

In this section we generalize the notion of Poisson transform to the vector
bundle situation and derive some simple properties.

Let (z, V.) be a finite dimensional P-representation. We do not assume
that 7 is irreducible or that t,, is trivial.

DerFNITION 3.1. A Poisson transform on €™ Ind$(7) is a continuous,
linear, G-equivariant map from C ™ Ind$(z) to C* Ind%(s).

Given ¢ e Hom,,(V,, W) define

210 =] Tok)- 01 1(ok) dk .

for fe C* Ind§(t). It is readily verified that the operator 2¢ is a Poisson
transform on C* Ind%(z).

On the other hand, let 2 be a Poisson transform on C* Ind%(t). Define
the Poisson kernel Pe [C* Ind$(7)]' ® W, the strong topological dual of
C ™~ Ind%(z) tensored by W, by

<P, =2f(e)
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for fe C* Ind$(z). By the G-equivariance of # the kernel P completely
determines 2 by

Pf(x)=<P, L 'f).
The map

(g)m> (figd = <) glh)>dk

defines a non degenerate, G-equivariant pairing
C* Ind$(r)x C= IndG(z¥)—>C

(this is why we incorporated a p-shift in the definition of C * Ind$(t)). This
pairing induces a G-isomorphism

[C*IndS(1)]) ~C ~* Ind§(z"),

where C ~* Ind%(z) is the space of generalized functions /: G — V, trans-
forming according to rule (2).
Now (P, L, f>=P(LfNe)=2f(k~")=a(k){P, f>, hence

Pe[C = Ind%(z¥)® WX (4)

The fact that G = KP forces P to be smooth. Its transformation properties
imply that P is completely determined by Pe)e[V,.@ WM~
Hom,(V_, W).

PrOPOSITION 3.2. The map ¢+—P? is a 1-1 correspondence from
Hom,(V,, W) to the space of Poisson transforms on C* Ind$(z). Its
inverse is given by 2+ P(e).

Proof. From the definition of #? in (3) it is immediate that the kernel
of #? evaluated at the identity is equal to ¢. So the transform #? has a
nonzero kernel, and hence is nonzero, if ¢ # 0. This proves the injectiveness
of g+ 2?.

On the other hand, let 2 be a Poisson transform on €™ Ind%(7) and let
P be its kernel.

By (4) we know Pe [C ™ Ind4(1¥)® W)X Hence

Pfx)= (P, LTSy = | (PU)LS(xk)) di= [olk) Ple)] fik) dk
This proves that Z =27, So ¢+ 2¢ is surjective. |

SKO 119 2-8



364 HARMEN VAN DER VEN

For an M-representation (y, V,) and Aea¢ define the P-representation
(®Ai®1 on ¥V, by

X ® AR 1(man)=a*y(m).
For 6 eo let i;: W(6) — W denote the inclusion. Define
96 v g)ia
A as® - A @1

{note the minus sign). .

By the G-equivariance of the Poisson transform we have that L, 2 =
P-L, for all Ze Z(g). Now Z(g) acts on C™ Ind$(c,® —A® 1) by the
multiplicative character y,(-)(A4;— 4). Hence

L, P} =y,(Z)(4;— 1) ;. (5)

For fe C* Ind%(o,® —A® 1), it is easy to describe the behaviour of
23 f(xa) as a — . Here, by a —» oo we mean that a* tends to infinity. The
map (7, m)— (i) m is a diffeomorphism on N x M onto an open dense
subset of K. Since the integrand ki (a(k)c@)f(xk) of (3) is right
M-invanant one finds

P f(xa)=a’"" jﬁ (ki) & PV HOY f(xafia ") di.

Now lim, _, ., afia” ' = e and as in [16, Chap. 5], one checks that the limit
and integral can be interchanged provided Re 4> 0. Here Re 4 >0 means
that (Re 4, «) >0, where (-, -) is the usual inner product on a*. Define for
Re 1> 0 the c-function ¢(4) € End,, (W) by

e(h)=[ otx(@)) el 4= i

Then
lim a=**°23 f(xa)=c()[i; f1(x) (6)

= o0

Define ¢;(4) € End,, (W(3)) by

cs(2) = mse(h) iy

CoROLLARY 3.3. If Re A>0 and ¢;(A) is invertible, then the Poisson
transform P$ is injective.



VECTOR VALUED POISSON TRANSFORMS 365
4. ASYMPTOTICS

In this section we prove the existence of asymptotic expansions for
certain generalized eigenfunctions of the Casimir in C* Ind$(s). The
dependence on a holomorphic parameter is investigated. This section is
quite technical and the reader who is only interested in its applications to
Poisson transforms can skip the proofs, which are postponed to the end
of the section. The ideas and proofs are along the lines of [2] and [,
Sect. 11 and 12].

For any function f: G — W and for r € R define the r-norm of f by

1A, = sup flxl =" /G ws

where |[-{;;, is a K-invariant norm on W and |/x| is the operator norm of
Ad(x) on g. Denote the Banach space of continuous functions with finite
r-norm by C,(G, W). The space C,(G, W) is invariant under the left regular
representation L. Denote the Banach space of C?-vectors for L in C,(G, W)
by CYG, W). The space CX(G, W) of smooth vectors in C,(G, W) is a
Fréchet space. For more details on these function spaces the reader is
referred to [2, Sect. 2]
Let € be the Casimir operator of G. For pe C define
C* Ind$(c)={fe C* IndS(6)n CX(G, W)|(€ —u) =0},

Hr

Cr,Ind§(o)= ) Cr, Ind§(o)
reR
For technical reasons, which become clear in Section 5, we have to
consider a possibly larger space of generalized eigensections. For y, poeC
define

L}, Ind§(e)= LG, W)n C}; , Ind{(a),

1o, *

g, = {fe C* Ind$(0) N C*(G, W)|(€ — w)fe L2, Ind$(0)},

wr

Ho — Ho
go=1) &,

reR

Note that C7, Ind%(s)< &%, and Cj , Indg(s)< &% If there are no
square integrable eigensections with eigenvalue u, then &% coincides with
C% , Ind§ (o).

For d e o let ps be the second-degree polynomial on af defined by

ps(A) =7, (€)A;— 4). (7

The polynomial p; is even (cf. (14) below).
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Define for peC
X(ﬂ)=6ke)ﬂ {Aeat | ps(A)=u},
X*(u)={Ae X(p)] £Re A>0},
Xe(u)={Re i|ie X(u)}.

THEOREM 4.1,  Fix u, p,eC and re R.
(i) Let fe &%, , xeG. Then there exist unique W-valued polynomials

M, r? "

P )x) on a such that
fxa)~Y pi(f)(x)loga)a*~*  (a— ). (8)
4

Here the summation is over € {A—lx|ie X(u)u X (uo), [e Ny}

(i) Let e{i—lufieX(u)v X (uo) leNy}. Then there exists a
constant r’ such that fr——»pﬁ(f) is a G-equivariant, continuous, linear map
Sfrom &% 1o CP(G, W)® Pol(a).

Remark 4.2. One can prove almost the same theorem for eigen-
functions in C ,Ind{(c), only then the summation in (8) is over
Ee{A—ln]lie X(n), leN,}. Intuitively speaking the fact that the summa-
tion in (8) is over fe{i—Ixlie X(u)uX (uo), /eN,} says that the
“positive part” of the asymptotic expansions of functions in & is the same
as for functions in C ., Ind§ (o).

DeFINITION 4.3, Let fe &4

An element £eag is called an exponent of f if pﬁ(f);é(). An element
Eeag is called a leading exponent if £ is maximal in the set of exponents
of f (then &e X(u)u X (ug), cf. Lemma 4.23 below). The corresponding
coefficient pﬁ( [} is called a leading coefficient.

A map ¢ from an open subset 2 of C to CX(G, W) is called
holomorphic if for each ge N, it maps  holomorphically into the Banach
space C4(G, W). With this notion we can define holomorphic families of
generalized eigenfunctions. Let £ be an open subset of C, y, and re R. We
denote by

the set of all smooth maps f: 2 x G — W such that

(i) for each pe Q the function f,, defined by f,(x)=f(y, x), belongs
to &% , and

Mo

(ii) the map u+— f, maps 2 holomorphically to C*(G, W).
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ExAMPLE 44. Fix deo and feC™ Ind%(o,). For each ieak let
%, feC* IndS(c;,® —A® 1) be defined by &, f(kan)=a’~*f(k). By (5)
the transform 2 maps into the eigenfunctions with eigenvalue p,(4). Using
the same argument as in {2, Examples 2.2(1) and 2.3], it is easy to prove
that there is an r(4)e R such that 2 maps into C7,(G, W). Let 2, ag
be a bounded open subset on which p; has a well-defined and holomorphic
inverse. Let Q =p(£2,) and r=sup, o, 7(4), which is finite since A+ r(1)
is a locally bounded function. Then

(Ha X)H‘@zdf[“z)[ g Ut] f ](\)
is an element of £ .

For each peC with 0¢ X,(u), and for each deo define the unique
element A5(y) in af by

pslAs(p)) = and Re 25(u)>0. (9)
Note that {u|0¢ X4(@)} is dense in C.
LemMa 4.5, Let uoe C. If 0¢ X x(ug) then there is a neighbourhood Q of

o such that pv— As(u) is holomorphic on Q for each d e o.

Since the p; are even polynomials we know that X(u)=1) { +45(u)}.
Once and for all fix a g, C with the property that 0¢ X g(u,). Define

Eyu) 1= {Aplp) — 1218 € 0, 1€ Ng: dglpg) — It = A5lue)},  (10)

the set of exponents in X(u)— Nyo which for u=p, coincide with A,(y,).
Note that Z5(pg) = {/5(p0) }-

THEOREM 4.6. Let Q, be an open neighbourhood of u,, such thatr the
Sfunctions prs Ag(u) (0 €a), are holomorphic on Q. Let - Q,x G — W be
an element of &%, . for a fixed reR. Then there exist a subset Qc Q,
containing p, and a constant r’ € R such rthat for all e a

(1, Hy 3 pilf ) H) e (11)
& e Znlu)
is continuous from Q2 x a to CX(G, W) and holomorphic in u.
For each deo, ueC, and fe &/ define ﬁi‘ “O(f)eC‘X(K; W)} b
SR =75 Y piSIk)O)

£e S50
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for ke K. The function ,B‘S (f) is called the S-boundary value of f. Note
that 8, (/)(k)=m, p,"””’(f (£)(0).

