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1 Introduction

This text grew out of an attempt to understand a remark by Harish-
Chandra in the introduction of [12]. In that paper and its sequel he
determined the Plancherel decomposition for Riemannian symmetric
spaces of the non-compact type. The associated Plancherel measure
turned out to be related to the asymptotic behavior of the so-called
zonal spherical functions, which are solutions to a system of invariant
differential eigenequations. Harish-Chandra observed: ‘this is reminis-
cent of a result of Weyl on ordinary differential equations’, with reference
to Hermann Weyl’s 1910 paper, [29], on singular Sturm–Liouville oper-
ators and the associated expansions in eigenfunctions.

For Riemannian symmetric spaces of rank one the mentioned system
of equations reduces to a single equation of the singular Sturm–Liouville
type. Weyl’s result indeed relates asymptotic behavior of eigenfunctions
to the continuous spectral measure but his result is formulated in a
setting that does not directly apply.

In [23], Kodaira combined Weyl’s theory with the abstract Hilbert
space theory that had been developed in the 1930’s. This resulted in
an efficient derivation of a formula for the spectral measure, previously
obtained by Titchmarsh. In the same paper Kodaira discussed a class of
examples that turns out to be general enough to cover all Riemannian
symmetric spaces of rank 1.

It is the purpose of this text to explain the above, and to describe
later developments in harmonic analysis on groups and symmetric spaces
where Weyl’s principle has played an important role.
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2 Sturm–Liouville operators

A Sturm–Liouville operator is a second order ordinary differential oper-
ator of the form

L = − d

dt
p
d

dt
+ q, (2.1)

defined on an open interval ] a, b [ , where −∞ ≤ a < b ≤ +∞. Here p is
assumed to be a C1-function on ] a, b [ with strictly positive real values;
q is assumed to be a real valued continuous function on ] a, b [ .

The operator L is said to be regular at the boundary point a if a is
finite, p extends to a C1-function [ a, b [ → ] 0,∞ [ and q extends to a
continuous function on [a, b [ . Regularity at the second boundary point
b is defined similarly. The operator L is said to be regular if it is regular
at both boundary points. In the singular case, no conditions are imposed
on the behavior of the functions p and q towards the boundary points
apart from those already mentioned.

The operator L is formally symmetric in the sense that

〈Lf , g〉[a,b] = 〈f , Lg〉[a,b]

for all compactly supported C2-functions f and g on ] a, b [ . Here we
have denoted the standard L2-inner product on [a, b] by

〈f , g〉[a,b] =
∫ b

a

f(t) g(t) dt.

For arbitrary C2-functions f and g on ] a, b [ it follows by partial inte-
gration that

〈Lf , g〉[x,y] − 〈f , Lg〉[x,y] = [f, g]y − [f, g]x, (2.2)

for all a < x ≤ y < b. Here the sesquilinear form [ · , · ]t on C1( ] a, b [ )
(for a < t < b) is defined by

[f, g]t := p(t) [f(t) g′(t)− f ′(t) g(t)]. (2.3)

To better understand the nature of this form, let 〈 · , · 〉 denote the stan-
dard Hermitian inner product on C2, and define the (anti-symmetric)
sesquilinear form [ · , · ] on C2 by

[v, w] := 〈Jv , w〉, J =
(

0 −1
1 0

)
. (2.4)

Define the evaluation map εt : C1( ] a, b [ ) → C2 by

εt(f) := ( f(t) , p(t)f ′(t) ). (2.5)
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Then the form (2.3) is given by [f, g]t = [ εt(f) , εt(g) ]. We now observe
that for ξ a non-zero vector in R2,

〈εt(f) , ξ〉 = 0 ⇐⇒ εt(f) ∈ C · Jξ. (2.6)

Hence, if f, g are functions in C1( ] a, b [ ), then by anti-symmetry of the
form [ · , · ] we see that

〈εt(f) , ξ〉 = 〈εt(g) , ξ〉 = 0 =⇒ [f, g]t = 0. (2.7)

For a complex number λ ∈ C we denote by Eλ the space of complex
valued C2-functions f on ] a, b [, satisfying the eigenequation Lf = λf.