THEOREM 4.7. (i) The 6-boundary value map B°

maps &4 linearly,
continuously, and K-equivariantly into C ™ Ind% (a;).

1 10

(ii)  There is an open neighbourhood 2 of p, such that for all re R and
fe&, the map prs f° o ol Su) is a holomorphic map from Q to the Banach
space C"Ind +(05) for each q.

Proof. (i) All the statements except for the transformation property
under M of /3“ (S ) follow directly from Theorem 4.1. The transformation
property is contained in Lemma 4.19 below.

(ii) This follows directly from Theorem 4.6: the map ﬁ“ 14 18 the map
in {11) restricted to 2 x {0} and composed with restriction to K and
projection onto W(d). 1

Define
B;t Ho Z ﬂ# uo* 6“0_"6‘1 Indw(GJM)

deo

Given dcog define 4[0]={d"€o|ps,=ps}. Note that p,=p,; is
equivalent to y,(6 N A5 ) =7,(6)A;), which is equivalent to A, || = A,
(also see Lemma 4.24). Define the M-representation

(U[a]s W[a‘]): ® (a5, W(S))

3 ed(s]

We need the following properties of the coefficients in the asymptotics.

ProrosiTiON 4.8. Let fe &' and suppose A is a leading exponent of f
with Re 2>0. Then pi(f)e C* IndG(o5y® —A® 1) for any deo with
ps(A)y=p (such a & exists). In particular, the polynomial part of pf;( f) is
constant.

PROPOSITION 4.9. Let uoe C be such that 0¢ X g(po). Let fe &Y. Then
By u(f)=0 if and only if f is square integrable.

PROPOSITION 4.10. Let Aead and dea be such that ReA>0 and
0¢ Xp(ps(A). Let ge C* IndS(0,® —Ai®1).
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If &, with Re £>0, is an exponent of 23 g then &= A — la for some le N,
Moreover, p’ . (Pg) has a constant polynomial part and takes values
in W(é).

Before giving the proofs of the above statements we derive the generic
bijectiveness of the Poisson transform as a consequence.

THEOREM 4.11. Define

P=3% P, CFInd§ ( @ [0;® -A;(W®1 ]) - C%, Ind$ (o).
dea deo
Then for generic u the Poisson transform 2, is bijective.

Here generic means outside a finite set of horizontal half lines and outside
a locally finite set of points.

Proof. The fact that 2, maps into the eigenfunctions with eigenvalue u
follows from (5} and the definition of the A;5(x) in (9). Using the same argu-
ment as in [2, Examples 2.2(i) and 2.3], it is easy to prove that %, maps
into C (G, W) for some reR.

Define ¢(p) =Y e(44(u)) ;€ End(¥W). The reader should be aware that
c(¢) 1s not a meromorphic function of p.

We need the following four conditions which are fulfilled for generic u.

(A) The endomorphism c(u) is invertible.
(B) There are no square integrable functions in C Ind$ (o).

(C) The elements in X(u) are incomparable with respect to <.
(D) 0¢ Xglp)

Condition (C) implies that each element of X(u) is maximal in the set
{A—1Ix|Ae X(u), le Ny }. Hence for each ie X(u) the coefficient pi(f) is a
leading coeflicient whenever it is nontrivial. By Proposition 4.8 and (D)
o V=75 PRSI x(0) =7, pE(£)() - By (C) we have that for
all "¢ 4[] the exponent A;(u) is not comparable to 7,(u). Hence by
Proposition 4.10 1,;(y) is not an exponent of ?f.wg. If 6'eA[6]
and 6"#96 by Proposition 4.10 we have n(;zpff‘(“’(g’ﬁfwg)=0. We see
that for &' # 6 we have n; pi7 (P, &) =0, hence B (23,,,8)=0. Let
A C* Ind§(r)> C* Indf(7 ) denote the restriction to K (here t is
arbitrary). Using (6) we see that p/N(P] . g)=c(i;(n))is#g for all
ge C* IndS(o,® —As(n)® 1). Hence

BuweZ=clu) 2, (12)
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and by (A) the injectiveness of 2, follows. Let %;:C* Ind}(o;)—
C” Ind%(0;® —A5(u)® 1) be defined by & gkan)=a*"" ~*g(k). Using
{12) we see that the function

f—(%oc(#)‘)[z i %, Z,,,(f)]

Sdea

lies in the kernel of 8, . By Proposition 4.9, (B), and (D), this implies that
f=(Zc(p)” DX &8 ()], proving that Z, is surjective. |

The proof of the above theorem breaks down if one of the four
conditions above is not fulfilled. The Main Theorem in Section 5 gives an
answer in all of these degenerate cases except when Oe X (u).

In the remaining part of this section we give the proofs of the above
theorems and propositions.

We first introduce a generalization of the Harish-Chandra homo-
morphism. We identify elements of #(gq)® E, £=End(W), with the left
invariant differential operators on C*(G, W). Let I, be the left ideal in
%(g)® E generated by

AR+ 1®a(X), Xel
Then 7, annihilates C* Ind% (o). Define 'I": %(g) ® E — %(a) ® E by
U@ ~"Tu®@e)enU(g)@E+1,.

Then I(-}A):='T(-}A—p) defines the generalized Harish-Chandra
homomorphism. For Ze #(g) we denote [(Z)=T(Z® ).

We investigate the Casimir and the relation between /™ and v,. Let u be
the map from #(g) to ZX(a®wm) defined by Z— u(Z)e t¥(g), Z€ Z(g).
Let 7, be the left ideal in #(a® m)® E generated by X®@ 1 + 1 @ o(X),
Xent Let 'I,, be the map from #(a@m)®E to #(a)® E defined by
XR®p—"T (X®¢)el,, XQee¥ (a®mM)®E. Let Vg Z(a@Pm)—
«(b) be defined by Z—~ "y, o (Z)e m{ %(a@® m), where mg is the sum of
negative rootspaces in nte with respect to tc, such that mg < gc . Finally,
let v, be the Harish-Chandra homomorphism for m¢ with respect to t and
mg . Then

F="T,(u®I) on Z(g)RE,
6= Ya@m°H on  Z(g)

We identify #(a) with S{a), the algebra of polynomials on af.

LemMma 412, For deo and ieaf we have T(EWA) pis=7p(€)
(As+ 4) Ly



VECTOR VALUED POISSON TRANSFORMS 371

Proof. Since a L m, u(%) is an element of #(a)@® Z(m). Let =, resp.
7., be the projections in this direct sum. Using the above relations we find:

VolENAs+ A) sy = Vool ML EINAs — par + A—p) Ty,
=Y mu tLENAs — par) Twisy + Rl pLENA = p) T 5
=05 ul€])+ (L€ 1)NA—p) Ly
’Fm(ﬂ[%])(/:_l))m/m
T(ENA=p)ywey N

By the above lemma we see that

I

I

(€)=}, ps®ms, (13)

where the p; are the polynomials defined in (7). They can be explicitly
computed to be

ps= (o, a)(Ho— p(H)W(Ho+ p(Ho)) — yi(m p[ € 1)(A45), (14)
where Hye a is determined by a(H,)= 1. Define ‘ps(4) =ps(4A+ p). Then

"T(€)=Y. 'ps@n;. (15)
Define

C o » 10d§(0) = {f€C* Id$(0) A CF(G, W)|(€ ~ p)(€ — o) f=0}.

We first prove the existence of asymptotic expansions of functions in
C7 o « Ind%(0) and then restrict to functions in %< C7, , Ind%(o).
We need a proposition similar to Proposition 12.4 in [1]. In the
following only the lemmas and proofs are given which really differ from the
corresponding ones in [1].
Define

X, =(€—p)(%—po)

Let m: [S(a)® E]® [S(a)® E] — S(a)® E be the multiplication map. Let
C,[x], resp. S;(a), denote the space of polynomials in x, resp. on a}, with
degree less than or equal to 1. Define

ZcS)®E

to be the finite dimensional image of [S,(a)® EJ®C,[¥ — yo] under
me(1®'T).

LEMMA 4.13. The map mo(1@T): Z@C[X,] > S(a)®E is an
isomorphism.
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Proof. We first prove
mo(1@ ' Tp): [S(a)QE]QC[E —p]=S(a)QE. (16)
For any fixed p,eC[x] of degree k& and any peC[x] there are
g,€C, _1{x] and ¢;e C[x] such that
P=ZQi'(1:‘(Po)-

This follows from an easy induction on the degree of p.
Hence for all e o and pe S(a) there are g, S,(a) and ¢;e S(a) such
that

P=29:0:(Ps— 1)
since 'p, — u has degree two. Hence for arbitrary ¢ € E we have
POOT =4, 9:(ps— )@ 9T,
=2 m(q.®ons, ¢i('ps— 1) @ 7s)
=2 mq:® oms, 'Tplqi(€—1)]),

since I'p[qi(¢ —p)]=2scaqi('ps—p)®ns. Hence p@on, is in the
image of the map m-(1® 'I's) restricted to [ S,(a)® E]® C{¥ —u]. For
an arbitrary o =3, p,® ¢, in S(a)R E we write 0 =3,Y s p,® @,n5, and
hence w is in the image of the map m-(1® '['s) restricted to
[Si(a)® E]1® C[¥¢ — u]. This proves (16).

We now claim that

Ci[¢—p]®CLX,] - CL[€—u] (17)

defined by multiplication of polynomials is an isomorphism. This is
equivalent to the trivial fact that C,[x— ug ] ®C[(x— po)(x —p)] —
C[x — ] is an isomorphism.
Combining (16) and (17), and using the fact that I is a
homomorphism, we obtain
S()QE~[S(a)®E]®C[¢ —p]
> [S(0)@EJ®(C[€ —ul®CLX,])
>~ ([SHa)@E]I®C,[¢—u])®CLX,.]

~Z®ClX,] 1
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Let J, be the left ideal in %(g) ® E generated by J, and X . Define
Y, =(%)®E)J,

and
H=YR)® Z.
LemMMA 4.14. The mapping I',: % — Y, induced by u@z+>uz is an
isomorphism of left (U (), E)-modules.

This result is proved in the same fashion as the proofs of Lemma 11.3
and Corollary 11.4 in [1], using Lemma 4.13.
Define the following (g, K) action on %(g)® E:

{Xu®(p_—_-Xu®(p’ XGQ,

(18)
k-u®e=Adk)u®a(k)-poo(k) ™!, kek,

for all u® ¢ e ¥(g)® E. The ideal J, is invariant under this action and we
therefore have a (g, K)-action on Y,. The isomorphism Y, ~ % induces a
representation 7, on #. The family (n,),. ¢ is holomorphic.

The finite dimensional ¥} := #/i*%# inherits a (a @ m, M) representation
1r from (#,n,). Let ¥, be a finite dimensional subspace of % mapped
bljectlvely into ¥, by thc canonical projection. Let & ¥, — ¥, be the
restriction of the canonical map. Define

m: Y ->UGRE u®(pR @) up® ¢.
Let ¥, denote the image under m' of ¥;. Let #: ¥, — ¥, be the inverse of

’
ny -

ProrosiTioN 4.15. Let k= 1. There exist

1. an algebra homomorphism b {y, -) from Z(a@m) to End(¥})
2. a bilinear map y,: Z(a@m)x ¥; » W %(i@®a)R E,

both depending polynomially on p, such that for all pead, De Z(a@m),
and ve ¥,:

—b(p, DYv—y, (D, v)ed,
Proof. Let p,:U(g)® E — % be the map defined by
P (u®@¢)=n,u)(1®(1® ¢))
for uQ e ¥(g)® E; here we use that lQ £« Z.
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Define for De #(a@m), ie ¥, the maps

B(u. D)=¢ 'en¥(D)- EeEnd(7y), 19)
F D, §)=p (D -m' (&) —m’ - [b (1, D)NF)])eH.

Then b, (u, -) and y, are defined by
bi(u, DY=m' by (1, D)on
vuD,0)y=m'[ 7D, n(v))]

for DeX(a®m), ve¥,.
The reader should carefully study the following diagram:

Ay =4, ~ ¥, ~ ¥,
M M
Y > UQ)RF
fu R pr

Y, = % (g)®E/J,.

All the representations involved arise from the (g, K)-representation on
“(9)RE.

The proof of the proposition is essentially the same as the proof of
Proposition 124 in [1]. |

We now compute the eigenvalues of #,(y, -),,. As in [3, Lemma 1.2],
we then control the eigenvalues of all b, (p, -),,. The eigenvalues occur as
the exponents in the asymptotic expansions of the eigenfunctions.

PROPOSITION 4.16. The set of eigenvalues of b({u, ), is equal to
{A—plieX(u)u X(uo)}.

Proof. The weights of b,(u, H), Hea are equal to the weights of

(“:l):n (cf. (19)). Now #/M#% ~Z and using Z=[S(a)@ EJ/CT(X,)>
(Lemma 4.13) we compute for pe Z:

n(H)p=0,"H-I'(1®@p)=1,"(Hp)=Hp+ CI(X,)>.

It is now straightforward to prove that the weights of this representation
are precisely the roots of the polynomials (‘ps— pu)('ps— 1), (d€0). |

PROPOSITION 4.17. Fix pu, uoeC and re R,
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(i) Let feC®, ,IndS%(s), xeG. Then there exist unigue W-valued

B ouo.r
polynomials p’(f)(x) on a such that

flxa)~3 pi(f)(x)doga)a*~*  (a— o).
:

Here the summation is over £ € {A—1In|Ae X(pu)u X (o), (e Ng}.

(it) Let te{i—la]ie X(u)u X(io). 1eNy}. Then there exists a
constant r' such that fpi(f) is a G-equivariant, continuous, linear map
Srom C*  Ind%(c) to CX(G, W)® Pol(a).

PRET g

Proof. This follows using the techniques of [2, Sect. 6], and [1, the

proof of Proposition 12.6]. Proposition 4.15 is used to prove the existence
of the expansion and Proposition 4.16 gives the leading exponents. ||

In the scalar case [2] Ban and Schlichtkrull took as eigenvalue y(%€)(4),
Aeag, where y is the usual Harish—-Chandra isomorphism of the pair (g, a).
In this case the eigenvalues of the matrix b,(4, -),, were wi —p, we %, the
Weyl group of X. In this parametrization of the eigenvalue the weights
depend holomorphically on A. In our case a good parametrization is not as
obvious: taking the roots of a second order polynomial depending on peC
is certainly not polynomial and not always holomorphic in u. But with the
assumption 0¢ X o(p,) we can take the eigenvalue as a parameter.

Proof of Lemma 4.5. Since 0¢ X g(y,) there is a neighbourhood of yq
on which the functions p+ i;(u) are well-defined. For d e o let ¢, be the
constant y(7m,,u[€1)(45) + (o, &) p(H,)?. Using the explicit formula (14)
for the polynomials p; we see that p,(As(u))=pu is equivalent to

(o ) As(u)N(Ho) ] —cs=p. So
As(u)(Ho) =+ (o, @) "2 [~ po+ po+¢51'7

which depends holomorphically on y in a neighbourhood of y, if and only
if po+cs;#0. This is provided by the assumption that 0¢ X(u,). Indeed,

0#ps(0)—po=—cs—po- 1

PROPOSITION 4.18. Let 24 be an open neighbourhood of u,, such that the
functions pi— A5(n), (0 € a) are holomorphic on Q2. Let f: 2, x G — W be an
element of Cg . Ind$ () (defined in the obvious way) for a fixed reR.
Then there exist a subset Q < Q, containing u,, and a constant r' € R such

that for all deo,

wH> Y PASICHE) D

e Islul o Zs(po)

is continuous from 2 x a to C*(G, W) and holomorphic in p.
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Proof. The proposition is the analogue of Theorem 129 in [2] and is
proved along the same lines as in [2, Sect. 5, 6, and 7]. Of importance
is the fact that the exponents depend holomorphically on g, which is
provided by Lemma 4.5, and that one takes all coinciding exponents into
account. |

LEMMA 4.19. For all mae MA
i) xma)(HY =a(m) " pi(f)(x)H +loga)a* ",
Let o®@ o e % (a @)@ E be such that
¢—"1(€)ew@e+1,.

Write w® ¢ =3 0;® ¢,;, where w, has weight —v,, v,e Z_ 0.

LemMa 420. Let feC, . Ind$(c) and & an exponent of f. Then for
all He a:

PENC)H)="T(%)-pi( /) )H)

+ Y @@, p5" () H).

Here the elements of #(g)® E act as left invariant differential operators
on the first variable of pf‘(f). We use the convection that if A is not an
exponent then p/(f)=0.

The proofs of the above lemmas are elementary and follow from the
uniqueness of the asymptotic expansions. Note that if fe C7,, , Indy (o)
then €fe Cy . « Ind{ (o).

LEMMA 4.21. Let ¢ be a leading exponent of C7 . ,1Ind§(c). Then
§eX(p) v X(uo).

Proof. Since ¢ is a leading exponent we have that £+ v is not an
exponent for all ve Z_ 4u. Repeated use of Lemma 4.20 results in

0=p((% ~ u)(€ — po) /) ) H)
=["1(€)— 10 T(E) ~ o] - pil /) )H)

=3, [Ps(&) = u1[ps(E) = pol ms PE(S ) N H)

deo

+ derivatives of the polynomial part of pﬁ( ),
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where we use (13) and the right A-behaviour of p’(f) contained in
Lemma 4.19. Since the derivatives lower the degree of the polynomial of
p:(f)(-) we must have

> [2s(O) — 1L ps(&) ~ ol ms P I HH) = 0. (20)

deo

Since ¢ is an exponent of f we have pi(f) # 0, so there is a € g such that
s pﬁ(f) # 0. Hence (20) implies that [ ps(&) — u][ ps(€) — 1] =0; in other
words, £e X(u)u X(u,). 1

LeEmMMA 422, Let fe C . . Ind§(a). Then [ is square integrable if and
only if all exponents of f have real part less than zero.

Proof. First assume that all exponents of f have real part less than zero.
Then there is an ¢ > 0 such that

[ flka)ll < Ca=*'*9)%,

for all ae A* and k € K. Using the polar decomposition of G this estimate
readily implies that f is square integrable (see, for instance, [21, Lemma
5.A3.27).

Conversely, denote H= L2 Ind§ (o). The left K-finite functions in H are
also right K-finite and square integrable. Hence by 5.A.3.4 in [21] all
exponents of left K-finite functions in H have real part less than zero.

We can write any smooth function ¢ on G as a sum Y ;_x~ @° of its
K-isotypical parts for the left regular representation. Since by Proposition
4.17(i1) taking the coefficient of an eigenfunction is equivariant, continuous,
and linear, we have for fe H and e a}

Py =1p5 (T

Hence any exponent of f occurs as an exponent of f° for some e K. By
the above the exponents of /° have real part less than zero, so any exponent
of f has real part less than zero. |

ProPOSITION 4.23.  Let £ be a leading of f€ &1°. Then {e X(u) o X~ (ko).

Proof. By Lemma 4.21 we know that &e X(p)u X(po). Assume
£e X" (ug). By definition we have that (¥ —pu)f is a square integrable
function. By Lemma 4.22 every exponent of (4 — p)f has real less than
zero. Hence

P (¢ —p)f)=0.
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Since £ is a leading exponent, Lemma 4.20 implies
0=p((€— ) )= (T(€)—u)p(f)

= Z [ps(&)—ul napi(f)

Sea

+ derivatives of the polynomial part of p5(f).