This eigenequation is equivalent to a system of two linear first order
equations for the function ε(f) : t 7→ εt(f). It follows that for every
a < c < b and every v ∈ C2 there is a unique function s(λ, · )v =
sc(λ, · )v ∈ C2( ] a, b [ ) such that

s(λ, · )v ∈ Eλ, and εc(s(λ, · )v) = v. (2.8)

By uniqueness, s(λ)v depends linearly on v, and by holomorphic param-
eter dependence of the system, the map λ 7→ s(λ)v is entire holomorphic
from C to C2( ] a, b [ ).

3 The case of a regular operator

After these preliminaries, we recall the theory of eigenfunction expan-
sions for a regular Sturm–Liouville operator L on [a, b]. Let ξa, ξb be
two non-zero vectors in R2. We consider the linear space C2

ξ ([a, b]) of
C2-functions f : [a, b] → C satisfying the homogeneous boundary condi-
tions

〈εa(f) , ξa〉 = 0, 〈εb(f) , ξb〉 = 0. (3.1)

For all functions f and g in this space, and for t = a, b, we now have the
conclusion of (2.7). In view of (2.2), this implies that L is symmetric on
the domain C2

ξ ([a, b]), i.e.,

〈Lf , g〉[a,b] = 〈f , Lg〉[a,b],

for all f, g ∈ C2
ξ ([a, b]). In this setting we have the following result on

eigenfunction expansions. Let σ(L, ξ) be the set of λ ∈ C for which the
intersection Eλ,ξ := Eλ ∩ C2

ξ ([a, b]) is non-trivial.
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Theorem 3.1 The set σ(L, ξ) is a discrete subset of R without accu-
mulation points. For each λ ∈ σ(L, ξ) the space Eλ,ξ is one dimensional.
Finally,

L2([a, b]) = ⊕̂λ∈σ(L,ξ) Eλ,ξ (orthogonal direct sum). (3.2)

We will sketch the proof of this result; this allows us to describe what
was known about the spectral decomposition associated with a Sturm–
Liouville operator when Weyl entered the scene.

For λ ∈ C, let ϕλ be the function in Eλ determined by εa(ϕλ) = Jξa.

Then 〈εa(ϕλ) , ξa〉 = 0, hence [ϕλ, ϕλ]a = 0. The function λ 7→ ϕλ is
entire holomorphic with values in C2([a, b]). We observe that Eλ,ξ 6= 0 if
and only if ϕλ belongs to Eλ,ξ, in which case Eξ,λ = Cϕλ.We thus see that
the condition λ ∈ σ(L, ξ) is equivalent to the condition 〈εb(ϕλ) , ξb〉 = 0.

The function χ : λ 7→ 〈εb(ϕλ) , ξb〉 is holomorphic with values in C,
and from (2.2) we deduce that

(λ− λ) 〈ϕλ , ϕλ〉[a,b] = [ϕλ, ϕλ]b.

In view of (2.7) we now see that the function χ does not vanish for
Imλ 6= 0. Its set of zeros, which equals σ(L, ξ), is therefore a discrete
subset of R without accumulation points. Replacing L by a translate
L + µ with −µ ∈ R \ σ(L, ξ) if necessary, we see that without loss of
generality we may assume that 0 /∈ σ(L, ξ). This implies that L is injec-
tive on C2

ξ ([a, b]). Let g ∈ C([a, b]) and consider the equation Lf = g.

Writing this equation as a system of first order equations in terms of
ε(f), using a fundamental system for the associated homogeneous equa-
tion, and applying variation of the constant one finds a unique solution
f ∈ C2

ξ ([a, b]) to the equation. It is expressed in terms of g by an integral
transform G of the form

Gg(t) =
∫ b

a

G(t, τ) g(τ) dτ,

with integral kernel G ∈ C([a, b] × [a, b]), called Green’s function. The
operator G turns out to be a two-sided inverse to the operator L :
C2

ξ ( ] a, b [ ) → C([a, b]).
It follows from D. Hilbert’s work on integral equations, [21], that the

map (f, g) 7→ 〈f , Gg〉[a,b] may be viewed as a non-degenerate Hermi-
tian form in infinite dimensions, which allows a diagonalization over
an orthonormal basis ϕk of L2([a, b]), with associated non-zero diago-
nal elements λk, for k ∈ N. In today’s terminology we would say that
the operator G is symmetric and completely continuous, or compact, and



4 The singular Sturm–Liouville operator 27

Hilbert’s result has evolved into the spectral theorem for such operators.
From this the result follows with σ(L, ξ) = {λ−1

k | k ∈ N}.