Since these derivatives lower the degree of the polynomial part of pé(f) we
must have

0=73 [ps&)—plmspi(f). (21)

dea

Note that for u = u, the proposition follows immediately from Lemma 4.21.
So we may assume u # uo. There are two possibilities: either p4(£) # u for
all eo or there is a d € o such that p (&)= . In the latter case &e X(u)
and the proposition is proved. In the former case (21) implies that
pﬁ(f)zO which contradicts the fact that & is an exponent, and hence

CeX (o) 1

Proof of Theorem 4.1 and Theorem 4.6. Both theorems follow from
Proposition 4.17 and Proposition 4.18 if we can prove that in
the asymptotics of fe &4 (which exist since &< Ch o« Ind§(0)) a
summation over e {i—lulie X(u)u X (uo), /eNy} suffices. By
Proposition 4.23 we know that any maximal element in the asymptotics of
fe &l is an element of X(u)u X (uo). By definition any exponent is
smaller than a maximal element in the set of exponents and hence any

exponent of f'is an element of {4 —/lx]ie X(u) U X (o). 1eNg}. 1

LEMMA 4.24. For each p,eC with O¢ Xi(u,) there is an open
neighbourhood 2 such thar the following statements are equivalent for all 5,
deo

(1) As(po) = As (o),
(i) Az=is on Q,
(i) p;=ps,
(iv) there is a pe Q\{uo} such that is(u) =< As(p).

Proof. The elements +A4,(u,) are the two roots of the second degree
polynomial p; — uo=(x, ®) HZ + ¢5— gt (in the notation of the proof of
Lemma 4.5). So if 45(u,) = A5(to) then the polynomials p; — yg and ps — g
have the same roots and the same leading term, hence they are equal
This proves (i) = (iii). The implications (iii} = (ii) = (i) and (ii) = (iv) are
trivial.
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If we prove (iv)=>(iii) we are finished. It is straightforward to check that
the subset {4eC|d,0’ €0, keZ : As(u)=As(p)—ka} is locally finite in
C. Hence for pye C there is a neighbourhood Q of pu, such that the inter-
section of Q\{u,} with this subset is empty. So A;(u)=<1s(u) implies
As(uy=25(u). As in the proof of (i)=-(iii) it now follows that p;=p;. 1

Proof of Proposition 4.8. By Proposition 4.23 and the assumption that
Re 4> 0 we know that 1€ X+ (u). Hence there is a 6 € 6 such that 1 = 4,(u).
Since (¢ — pu) f is square integrable we have

Pu(€—n)f)=0.

Using Lemma 4.20, Lemma 4.19, and the explicit forms of ' (€) in (15)
and of p; in (14), one computes for all He a:

0=["T(€)—ulpi(f)(-)H) (22)
= 3 [ps(A)—plns p(£)C)H)
dea

+ 2o ) A(Ho) Dy [P N IH) + (o, 2) DL [P, ()CI(H),  (23)

where D,, is differentiation in the direction of H,. The terms in (22)
and (23) are linearly independent polynomials, hence each of them
must be zero. If 6'¢ A[6] then Lemma 4.24 implies p;(4)+# u, hence
n; pi(f)(-)(H) must be zero. This proves that pi(f)(x)(H)e W,
Moreover, D, pA(f)(-)=0, and since A(H,) #0 we have D, pi(f)(-)=0.
This proves that p:;( Jf) has constant polynomial part.

The right M A-behaviour of pj(f) is contained in Lemma 4.19 (use that
pi(f) is polynomially constant). The fact that x— pi(f)(x)(H) is right
N-invariant follows as in [2, Lemma 8.6]. |

Proof of Proposition 49. Let ie X(p,) be a leading exponent of f
Assume Re 4> 0.

Let 6 € g be a corresponding M-type: 4= 45(i,). By Proposition 4.8 we
have that pfm( f) has constant polynomial part, assumes values in W;q,
and is completely determined by its restriction to K. So

Y Browed =Pl )ik

5eafs)
The fact that B, /=0 implies that g2, f=0. So p; (f)=0 which

contradicts the fact that A is a leading exponent. By assumption we have
Re 1#0, so Re 1 <0.

580 119:2-9
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Hence each leading exponent of f has real part less than zero. By
Lemma 4.22 this is equivalent with the fact that f is square integrable. This
proves the “only if” part.

If fis square integrable then all exponents of f have real part less than
zero. Since Z,(uo) = {45(1o)} and Re A,5(po) >0 it follows that g5 f=0
forall deo. §

Proof of Proposition 4.10. The Poisson transform 2% maps into the
eigenfunctions with eigenvalue u:=p;(1). Let 4’ be a leading exponent of
¢ g with real part greater than zero. Let '€ ¢ be such that p;(1') = u. By
Proposition 4.8 we have p}(#]g)e C* Indf(o,1® —2'® 1). Because of
Theorem 4.1(ii) the map

g p (P g)

is G-equivariant. Hence it is an intertwining operator between
C*Ind%(o;® —A®1) and C~ Indi(a[ﬂ@) -4 ®1). From Lemma 21
(cf. Lemma 17, loc. cit.) in [12] it follows that such intertwining operators
only exist if ’= —2 or A'=/.—lx for some /e N,, in the latter case the
intertwining operator is a differential operator. Since Re 2'>0 and Re A >0
the case 4'= — 4 is excluded and hence A’ = A — [z for some /e N,,.

Hence if 4 is an exponent of 29 g it is a leading exponent. By Proposi-
tion 4.8 we then have that p/(#?g) is polynomially constant and takes
values in W ;. If 6#6'€4[8] then g n, pi(2] g) is a G-equivariant
map from C* Ind§(c;® —A®1) to C* Ind%(c, ® —A®1). Since A #0
by Lemma 21(i) in [12] any such intertwiner must be zero since ¢ is not
equivalent with §’. So pj(?fg) takes values in W(J5). |}

5. MAIN THEOREM

In this section we prove our main theorem.

Recall the definition of #, in Theorem 4.11 and abbreviate c;(u)=
cs(As(p)). By (5) and the definition of the A;(u) for deo in (9) the
Poisson transform £, maps into Cj ,Ind{(s). We define the lift
&, C* Ind}(0,y) = Pse, CF IndG(o; ® —As(n) ® 1) by &, f(kan) =
Y seo @ F m, f(k) for all kane KAN. Define

P, =2, C*Indy(0,,,)— C , Indi(o).

P2 =P, 24,0 C” Indy(a,) » C 7, IndG(o).

DeFiNITION 5.1, Let Q< C be an open subset, u,e and reR
By #(£,r, uy) we denote the set of continuous maps @ from
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Qx C* Indfj(o,,) to C7(G, W) satisfying the following conditions for
some g€ Ny:

(1) for all peQ the map &,, defined by @, /=, f), is a
continuous, linear, and K-equivariant transform from C* Ind}/(c )
to &4

wore
(2) for all ue £ and se N the transform @, extends to a continuous,
linear map from C¢**Ind%(a,) to CAG, W),

(3) the map pw~> @, is holomorphic from  to the Banach space
of continuous linear maps from C¢**Ind%(a,,) to CI(G, W) for each
seNg.

It is clear that if fe C* Ind},(a,,) is fixed and @ e H# (2, r, o), the
family (@, f),c0 is an element of £ .

ExampLE 5.2. Fix deg. Let 2eC be bounded and open such that
u— Ais(1t) is holomorphic on Q. Let re R be such that J’Z maps into
C,7(G, W) for all ue Q. Since the Poisson kernel P‘}:MM has order zero as
a distribution, the Poisson transform #ﬁ maps CInd%(6,® —As(n)®@ 1) to
C.(G, W). The G-equivariance of the Poisson transform implies that it
maps C'Ind%(c;® —2;(u)®1), equipped with the usual Banach
topoiogy, continuously into Cy(G, W). Since the restriction of %, to
C'Ind% (s,) maps into C*IndS(o;® —/is(u)®1) and is a continuous,
linear, and K-equivariant operator, it follows that *Bﬁ IS a continuous,
linear, and K-equivariant operator from C*Ind},(0;) to CI(G, W). Since
the kernel of *Bj depends holomorphically on g€ £2 it is clear that g~ *Bﬁ
is holomorphic from @ to the Banach space of continuous linear maps
from C'Ind}(05) to C}(G, W). Hence (B)),co€ #(2,r, ito).

Define
S,u, Ho = B‘A, o B %;l: C * Indf{(GL&I) - C‘I Indf\(l(o-l/w)'
TuroREM 5.3 (Main Theorem). Fix poeC. Assume 0¢ X p(ug). Then
there is an open neighbourhood Q of u, and an r € R such that S, , is inver-

tible for we Q\{po} and the family (1 — o) B,< S, volue o is an element of
H(82, r, uy). Define

¢[(0 = [(/1 - lu()) ~Bu o S‘;‘ .lll()]“ =pup*

Then ®,.: C™* Indi(0,,)— L’ Ind$ () and the family

Ho” Ho

¥.= (SB“US;::AO_'(N—A“O) ! ¢;t0);¢6(2
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is an element of #(Q, r, o) satisfying
B V,=1d (24)

Remark 54. For generic p, the map S, , is equal to c¢(u,); this
follows from (12). Since ¢(y,) is invertible for generic y,, the transform @,
is zero and the Main Theorem implies Theorem 4.11. Later we see that for

the degenerate values of p, the map S, ,, does not necessarily fix M-types.

Remark 5.5. The assumption 0¢ X z(p,) excludes those eigenvalues for
which there are tempered eigensections which are not square integrable.
Here we introduce the terminology that fe &% is called tempered if all
exponents have real part less than or equal to zero (cf. [21, 5.1.1]). If all
exponents have real part less than zero f'is square integrable {Lemma 4.22).

The importance of the Main Theorem becomes apparent in the following
proposition.
PROPOSITION 5.6.  Assume 0¢ X p(u,). Composing ¥, with the canonical

. . 4 o 2 G . . ) . . .
projection &40 — &40 /L, Indy (o) we obtain a linear K-equivariant isomorphism

C™ Ind%(0,,) ~&6/L2 Ind§ (o). (2)

T T

Moreover, we have a G-equivariant exact sequence:

0-C% , Ind%(s)/L>

" HO, *k Ho

Ind{(c) - &%/L? Ind§(o) —»Im &, — 0.

Proof. If fe &) then B, .(f~ ¥ ,,Bu. S )=0. By Proposition 4.9 this
implies that f— ¥, B, ../ 1s a square integrable function in the kernel of
[€¢ — us]> Hence, using Lemma 5.13 below, we see that f— ¥, 8, . fe
L2 Ind§(c). It now easily follows that the composition of ¥, with the

Ho

M yz 14 2 G H M N
canonical map &1 — &4 /L7 Ind¢ (o) is an isomorphism.

For the remaining part of the proposition consider the exact sequence

0-C% , IndS(c)/L>

T M. % Ha

Ind$(c)— &™/L2 Ind$ (o)~ L2

Ho/ o Ho

Ind¢ (o),

where the second arrow is the inclusion and the third arrow is given by
% — po. It suffices to prove that the image of the last map is equal to
Im @,,. This fact follows immediately from the following lemma and (25).

LemMMA 5.7, [F—pole V=P,

Proof of the lemma. For p+# p, we have [€ —ul-¥,= —[po— ]
(u—po) ' @, =&, If we take the limit for u — u, the lemma follows. |J

The lemma also implies that Im &, is a G-invariant subspace of
L} Ind%(c). Indecd, the image of ¥, is G-invariant and € —py, is a
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G-equivariant operator. Hence, the sequence in the proposition is an exact
sequence of G-modules. {

COROLLARY 5.8. Fix ugeC. Assume 0¢ X g(ug). Assume moreover that
there are no square integrable functions in C Ind$(a). Then

[(B.e S/::to]u=uo

is a bijective transform from C* Ind%(a,,,) onto C3, , Ind% (o).

Proof. Since there are no square integrable eigenfunctions @, must
be zero. Therefore ¥, =%,-S, ) is a holomorphic family of transforms
mapping into &4 =C7 Ind{ (o). The transform ¥, =[P,-S is

surjective because of (25) and injective because of (24). ]

—1
I8 uu]ll=#0

The proof of the Main Theorem requires some preparation.

DerINITION 5.9. Let 2<C be an open subset, pu,eQ and reR.
By #(Q,r,u,) we denote the set of continuous maps @& from
Q\{po} x C™ Ind4 (6, ,) to CZ(G, W) for which there exists an meN,
such that the map

(1, )= (1 — po)™ P, f)

belongs to #(£, r, u,). The smallest such m is called the order of the pole
of & and is denoted by m.

An element fea} is called a singular exponent of ¢ at u if
there is a function fe C™ Ind% (o, ) such that ¢ is an exponent of

[ — o)™ ®,1(1)
For Ae X*(u,) and ue Q define the sets

XH(p)={4y(n) (S €0 and Ly(uo) < A},
A= {ea|spo) <A}
A(4)={dea|isuo)=4}.
DEerFiNITION 5.10. Let Q, r, uo, and 4 be as above.

By J (£, r, uy, A} we denote the set of &e.#(2,r, u,) satisfying the
following conditions:

(1) if & is a singular exponent of @ at ue £ and Re >0 then
e {v—lajve XHp), le Ny},

(2) there is a deAd* such that for all us#pu, and for each
fe C™ IndX (5,) the coefficient at A5(u) of @ ,(f) is equal to [ itself.
M H
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Let ®e .7 (82, r, uo, 4). Let E; denote the set of maximal elements in the
set of singular exponents of @ at p, with real part greater than zero. By
Definition 5.10(1) we have Ej < {v—/lx|ve X*(u,), /e Ny}. This latter set
is totally ordered and hence £} consists of at most one element. If £7 is
empty we call @ of negative type. If E} consists of one element we call @
of positive type. Let .7 * (L2, r, u,, ) denote the set of @e .7 (Q, r, py, A) of
positive type and 7 (2, r, uqy, 2) the set of @e.7(Q, r, uqy, 4) of negative
type.

For @7 "(Q,r, uy, 4) let £, be the unique element in E;. By
Definition 5.10(1) and Proposition4.23 we have ¢g,e {v—lxve X (u,),
le Ng} X" (o) = X*(p), 50

Ep€ X (o)

For fe C™ Ind%,(0 ) let To(f) be the coefficient of [(1— po)"* @1, — 4o ()
at the exponent ¢, restricted to K. By Theorem 4.1(ii) and Definition 5.1(1)
the map fi+— T4(f) is continuous, linear, and K-equivariant from
C*Indj(o,,) to C™Ind{(s,,)®@Pol{a). Let deo be such that
& o = As(1to). By Proposition 4.8 we have

To(f1eC™ Indf,(crf(,-])——— ® C” Ind’/:’l(ad’) (26)

3 e AMEp)

(note that A[6] = A(¢4) by Lemma 4.24).

LEMMA 5.11. Let @e T (82, r, ug, A)NH (82, r, uy) and suppose that
o€ A(A). Then there is an open neighbourhood Q, < Q of u, such that for all
Se C™ Ind% (0 ,4) and pe Q, we have

Y B @WK =p U@ f)K),  keK

&€ 4(4)
In particular, p [‘“‘)( @, f) depends holomorphically on pe Q.

Proof. Let "< Q be such that for all pe ', e 4(4) and e = () we
have Re £ >0. Let 6" € 4(4). Then for pueQ’,

e @)Ky =Y s PP, f)k)(0)

ZeZs(p)n Y(p)

where Y(u)={v—Ilx|ve X*(u),/eN,} is the set of possible exponents
of @, f with real part greater than zero (cf. Definition 5.10 (1)). By
Theorem 4.7 the left-hand side and hence the right-hand side depends
holomorphically on p.

We first investigate Z;(u)n Y(u). This is easy for p=yu, since
Zs5pe)={45(tio)} = {A}. Let u# p, and suppose &e Y(u). Then there are
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d,€e4% and I, e N, such that & =4, () — /o If in addition ¢ e Z;(u) there
are 6,0 and /,e Ny such that &= A5, (u)— Lo and 45, (uo) — La= A5(uo).
Hence 4, (u) — I a=4;(u) — ;2. By Lemma 4.24 there is a neighbourhood
2, of u, such that for peQ, we have that A; (i) — /2 = A5,(¢) — 1,2 implies
that 75 =2;, on £2,. So assume ue2,n L', then A;(uo)=4;,(to). Since
e Z5(p) we had 4;(ug) =4 and since &e Y(u) we had A;(uo)<X4, so
Aslto)=Asluo)=4 and hence !, =1,=0. This proves ¢=/i,{u) for a
6" e A{4). So we have proven

Zp) n Y(p) = {A;(p)| 8" € 4(A)}.
By Lemma 4.24 this set equals the singleton {4,(u)}. Hence
8o @SNy =5 p 2D, S HKNO).

We now claim that 1,(u) is a leading exponent of @, ffor all ue 2,n Q’
whenever it is an exponent. For u+# pu, this follows from Lemma 4.24.
For u=pu, we have that 4= A;(u,) 1s maximal in Y(u,), so if 4;(x,) is an
exponent it is leading.

By Proposition 4.8 the fact that 4,(u) is leading implies that pﬁ“‘“"(diﬂf)
has constant polynomial part and takes values in W ;. The lemma now
follows from the fact A[J] is equal to A(4). §

LEMMA 5.12. For each @€ T ~(Q,r, uy, A} there is a @ € M(82, r, po)
such that

1. for every pe Q the transform (y— pu,)"* @, maps into Lfm Ind$ (o).
2. @+P'eT T(Q,r uy, A).

Proof. 1f @ is of negative type then @!):=[(u—po)”* ®,],_,, has
leading exponents in X ~{(u,). By Proposition 5.1.3 of [21] this implies that
Q)Li)’ maps into the square integrable functions. Since @, maps to
ker[(€ —u)(€ — uo)] we have that @) maps into ker[(¥ — po)*]. By
Lemma 5.13 below this implies that &’ maps into ker(é — u,). Therefore
for u# pg the transform @' := @, — (u— o)~ S’ maps into £/°,. The
family @'V is an element of (£, r, g, ) and has a pole of order strictly
smaller than m,. Note that since @ is of negative type, @' satisfies (2) of
Definition 5.10 with the same 3. If @V is of positive type we are finished,
if it is of negative type we can continue in this fashion. The process stops
because the order of the poles decreases. If we end up with a holomorphic
family it i1s a nonzero element of #(£, r, u,) because by definition the
elements in F(Q,r, po, ~) have at least one nonzero holomorphic coef-
ficient in their expansions at an exponent in X "(u,). The assignment
@ — @ + @' does not change the coefficients at exponents in X *(y,). |
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LeMMa 5.13. If fe L?Ind%(0) and (¥ —uy)>f=0 in the distribution
sense then (6 — uy) f=0.

Proof. Via the Haar measure dg we identify functions in C*(G)
with distributions. Let U,, n>=0, be a decreasing sequence of open
neighbourhoods of the identity element e such that for all open Uc G
containing e there is an » such that U,< U. Let ¢, be a sequence of
positive smooth functions with compact support in U, such that j @,=1
If T is a distribution then ¢, * T (convolution defined as usual) is a
sequence of smooth functions which converges to T in distribution sense.
Since & is a central element we have $(¢,* T)=¢@,* €T as smooth
functions for every distribution T. If fe L%(G, W) then ¢, * f is an element
of C™L*G, W), the space of C*“-vectors of the left regular representation
of G on L*}G, W).

We use this descent to C*L*(G, W) to prove the lemma. It is obvious
that for f, ge C*L*G, W)\{0} we have that {(¥f, g>,:=<f, ¥g)>,> and
that (¢ — uo) /=0 implies that y, is real.

We can assume that L*(G, W) ker(% — u,) is nontrivial, so there is a
ge L*(G, W)\{0} such that (¢ —p,)g=0. For n big enough ¢,*g is a
nonzero element in C *L*(G, W) nker(% — u,) and hence py, is real.

Let fe L*(G, W) be such that (% — u,)* f=0. Define f, = ¢, * f. Then
(€ —uo)f,=0, f,e C*L¥G, W) and the following computation is valid:
(€ — o) £, 17 = (B =T )€ — o) fus fu) = (€ — pto)* [ f1) = 0. Hence
(€ —uy)f,=0. Now (€ —u,)f, converges to (€ — o) f in the sense of
distributions, hence (4 —uy) f=0. |

We now start with the proof of the Main Theorem.
Let

LT (2, r, Uy, )= T (L, r, uy, A)

be defined as the identity on 7 *(Q2, r, yy, 4) and by S [P]=P + @’ for
DT (2, r, 1y, A), where @ is the map of Lemma 5.12. Since
(1 — po)™® @, maps into L’ Ind§(a) for all pe 2 the singular exponents of
@' at u are elements of X (y,). Hence for u#u, the coeflicients of

(#[®]), at exponents in X *(u) are the same as the coefficients of @,,.