4 The singular Sturm–Liouville operator

We now turn to the more general case of a (possibly) singular operator L
on ] a, b [ . Weyl had written a thesis with Hilbert, leading to the paper
[28], generalizing the theory of integral equations to ‘singular kernels.’
It was a natural idea to apply this work to singular Sturm–Liouville
operators. At the time Weyl started his research it was understood
that the regular cases involved discrete spectrum. On the other hand,
from his work on singular integral equations it had become clear that
continuous spectrum had to be expected.

Also, if one considers the example with a = 0, b = ∞, and p = 1, q =
0, then L = −d2/dt2 is regular at 0 and singular at ∞. Fix the boundary
datum ξ0 = (0, 1). Then one obtains the eigenfunctions cos

√
λt of L,

with eigenvalue λ ≥ 0. In this case a function f ∈ C2
c ([0,∞ [ ), satisfying

the boundary condition 〈ε0(f) , ξ0〉 = 0 admits the decomposition

f(t) =
∫ ∞

0

a(
√
λ) cos(

√
λt)

dλ

π
√
λ

involving the continuous spectral measure dλ
π
√

λ
. Here of course, the func-

tion a is given by the cosine transform

a(
√
λ) =

∫ ∞

0

f(t) cos
√
λt dt.

Thus, no boundary condition needs to be imposed at infinity. At the
time, Weyl faced the task to unify these phenomena, where both dis-
crete and continuous spectrum (in his terminology ‘Punktspektrum’ and
‘Streckenspektrum’) could occur, and to clarify the role of the boundary
conditions. Finally, the question arose what could be said of the spectral
measure.

In [29], Weyl had the important idea to construct a Green operator
for the eigenvalue problem Lf = λf with λ a non-real eigenvalue. He
fixed boundary conditions for the Green kernel depending on a beautiful
geometric classification of the situation at the boundary points which
we will now describe. We will essentially follow Weyl’s argument, but
in order to postpone choosing bases, we prefer to use the language of
projective space rather than refer to affine coordinates as Weyl did in
[29], p. 226. The reader may consult the appendix for a quick review of
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the description of circles in one dimensional complex projective space in
terms of Hermitian forms of signature type (1, 1).

Returning to the singular Sturm–Liouville problem, we make the fol-
lowing observation about real boundary data at a point x ∈ ] a, b [ .

Lemma 4.1 Let λ ∈ C and let f ∈ Eλ \ {0}. Then the following
assertions are equivalent.

(a) ∃ ξ ∈ R2 \ {0} : 〈εx(f) , ξ〉 = 0;
(b) [εx(f)] ∈ P1(R);
(c) [f, f ]x = 0.

Proof As [f, f ]x = [εx(f), εx(f)], these are basically assertions about
C2, which are readily checked.

It follows that the zero set

Cλ,x := {f ∈ Eλ | [f, f ]x = 0}

defines a circle in the projective space P(Eλ). Indeed, let εx : P(Eλ) →
P1(C) be the projective isomorphism induced by the evaluation map
(2.5), then εx(Cλ,x) = P1(R).

The following important observation is made in Weyl’s paper [29],
Satz 1.

Proposition 4.1 Let λ ∈ C \R. Then the circle Cλ,x in P(Eλ) depends
on x ∈ ] a, b [ in a continuous and strictly monotonic fashion. Moreover,
if x→ b then Cλ,x tends to either a circle or a point. A similar statement
holds for x→ a.

We shall denote by Cλ,b the limit of the set Cλ,x for x → b. The
notation Cλ,a is introduced in a similar fashion. The proof of the above
result is both elegant and simple.

Proof We fix a point c ∈ ] a, b [ . For x ∈ ] c, b [ we define the Hermitian
inner product 〈 · , · 〉x on Eλ by 〈f , g〉x = 〈f , g〉[c,x]. It follows from
(2.2) that