THEOREM 5.14. There are a neighbourhood Q of p, and a constant re R
such that for all Ae X+ (uy) there is a W e H(Q, r, py) AT (2, r, g, A) with
the following properties. For all peQ, e 4%, and fe C™ Ind¥ (0,) we have

1. As(p) is a leading exponent of ¥, f,
2. the coefficient at A (u) of ¥, f is equal to f.
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Proof. Let 2, be an open neighbourhood of i, on which the functions
ur— As(u) are holomorphic (which exists by Lemma 4.5). Let 2, be a
neighbourhood of u, such that all p—c;(u) =}, de4d, are meromorphic
and regular on £2,\{u,}. Let 5 be a neighbourhood of g, such that for all
pe\{uo} and all 3, & with 6'¢ A[d] the exponents As(¢) and A5{y)
are incomparable (which exists by Lemma 4.24). Let £, be an open
neighbourhood of p, such that for all ue Q,, deo, and & e Z4(u) we have
Reé>0. Let =02, n2,n2;nQ2,. We may take Q to be bounded. Let
r(4, 6)€ R be the growth parameter, defined as in [2, Example 2.2], such
that 2% maps into CJ; (G, W). Define r=sup,., max,., r(s(p), 8),
which is finite because Ar>r(4,38) is a locally bounded function. For
i€ X (uo) we abbreviate 7, =7 (Q, r, g, 4).

We shall construct the ¥* by induction on the cardinality of X*(u,).

Induction start. Let l,e X*(u,) be such that |X*(u,)|=1. Fix
de ™, then As(uy) =4, is the only element in X™(u,). We know by (6)
that the coefficient of ‘Bif, for fe C™ Ind% (a;), at 15(u) is equal to c,s(u) /-
So the family (PBocs(u) '), o in A(Q, 7, uy) satisfies Condition 2 in
Definition 5.10. By Proposition 4.10 Condition 1 is satisfied for i=4i,.
Hemce (Plocs() ™' ),cq is an element of 7.

Consider .Sﬁ[yr——»‘Biocé(u)“‘]. Since this family is of positive type its
leading singular exponent at u, is an element of X*(u,) = {A,= As(1o)},
hence is equal to A,. Let m be the order of the pole of
# L Bheeq(n) "' 1. The coefficient of (u— o)™ L ut—> Boocs(n) ' 1(f)
at Ag(p) is equal to (u— )" f, since the map & does not affect the
coefficients at exponents with real part greater than zero. Since 2;(y,) is a
leading singular exponent of [y~ ‘Biocé(p) ~17 at p, its coefficient must
be nonzero at p = p,, hence m=0 and V[ul——»‘Bf‘océ(y)“] € H (2, r, ug).
Hence

o= Z V[uH‘Bioca(u)"] oM

e A%
satisfies all the requirements of the theorem.

Induction step. Let n>1 and assume we have constructed ¥* for all
Ae X (uo) for which |X*(uy)| <n. Let i, be such that |X*(u,)| =n. For
any d e 4(4,) we construct ¥ restricted to 2 x C ™ Ind%, (o). The idea is
to consider the family

pi—o Procy(pn) ~toms, (27)

which is an element of .7;,. By a double recursion on the order of the pole
and the leading singular exponent at y, of {27) we construct a holomorphic
family from it.
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We make this more precise. To each @€ ! we associate the pair
(Mg, Ea) €N X X™(ug). On Ngx X*(u,) we have the lexicographical
ordening induced by the ordenings on Ny and X*(u,). For each é € 4(4,)
we construct a finite sequence ¥(m,, 4,) in T 5, 1<k<s Here
{(my, A )| 1 <k <s} is a strictly decreasing sequence in Ny x X*(u,) with
(m,, /L,.)= (0, 2,), and (m,, 4,) is the pair associated to V[yH‘Bzo
es(u) ']-ms. We start with 'P”(ml,,tl)—ff[uH‘BZoc () 'Joms. For
pne 2 and k, 1 <k <s, let Wo(m,, 4,) denote the map ¥o(my, i, )(u, -). For
every k, 1 £k <s, the famlly ¥o(m,, 4,) satisfies the following conditions:

(A) the pair (m,, 4,) is associated to ¥(m,, 1,),

(B) forall u# pyand fe C* Ind},(0,) the coefficient of ¥ (m,, A, )(f)
at As(p) is equal to f,

(C) the restriction of ¥*(m,, i) to C™ Ind% (s, ) is zero for every
o' #0.
Clearly, ¥%(m,, 4,) satisfies these conditions for k= 1.

In this paragraph we see that the families ¥°(0, i), 6 € 4(4,), enable us
to make the desired induction step. Since it has a pole of zero order the
family ¥°(0, },) is an element of # (£, r, u,). Condition (B) above says
that for all u# uy, d€ 4(4,), and fe C™ Ind¥ (a5) we have

PO, Ao)( ) = 1.

Since the ¥°(0, 4,) are holomorphic Lemma 5.11 applies and the left-hand
side of the above equation is holomorphic in u. Hence the equation is also
valid for u=p,. We see that the coefficient of ‘I’f,O(O A ) at As(ug) is
equal to f for all fe C* Indf (o). In particular, 4(y,) is an exponent of
lI’fm(O Ao) /. Since ¥°(0, 4y) € .7, this implies that A4(uo) =4, is a leading

exponent. Hence
Y 0, Ag)

de dtiy)

satisfies all the requirements of the theorem with the M-representations
restricted to the set A(4;). Now let A’ be the maximal element in
X% o)\ {4y}, Since lXA([.LON <|X*(u,)] we have by the induction
hypothesis a map ¥* €7, n# satisfying all the requirements of the
theorem. Since A,(p) ¢ X* (1) — Ny, Condition 1 of Definition 5.10 implies
that for all ue Q the exponent A {u), o € 4(4,), is not a singular exponent
of ¥* at u. Hence
Yo=Y N0, A+ ¥

S € 4(y)

satisfies all the requirements of the theorem.
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We now describe the recursion process. Fix d € 4(4y). Then Az(p) = 4¢.
Let (my, ~,) be a pair in the sequence, associated to the already constructed
Y(m,, ~4,). We know 4,=<1, We distinguish the cases i,=4, and
Ay < Ay, respectively.

If i, =4, then Condition A says that i,=A4,(y,) is a leading exponent
of [(u—po)™ Wilmy, 4)]u=(f) for an fe C* Ind} (5, ,,). Condition C
implies that this can only happen for an fe C* Ind% (s,). Condition B
implies that for all u# u, and fe C* Ind%(o;) we have

P~ o)™ W2, 20T = (1~ o)™ £

Since  [(u— pto)™ ¥omi, 2)luce is an element of H#(2,r, p,), by
Lemma 5.11 we know that the left-hand side of this equation depends
holomorphically on p. So m,>0 would imply that p*"([(u— o)™
Yo(my, i), ())=0 for all fe C* Ind%(c,) contradicting the fact
that A,(p,) is a leading exponent. Hence m, =0, ¥(m,, 1) = ¥¥(0, 1),
and the recursion stops.

Now assume that A, < 4o. Then | X*(uo)] < |X*(uy)| = 1 so by the induc-
tion hypothesis we have a ¥* satisfying all the assertions of the theorem.
Let T, ;.(f) be the coefficient of [(x— py)™ ‘I/f‘(mk, ) e (f) at 4.
Then T,,, ,,, is the map T, introduced above (26}, with &= Wi (my, A,).
This family @ belongs to 7} and {, = 4,. By the remarks above (26) we
therefore have that T, ;, 1s a K-equivariant, continuous, and linear
operator from C” Ind%, (o) to D44, C* Indf(o,).

We now consider the family ¥’ e .#(82, r, uy) defined by

V=P, ) f~ (= 10) ™ P T s )] (28)

In view of the induction hypothesis the singular exponents with positive
real part of the meromorphic family ~((u—yo)‘”"‘ ‘I’f;‘[T(,,,b il ), are
all of the form Az (u)— lx with ¢’ € 4. Hence they are different from 2,(y),
and we see that the coefficient of ¥/ f at i;(u) equals that of lI’ﬁ(mk, Ae) S,
hence equals f for fe C* Ind%(o,). It now easily follows that ¥’ € 7, .

Let 6'e4(4,). Then by the induction hypothesis, the coefficient of
Pl ms o T sy S 1At As(pig) = Ay equals 150 T, ,,,f- Above we saw that

s atior To Time. i /= Timy. 10.f» hence the coefficient of Wf}ﬁ[T(mk.,:k)f] at
iy equals T, ;. f. for all fe C™ Ind}(0,,). From this and the definition
of T, it follows that 4, does not occur as an exponent of
[(—po)™ ¥, f1,-,,- We now see that either the order of the pole of ¥’
is strictly smaller than m1,, or it equals m,, but then the singular exponents
at u, are strictly smaller than 4, or have real part less than zero. It follows
from this that the pair associated to [ ¥'] is strictly smaller than (m,, 4,)

and therefore so is the pair (m,, ,, 4, , ;) associated to F[¥ ;.
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We claim that
5W(m/wr A )= L[V ]

satisfies all the requirements of the recursion. Indeed, (A) and (C) are
straightforward consequences of the definitions. For (B) we compute for
fe C” Ind4(a;), u# g, and ke K,

PPN T Yo UK =p (LT ], k)
=p O k)
=ftk),

where we use that A;(u)e X+ (p) for the second equality and our previous
remark that the coefficient at A;(u) of ¥’ equals that of &”ﬁ(mk,ik) for
the last equality. So (B) is satisfied. This completes the description of the
recursion process.

We are left to prove that the sequence terminates at (0, 4,). As long as
m, >0 we can continue with the recursion process, so eventually we arrive
at a pair (0, '), with 2" < 4,. The family ¥°(0, 1') satisfies requirement (B).
Since it has a pole of order zero it belongs to Z, N #(L,r, y,), and
applying Lemma 5.11, we see that (B) is satisfied for u= u, as well. Hence
Js{io) =2 is an exponent for ¥5(0, A'). But A is leading, so 1’ =/,

This ends the proof of the induction step and the theorem is proved. ||

THEOREM 5.15. There are an open neighbourhood Q of u,, reR, and
Ve H(Q,r, u,) such that for all peQ, sea, and fe C* Ind% (c,) we have

(1} Aslu) is a leading exponent of ¥, f,
(2) the coefficient at As(u) of W, [ is equal to f.

Proof. Let 4, .., 4, be the maximal elements in X ¥ {(y,), then X+ (uy) =
LI:_, X*(uo) is the decomposition of X *(y,) into mutually incomparable,

totally ordered subsets. Let =; denote the projection from W onto
@6&4’1 W(é) Then

Y= Z Vo,
i=1
where the %% are constructed as in Theorem 5.14, satisfies all the
requirements of the theorem. ||

DEerFINITION 5.16. Let Q be an open subset of C. By #(Q) we denote
the set of continuous maps T from Q x C™ Ind%,(5,) to C™ Ind (o)
satisfying the following properties for some ge Ny
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(1) for all peQ the map T,, defined by T, f= T(y, f), is continuous,
linear, and K-equivariant from C > Ind%, (s ,,,) to itself,

(2) for all e the map T, extends to a continuous linear map from
C?Ind%(04) to CInd (o ),

(3) the map u+ T, is holomorphic from € to the Banach space of
continuous linear maps from C?Ind}, (5 ,) to CInd% (o).

Remark 5.17. The K-equivariance implies that the restriction 7, to
C?** Ind (0, of each T, maps into C°Ind}(o,,,) for each se N,. It is
easy to see that 7, is continuous for each s. Let B,(C", *?} denote the
Banach space of K-invariant, continuous, and linear operators from
C" Ind%,(0,) to C?Ind}(c,,). The restriction operator T,+— T, from
B (CY C) to B (C***, C) is continuous and hence we conclude that for
each se N, the map u~— T, is holomorphic from  to the Banach space

of continuous linear maps from C¢**Ind%(c,,) to C* Ind%,(a,,).

It is clear from the definition of J#'(£2) and the above remark that for every
S, Te X'(2) the product S 7, defined by (S 7),= S, T, is an element of
H(R2). Likewise we have that for each Te #(22) and & e #(Q2, r, u,) the
product & - T, defined by (@ - T), =P, T,, is an element of #(£, r, p,).

ExAMPLE 5.18. For ®es#(Q,r, u,) consider the map (uf)—
B, .[P(u )] We claim it is an element of #(Q). As in [2, p. 129], we
can prove that there is a ge N, such that

(1, Hy Y pi(-)(H) s (29)
e

is continuous from £ x U to the Banach space of continuous linear maps
from C¢(G, W) to C,(G, W). Here U is open in a¢ and we view pi as an
operator on &% . This proves that (u, )+ B, ,[@.(f)] is continuous
on xC*Ind§(0,,) and that there is a ¢’ such that f, , @, is a
continuous linear transform from C? Indf,(o,,) to ClInd} (o ,). Since
(29) is holomorphic in the first variable and @ is holomorphic we see that
u— B, ..o P, is holomorphic on Q. Hence (B, ,,°P,),c0€ A (2).

Define the following order on the set {é(dea}:
00" = Aslpto) X As(po)
(since yq is fixed we ignore the dependence on y, in the notation).
LemMMA 5.19.  The ¥, constructed in Theorem 5.15 are of the following form:

¥, =P, T, +P,.
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Here (D), co€ (2, r, o), the transforms @, map into L’ Ind$ () for all

Ho

p#py and T,: C™ Ind§ (o ,) — C¥ Ind%,(a, ) satisfies

(1) there is an me Ny such that ([p—pe1™ T,),c0€ X (L),

(2) for all Seo and p+# p, the transform T, maps C* Ind}y(0;) 1o
Daxs CF Indfl(o-(i’)°

Proof. This follows from the proof of Theorem 5.14 where the ¥
i€ X *{(no), were constructed. Following the induction and the recursion
we see that each ¥ (m,, 4,) is of the above form. The terms which yield @,
arise from the definition of & (see Lemma 5.12). The transforms 7, are
built from the maps f T, ,,(f) occurring in (28). Since ¥ is the sum
of some of the ¥* the lemma follows. |

Lemma 5.20.  Define U, =B, =¥, Then (U,),cn€ X (£2) and there is
an N e N such that for all pe Q we have (U, — D" =0.

Proof. The first statement has been proved in Example 5.18.
Since §, ,, is zero on Lio Ind{(o) we have B, ., -®,=0. Hence for all
deo we have

s U}A PR =Ts° /))[l, Ho N Sl;“ ° Tu ° T

= ZJ‘OC Z \B‘:‘ O(T“an(j)’

3 =S

where we use Property 2 of Lemma 5.19. So we need to know the
coefficients of 35 <5 B = (T,,» 15)(f), fe C™ Ind},(0,), at the exponents in
Z5(u) (defined in (10)). In view of Proposition 4.10 and Lemma 4.24 the
intersection of Zs(u) with the set of exponents of 3 ; ., ‘Bi' is equal to
{2s(u)}. By Theorem 5.15 the corresponding coefficient of ¥, -n;(f) is
ns(f). Hence nso U, o my=ms.

If 4, &' €6 are such that either A,(y,) and 4,(u,) are incomparable or
Aspto) < As(uy) we have that the intersection of Z () with the exponents
of s <5 VY is empty, and hence 7, U, -1, =0.

This proves that U,—1/ is an operator which maps C” Ind},(0;) to
@5 <5 C Ind% (). Since the partial order on {d|dec} only depends
on the order on X ™ (u,) there is a fixed N, namely max; . x. ,, [ X* (1), for
which (U, —)"=0for all pe Q. |

Proof of the Main Theorem. By the above lemma we have
U, '=X"%3" (—=1)(U,— D" By the discussion following Remark 5.17 this

implies that U '= (U, '), is an element of #'(2). Now T, :=T,-U, "'
satisfies 8, 0B, 2T =P o BT, U =, o ¥,2U, ' =1d for
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all u. Hence the family (B, ,,°B.=S5, w)uce has a meromorphic
inverse (T,),co. Because ¥ and U~ ' are holomorphic we see that
YU =BT, U ' +D,-U, '=P,-S, ) +P,oU," is an element

of #(Q, r, py). Redefine ¥, :=¥,-U, " and @, :=®,- U, ' We have seen
that

(¥, =P,-S, .+

i, o u)ueﬂ

is an element of (€, r, ug).
Consider the identities

(E—u) ¥,=(o— 1) P,
((g _,u()) lllu = (Au —p'()) ﬂnyo S;(‘ :l(]’

both for u # p,, which follow from the facts that 8, maps into ker(% — u)
and @' into ker(% —pu,). The left-hand sides of both equations are
holomorphic, hence the right-hand sides must also be. Both left-hand sides
tend to (% — o) ¥, as u— o, hence the right-hand sides are equal at
K= Yot

- [(# - ﬂO) ®;A];l:ﬂu = [(“ - “0) ﬁB;l e S;: ;140]11 =p°

So the residue of @) at p=p, is equal to —[(x—po) B,oS, 1m0 =
— ¢, which proves that

#o?
#’_’%;AJS,ZLQ—‘ (,u“ﬂoy ! ¢;An

is an element of (L, r, 1)
This proves the Main Theorem.

6. APPLICATIONS

In this section we prove some applications of the Main Theorem.
Throughout this section we fix pge C with 0¢ X 4(4).

THEOREM 6.1. The space cf‘;‘lg/Lf‘O Ind$ (o) has the same composition
factors as

@ Cc” Indg((’a@ —As(to) @ 1)

dea

Proof. For Ae X*(u,) let n; be the sum of the projections n,, de4”.
Define V(4)=1Im ¥, -n,. Let V(1) be the image of V(1) under the canoni-

cal projection /2 — &4/L> Ind{ (o). The spaces V(%) consist of functions
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in &% with leading exponents in X *(1y) modulo square integrable

eigenfunctions. This is clear from the construction of ¥* in the proof of

Theorem 5.14. From this description the G-invariance of the spaces V(1)

follows. Moreover, if 4 and A’ are not comparable then V(A)n V(i) =0.
Let 4,, .., 4, be the maximal elements in X *(u,). Then

& /L2 Ind§ (o) = @ V(%) (30)

This follows from Proposition 5.6, Theorem 5.15, and the fact that the 4,
are not comparable. For each V(1,) we describe the structure of its
composition series.

Recall that for Ae X *(u,) the set X*(yu,) is totally ordered. In this proof
for Ae X *(ug) let ‘A be the maximal element in X*(u,)\{4}. Obviously we
have V('A) < V(4).

For every function g in V(i) the exponent 4 is a leading exponent.
By Proposition 4.8 this implies that pfm(g) is an element of
Yocan C7 IndG(c;® —A® 1), in particular it is polynomially constant.
By Theorem 4.1 the map pﬁU:ngﬁn(g) i1s G-equivariant into C*(G, W).
So pliV(A) > Xscu C* IndG(6,® —A®1) is G-equivariant. Since
square integrable eigenfunctions do not have exponents with real part
greater than zero pf;o factorizes over the square integrable functions in V(4).
Hence we have a G-equivariant map

VR > Y C*1IndS(o,® —i®1),

o A4}

induced by p7, .

By Theorem 5.14 we know that for all fe C* Ind%(0;), d€ A(4), the
coefficient of '{’* ,/ at 4 restricted to K is equal to f Since 4 is a leading
exponent this comp]etely determines the coefficient: p“0 t1’20( =21
Let 'P’ be the map ‘P’ composed with the canonical projection
é”:jg-»é”ﬁg/Lz Indz(a) Then obviously we have %, < P/, (f) =%, f, which
proves that puo 18 surjective.

If [¢] ekerpﬂo then g has leading exponents strictly smaller than 4, so
[£] is an element of V('))

We have proved that p, induces a G-isomorphism

VOV~ @ C*IndSo,® —A®1).

dE€ A(A)

This together with (30) proves the theorem. |J

Remark 6.2. The exact sequence in Proposition 5.6 together with
Theorem 6.1 gives a partial result on the composition factors of
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C . Ind%(c): we do not describe the orthogonal complement of Im &,
in L2 Ind§ (o). If there are no square integrable functions in C; , Ind§ (o)
we see that the composition factors of C3; , Ind% (o) are of the same kind
as for generic u, (cf. Theorem 4.11).