[f, f ]x = [f, f ]c + 2i Im (λ)〈f , f〉x,

for f ∈ Eλ and x ∈ ] c, b [ . Without loss of generality, let Im (λ) > 0.
Then it follows that x 7→ −i[f, f ]x is a real valued, strictly increasing
continuous function. All results follow from this.
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In his paper [29], Weyl uses a basis f1, f2 ∈ Eλ such that εc(f2), εc(f1)
is the standard basis of C2. Then [f1, f2]c = 1. In the affine chart deter-
mined by f1, f2 the circle Cλ,c equals the real line. The circles Cλ,x there-
fore form a decreasing family of circles which are either all contained in
the upper half plane or in the lower half plane. The form i[ · , · ]x is with
respect to the basis f1, f2 given by the Hermitian matrix Hkl = i[fk, fl]x.
It follows that the center of Cλ,x is given by i[f1, f2]x/(−i[f1, f1]x), see
(11.2). If Imλ > 0 then the denominator of this expression is positive
for t > c whereas the numerator has limit i for x ↓ c. It follows that in
the affine coordinate z parametrizing f2 + zf1 the circles Cλ,x lie in the
upper half plane. Likewise, for Imλ < 0 all circles lie in the lower half
plane.

The limit of Cλ,x as x tends to one of the boundary points is closely
related to the L2-behavior of functions from Eλ at that boundary point.

Lemma 4.2 Let λ ∈ C\R, and let f ∈ Eλ \{0} be such that Cf ∈ Cλ,b.

Then f ∈ L2([c, b [ ) for all c ∈ ] a, b [ .

Proof We may fix a basis f1, f2 of Eλ such that in the associated affine
chart, Cλ,c corresponds to the real line. Then for every x 6= c the circle
Cλ,x is entirely contained in the associated affine chart. There exists a
sequence of points xn ∈ ] c, b [ and Fn ∈ Cλ,xn

such that xn → b and
Fn → F := Cf.

We agree to write fz = zf1 + f2. Then there exist unique zn ∈ C such
that Fn = Cfzn

. Now zn converges to a point z∞ and F = Cfz∞ . For
m < n we have

〈fzn
, fzn

〉xm
≤ 〈fzn

, fzn
〉xn

= −(λ− λ)−1 [fzn
, fzn

]c.

The expression on the right-hand side has a limit L for n→∞. It follows
that

〈fz∞ , fz∞〉xm ≤ L.

This is valid for any m. Taking the limit for xm → b we conclude that
fz∞ ∈ L2([c, b [ ).

Lemma 4.3 Let λ ∈ C \ R and assume that Eλ|[c,b [ ⊂ L2([c, b [ ).

(a) The Hermitian form hλ,x := i[ · , · ]x|Eλ
has a limit hλ,b = i[ · , · ]λ,b,

for x→ b.

(b) The form hλ,b is Hermitian and non-degenerate of signature (1, 1).
(c) The limit set Cλ,b is the circle given by [f, f ]λ,b = 0.
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(d) In the space Hom(Ē∗λ, Eλ) the inverse h−1
λ,x converges to h−1

λ,b as
x→ b.

Proof (a) From (2.2) it follows by taking the limit for x→ b that

[f, g]λ,b = lim
x→b

[f, g]x = [f, g]c + (λ− λ̄)〈f , g〉[c,b]

for all f, g ∈ Eλ. This establishes the existence of the limit hλ,b. As hλ,x

is a Hermitian form for every x ∈ ] a, b [ , the limit is Hermitian as well.
(b, d) Fix a basis f1, f2 of Eλ and write f(z) := z1f1+z2f2, for z ∈ C2.

For x ∈ [c, b] we define the Hermitian matrix Hx by i[f(z), f(w)]x =
〈Hxz , w〉. Then Hx → Hb as x→ b. We will finish the proof by showing
that detHx is a constant function of x ∈ [c, b [ , so that detHb = detHc <

0 and moreover H−1
x → H−1

b .

Write εx(f) for the linear endomorphism of C2 given by z 7→ εx(f(z)).
Then

[f(z), f(w)]x = 〈J εx(f)z , εx(f)w〉 = 〈εx(f)∗J εx(f)z , w〉,

so that Hx = i εx(f)∗Jεx(f). It follows that detHx = −|det εx(f)|2. By
a straightforward calculation one sees that det εx(f) = [f1, f̄2]x. Now
Lf̄2 = λ̄f2, so that from (2.2) it follows that [f1, f̄2]x − [f1, f̄2]c = 0 for
all x ∈ [c, b [ . Hence det εx(f) = det εc(f) for all x ≥ c.

Finally, the proof of (c) is straightforward.

Combining Lemmas 4.2 and 4.3 we obtain the following corollary.

Corollary 4.4 Let λ ∈ C \ R. Then precisely one of the following
statements is valid.