Let 7, be the G-action on C* Ind%,(,,) defined by
rxX)=PB, oLl ¥,

From. the properties of f, ,, and ¥, the following easily follows. For every
xeG and pe 2 the map m,(x) from C* Ind}(c,,) to itself is linear and
continuous, and there is a g€ N, such that for all se N, the map =,(x)
extends to a map from C'**Indf(a,) to C*Ind%(a,,) Moreover,
for all xeG and se N, the map pr> n,(x) is holomorphic from £ to
the Banach space of continuous linear operators from C***Ind} (g ,) to
C*Ind§,(0,y). Furthermore, by the K-equivariance of ¥, we have
n(k)=L, for all ke K.
Let o, be the P-representation on W defined by

o (man)=0(m)s Yy a W,

deo

for mane MAN. Denote the left regular representation on C* Ind$(s,)
by L, Let (L, C*Ind§(s,,) be the compact picture of
(L,C™ Indg(au)); that is, L, x(x)f(k)=(Z,f)(x"'k). The Poisson
transform 2, is a G-equivariant map from C* Ind$(s,) to C, Ind$ (o).
Hence
ny(x)=ﬂu.;m°l‘(x)o [%og‘lOS;LO—- (“—“0)*1 (puo]
=ﬁ#‘#00%oLﬂ(x)DY”OS;LO

=Buso>Fuo Lo L (x)° S, 5
=S, 0Ly x(x)o 5!

YO

Soif S, ,, is invertible, 7, is equivalent to L, .
Define for k € N the vector space

VE=WR [%(n)n*Un)]* @ C*(4).
Define an M A-representation t¥ on ™ by
h(ma)=a " Po(m)®Ad¥ (ma)® L,.

Here Ad Y is the contragredient of Ad and L is the left regular representa-
tion of 4 on C*(A). For Xen let A(X): #(n)—> %(n) denote the left

S80:119:2-10
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multiplication with X. Let 1Y be the contragredient and define 7%=
1®4Y ®1, a representation of n on ¥7*. The representation 7% integrates
to a representation t4 of N.

Let z*: P — End(7*) be defined by

t*(man) = t5(ma) t5(n).

One easily checks that t* is a P-representation.

Let D{A4) denote the space of translation invariant differential operators
on A. For De D(4)\{0} let "% denote the finite dimensional subspace of
#7* defined by ¥4 ={ve ¥ *|(1®1®D)v=0}. Since D commutes with
L, for all ae A the representation t* restricts to a P-representation t*).
Define {ev,, 0> = (1l + n*#(n)) for ¢ € (¥(n)/mM*%(n))* and <{ev,, h> =
h(e) for he C™(A). Define

pr=1Q®ev,®ev,: ¥ - W,

an M-equivariant surjective map. For DeD(A4) let pr, denote the
restriction of pr to #7},. Let #: C” Ind§(r*) — C> Ind4,(c},,) denote the
restriction to K.

THEOREM 6.3. Let Q< C be as in the Main Theorem.
There are k, me N, and for each pe Q a differential operator D, € D(A)
of degree m (independent of u) such that

(i) the D, depend holomorphically on y,

(il for each weQ there is an embedding I¢(u) which maps
(n,, C " Ind}(6,4)) G-equivariantly into C} Ind(,’,'(t’;)u) and is unique with
respect to the property

Ig(p) Ig () = 1d,
where I§(u)=prp, > R.
Before proving the theorem we study certain G-representations on
C~ Ind% (), where (8, V;) is a finite dimensional M-representation. Let 7

be a G-representation on C * Ind¥,(5) whose restriction to X is equal to the
left regular representation of K on C > Ind%,(3).

DEerFINITION 6.4.  The representation (C™ Ind%,(5), n) is called uniformly
AN-finite if there are k, deNgy and v, .. v,ca such that for all
fe C™ Ind¥,(5)

(1) [n(u)f](e)=0 for all uen*
(2) [m(d17_, (H—v,(H))?)f(e)=0for all Hea.



VECTOR VALUED POISSON TRANSFORMS 397

Define
V' =V, [Um)n*U(n)]*® C*(A4)

and let v’ be the P-representation on ¥’ defined analogous to (z*, ¥'%)
(replace o,,, by é). Let (n, C™ Ind%,(8)) be uniformly AN-finite with
parameters k, de N, and v;ea¥. Define D=T]"_, (Hy—v,(H,))* for a
fixed nonzero Hy <€ a. With the identification B(A4) ~ %(a) we view D as an
element of D(A4). Let #7/, be the finite dimensional subspace of "’ defined
by ¥ p={re¥'|(1®1®D)r=0}. The representation 7’ restricts to a

representation ty, on ¥ . Define prpo=1®ev,®ev,: ¥ ;> V;.

LEMMA 6.5. There is a unigue G-equivariant embedding I, from
(C 7 Ind%,(8), m) to C™ Ind$(¥7)) such that pry-R-1,=1Id.

Proof. For fe C™ Ind%(8) define 1,,/: G~ ¥ by

In flx)u+n*u(n), a) = [nla) ' a(u” ) a(x) ' f1e)

for xe G, ac 4, and ue(n). Here u— u" is the anti-automorphism of
#(g) induced by X+ — X on g. By Definition 6.4(1) the map /,, is well
defined. By Definition 6.4(2) the function [, f takes values in ¥",. Clearly
I, 1s G-equivariant. One easily checks that

Ipflxma)=a *ty(ma) ' I, f(x), mae MA,
Ipflx; Xy= =AY (X) I, f(x), Xen,

where we use the notation f(x;u)=R,f(x). This implies that [, fe
C” IndS(t)). So I, is a G-equivariant operator from (C ™ Ind%,(8), n) to
C ™7 IndS(7)).

One computes [prp->R-I,]fk) = I, (k)1 +n (), e) = {n(e} '
n(1Yyw(k) "' fe)=f(k). So prpsRol,=1d.

On the other hand, suppose I is a G-equivariant operator from
(C* Ind¥(d), =) to C™Ind%(r)) such that prp-#-I=1d. For fe
C * Ind¥%,(8), ue U (n), and ae A we compute

Ifteu+n*um), a)y=a t'(a)" ' v'(u”) Ifle)(1 + n*¥(n), e)
= If(u; a)(1 + WU (n), e)
=L, 'L, If(e)(1 + n*%(n), ¢)
=1I{n(a)" ' n(u*) fI(e)(1 +n*U(n), e)
=prpeRellnla) ™ a(u™)f1e)
=[n(a) " n(u) [ e)

By the G-equivariance of 7 this implies /=1,. So 7, is unique. {
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We now start with the proof of Theorem 6.3. We prove that
(C™ Indj(6,5), 7,) is uniformly AN-finite for each peQ, with
parameters k,eN, and v, (u)eaf. Lemma 6.5 then implies (ii) of the
theorem. We prove that there is a k such that k, <k for all pe Q and that
the v;(u), and therefore the corresponding differential operators in D(A),
depend holomorphically on pu, which proves the remaining part of the
theorem.

Let fe C* Ind}(0,)) and x€G. Then [n,(x)fWe)=[B, ., L. ¥. /Y e)
Hence if we want to check the requirements of Definition 6.4 for 7, we
have to check that for an arbitrary ge &' we have

B L) g)e)=0

for uen® and an analogous formula for the A-behaviour. By the definition
of B, ,, we have to study the coefficients of left translated eigenfunctions at
exponents in

2= Eslw).

deo
Let ge & and Xeg,, the root space corresponding to a. Then

g(Xsa)=a “gla; X)
= —a *e(X+0X)gla)—a ¥g(0X;a)

~ =2 [a(X +0X) p;**(g)e)log a)
<
+p5 7(g)e; 0X)loga)Ja* v (a— o). (31)

Now there is a ke Ny such that for all ¢ and for all (e Z(u) we have
&+ ka¢ E(n). From the expansion (31) for L. g(a) it follows that
ﬁ”,m[n"g](e)=0 for all geé&’r. So (C > Ind%(6,y), 7,) is uniformly
N-finite with a fixed & for all p.

Concerning the 4-action we find that

glaja)~} pifg)e)(ogla;al)aal ™"  (a— ).
¢

So

ﬂu‘uo( H [H—(f-P)(H)]df>(€)=O

e Z(p)

So the finite set of a-weights in Definition 6.4 is equal to {£—p | Ee E(u)}.
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For generic u we know that the coefficients in the asymptotic expansions
of eigenfunctions have constant polynomial part, so d= 1. We also know
that the elements of Z(y) depend holomorphically on n.

The fact that the injection /§(x) is continuous from C* Ind}(o,,,) to
C ; Ind%(%, ) follows easily from the definition of n,,

ThlS completes the proof of Theorem 6.3,

Theorem 6.3 enables us to extend the Main Theorem to eigenfunctions
which satisfy less restrictive growth conditions and have distribution valued
boundary values. Let

CHG, W)

be the space of functions f* G — W for which there is an re R such that
I fil, <o (so we do not impose a restriction on the derivatives of /). Let
Ho € € be such that 0¢ X g(y,) and such that there are no square integrable
eigenfunctions with eigenvalue y,. Define

Crind$(o) = {fe C” Ind%(a) n CX(G, W)[(% — o) f=0].

By C ” Ind%,(c,,) we denote the space of generalized functions from K to
W with the obvious transformation property under M.

THEOREM 6.6. Letr p, be as above. The transform ¥, extends to an
isomorphism from C~* Ind4 (o) to C,Ind$ (o).

For the proof we refer the reader to [18]. The proof uses the same
methods as the proof of Theorem 12.2 in [ 2]. Of importance is Theorem 6.3
which gives us G-equivariant operators for which the convolution trick in
(2] works. The thesis [ 18] also contains a dual analogue of Theorem 6.3:
there is a finite dimensional representation t, of P for which there is a sur-
jective G-equivariant map from C* Ind%(7,) onto (C* Ind} (g ) 7,).
Composition with ¥, yields a Poisson transform on C* Ind%(z},).
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