(a) The limit set Cλ,b is a circle. For any c ∈ ] a, b [ the space Eλ|[c,b [

is contained in L2([c, b [ ).
(b) The limit set Cλ,b consists of a single point. For any c ∈ ] a, b [

the intersection of Eλ|[c,b [ with L2([c, b [ ) is one dimensional.

At a later stage in his paper, [29], Satz 5, Weyl used spectral consid-
erations to conclude that if (a) holds for a particular non-real eigenvalue
λ ∈ C, then Eλ|[c,b [ consists of square integrable functions for any eigen-
value λ. We will return to this in the next section, see Lemma 6.2. It
follows that the validity of (a), and hence the validity of the alternative
(b), is independent of the particular choice of the non-real eigenvalue λ.

If (a) holds, the operator L is said to be of limit circle type at b
(‘Grenzkreistypus’), and if (b) holds, L is said to be of limit point type



4 The singular Sturm–Liouville operator 31

at b (‘Grenzpunkttypus’). With obvious modifications, similar results
and terminology apply to the other boundary point, a. We note that
a regular Sturm–Liouville operator is of the limit circle type at both
boundary points.

Weyl observed that for each boundary point, the type of L determines
whether boundary conditions should be imposed or not. Indeed, if L is of
the limit point type at the boundary point, then no boundary condition
is needed there. On the other hand, if L is of the limit circle type
at a boundary point, then a boundary condition is required to ensure
self-adjointness. Following Weyl, we shall now describe how boundary
conditions can be imposed in the limit circle case.

The idea is to fix a non-real eigenvalue λ ∈ C and to construct a Green
function for the operator L− λI. Weyl did this for the particular value
λ = i, but observed that the method works for any choice of non-real
λ, see [29], text above Satz 5. In the mentioned paper Weyl considers
the case a = 0, b = ∞, and L regular at a, but the method works in
general. In what follows, our treatment will deviate from Weyl’s with
regard to technical details. However, in spirit we will stay close to his
original method.

We define D to be the space of functions f ∈ C1( ] a, b [ ) such that
f ′ is locally absolutely continuous (so that Lf is locally integrable).
Moreover, we define Db to be the subspace of functions f ∈ D such
that both f and Lf are square integrable on [c, b [ for some (hence any)
c ∈ ] a, b [ . The subspace Da is defined in a similar fashion.

Given two functions f, g ∈ Db, it follows by application of (2.2) that

[f, g]b := lim
x→b

[f, g]x

exists. If χ ∈ Db, then we denote by Db(χ) the space of functions f ∈ Db

such that [f, χ]b = 0. We now select a non-zero function ϕb,λ ∈ Eλ such
that the associated point Cϕb,λ ∈ P(Eλ) belongs to the limit set Cλ,b. It
is possible to characterize the function ϕb,λ by its limit behavior towards
b.

Lemma 4.5

(a) If L is of limit point type at b, then Eλ ∩ Db = Cϕb,λ.

(b) If L is of limit circle type at b, then there exists a function χb ∈ Db

such that Eλ ∩ Db(χb) = Cϕb,λ.

Proof (a) follows from Corollary 4.4. For (b), assume that L is of limit



32 Eigenfunction expansions

circle type at b. Then Eλ ⊂ Db. Take χb = ϕb,λ. Then the space on the
left-hand side of the equality equals the space of f ∈ Eλ with [f, χb]c = 0.
The latter space is one dimensional since [ · , · ]b is non-degenerate on
Eλ. On the other hand, ϕb,λ belongs to it, by Lemma 4.3, and the result
follows.

To make the treatment as uniform as possible, we agree to always use
the dummy boundary datum χb = 0 in case L is of limit point type at
b. In the limit circle case we select χb as in Lemma 4.5 (b). Then we
always have

Eλ ∩ Db(χb) = Cϕb,λ.

We follow the similar convention for a choice of boundary datum χa ∈
Da, so that Da(χa) ∩ Eλ is a line representing a point of the limit set
Cλ,a. Moreover, we choose a non-zero eigenfunction ϕa,λ spanning this
line. Before proceeding we observe that it follows from Proposition 4.1
that

Cλ,a ∩ Cλ,b = ∅.

This implies that ϕa,λ and ϕb,λ form a basis of Eλ. The above choices
having been made, we put

Dχ = Da(χa) ∩ Db(χb).

Then Dχ is a subspace of L2( ] a, b [ ). It contains C2
c ( ] a, b [ ), hence is

dense. Moreover, it follows from the above that

Dχ ∩ Eλ = 0.

Still under the assumption that λ ∈ C \ R, we now consider the dif-
ferential equation

(L− λ)f = g (4.1)

where g is a given square integrable function on ] a, b [ . The equation
may be rewritten as a first order equation for the C2-valued function
ε(f). The matrix with columns ε(ϕa,λ) and ε(ϕb,λ) is a fundamental
matrix for this system. By variation of the constant one finds a function
f ∈ D, satisfying (4.1). If g has compact support then f can be uniquely
fixed by imposing the boundary conditions

lim
x→a

[f, χa]x = 0, lim
x→b

[f, χb]x = 0.
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This function is expressed in terms of g by means of an integral operator,

f(t) = Gλg(t) :=
∫ b

a

Gλ(t, τ) g(τ) dτ, (4.2)

whose integral kernel, called the Green function, is given by

Gλ(t, τ) = w(λ)−1 ϕa,λ(t)ϕb,λ(τ), (t ≤ τ), (4.3)

and Gλ(t, τ) = Gλ(τ, t) for t ≥ τ. Here w(λ) is the Wronskian, defined
by

w(λ) = [ϕb,λ, ϕa,λ]c,

for a fixed c ∈ ] a, b [ ; note that the expression on the right-hand side
is independent of c, by (2.2). It is an easy matter to show that Gλ is
well defined on L2( ] a, b [ ), with values in D. Moreover, (L−λI)Gλ = I.

Finally, Gλ maps functions with compact support into Dχ.

At this point Weyl essentially proves the following result. He special-
izes to λ = i and splits Gλ into real and imaginary part, but the crucial
idea is to approximate the Green kernel by Green kernels associated to
a regular Sturm–Liouville problem on smaller compact intervals, where
the spectral decomposition of Theorem 3.1 is applied.

Theorem 4.2 The Green operator Gλ is a bounded linear endomor-
phism of L2( ] a, b [ ), with operator norm at most |Imλ|−1.

Proof For z ∈ C we consider the eigenfunction ϕz
b = ϕb,λ + zϕa,λ.

As Cϕb,λ is contained in the limit set Cλ,b, there exists a sequence of
points bn ∈ ] a, b [ and zn ∈ C such that bn ↗ b, zn → 0 and ϕn

b := ϕzn

b

represents a point of the circle Cλ,bn
. Similarly, there is a sequence of

points an ∈ ] a, b [ , wn ∈ C such that an ↘ a, wn → 0 and ϕn
a :=

ϕa,λ + wnϕb,λ represents a point of Cλ,an . Define Gn
λ as in (4.3), but

with ϕa,λ and ϕb,λ replaced by ϕn
a and ϕn

b respectively. Then it is
readily seen that Gn

λ → Gλ, locally uniformly on ] a, b [× ] a, b [ . Apply
the spectral decomposition associated with the regular Sturm–Liouville
problem for L on [an, bn] with boundary data ϕn

a and ϕn
b . Then the

operator Gn
λ : L2([an, bn]) → L2([an, bn]) satisfies (L−λ) ◦Gn

λ = I, hence
diagonalizes with eigenvalues (ν − λ)−1, ν ∈ R. All of these eigenvalues
have length at most |Imλ|−1, so that ‖Gn

λ‖ ≤ |Imλ|−1. It now follows
by taking limits that for all f, g ∈ Cc( ] a, b [ ),

|〈f , Gλg〉| = lim
n→∞

|〈f , Gn
λg〉‖ ≤ |Imλ|.
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This implies the result.

Corollary 4.6 The operator Gλ is a bounded linear endomorphism of
the space L2( ] a, b [ ) with image equal to Dχ. Moreover, Gλ is a two-sided
inverse to the operator L− λI : Dχ → L2( ] a, b [ ).

Proof It is easy to check that Gλ is continuous as a map L2( ] a, b [ ) →
C1( ] a, b [ ). Using (2.2) and Theorem 4.2 it is then easy to check that
g 7→ [Gλg, χb]b is continuous on L2( ] a, b [ ). As this functional vanishes
on functions with compact support, it follows that Gλ maps L2( ] a, b [ )
into Db(χb). By a similar argument at the other boundary point we
conclude that Gλ maps into Dχ.

We observed already that (L − λI)Gλ = I on L2( ] a, b [ ). It follows
that (L−λI) ◦ [Gλ(L−λI)−I] = 0 on Dχ. As Gλ maps into Dχ, on which
L− λI is injective, it follows that Gλ(L− λI)− I on Dχ. All assertions
follow.

Looking at Weyl’s result from a modern perspective, it is now possible
to show that the densely defined operator L with domain Dχ is self-
adjoint. To prepare for this, we need a better understanding of the
boundary conditions.

In what follows we will assume that L is of limit circle type at b, so that
Eλ ⊂ Db. For x ∈ ] a, b [ , the map εx : Eλ → C2 is a linear isomorphism.
We define the map βλ,x : Db → Eλ by εx ◦βx(f) = εx(f), for f ∈ Db.

Then βλ,x may be viewed as a projection onto Eλ. For f, g ∈ Db,

[βλ,x(f), βλ,x(g)]x = [f, g]x. (4.4)

This implies that

[βλ,x(f), · ]x = [f, · ]x on Eλ. (4.5)

As the form [ · , · ]b is non-degenerate on Eλ, we may define a linear map
βλ,b : Db → Eλ by (4.5) with x = b. Then again βλ,b = I on Eλ, so that
βλ,b may be viewed as a projection onto Eλ.

Lemma 4.7 Let f ∈ Db. Then βλ,x(f) → βλ,b(f) in Eλ, as x→ b.

Proof Let γx denote the sesquilinear form [ · , · ]x on Eλ, for a < x ≤ b.

Then for x→ b, we have the limit behavior γx → γb in Hom(Eλ, E
∗
λ) and

γ−1
x → γ−1

b in the space Hom(E∗λ, Eλ), see Lemma 4.3.
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From (4.5) we deduce that γx(βλ,x(f)) = [f, · ]x, for all f ∈ Db. It
follows that γx(βλ,x(f)) → [f, · ]b = γb(βλ,b)(f), hence

βλ,x(f) = γ−1
x γxβλ,x(f) → βλ,b(f),

for x→ b.

Corollary 4.8 For all f, g ∈ Db we have [f, g]b = [βλ,b(f), βλ,b(g)]b.

Proof This follows from (4.4) by passing to the limit for x→ b.

The following immediate corollary clarifies the nature of the boundary
datum χb.

Corollary 4.9 Let χb ∈ Db. Then Db(χb) depends on χb through its
image βλ,b(χb) in Eλ.

It follows that in the present setting (L of limit circle type at b), the
equality of Lemma 4.5 (b) is equivalent to Cβλ,b(χb) = Cϕb,λ. In other
words, let C̃λ,b denote the preimage in Eλ \ {0} of the limit circle Cλ,b.

Then functions from β−1
λ,b(C̃λ,b) provide appropriate boundary data at b.

The following result is needed to determine the adjoint of the Green
operator Gλ. As Eλ ⊂ Db it follows that Eλ̄ = Eλ is contained in Db as
well. We put ϕb,λ̄ := ϕb,λ; then the above definitions are valid with λ̄

instead of λ. It is immediate from the definitions that

βλ,b(f̄) = βλ̄,b(f), (f ∈ Db). (4.6)

Lemma 4.10

(a) βλ̄,b ◦βλ,b = βλ̄,b;
(b) βλ̄,b(ϕb,λ) = c ϕb,λ, with c a non-zero complex scalar;
(c) βλ,b(χ̄b) = c̄ ϕb,λ;
(d) Db(χb) = Db(χb).

Proof (a) We check that βλ̄,x = βλ̄,xβλ,x by applying εx on the left.
Now use Lemma 4.7.

(b) Let ψ be an eigenfunction in Eλ̄. Then [ϕλ,b, ψ]x is constant as a
function of x, by (2.2). Hence, [βλ̄,b(ϕλ,b), ψ]b = [ϕλ,b, ψ]x. It follows that
βλ̄,b(ϕλ,b) is non-zero, whereas [βλ̄,b(ϕλ,b), ϕλ̄,b]b = [ϕλ,b, ϕλ̄,x]x = 0. The
assertion follows.

(c) Applying (4.6), (a) and (b) we obtain: βλ,b(χ̄b) = βλ̄,b(χb) =
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βλ̄,bβλ,b(χb) = βλ̄(ϕb,λ) = cϕb,λ. Finally, (d) is an immediate conse-
quence of (c).

We now return to the situation of a general singular Sturm–Liouville
operator L.

Theorem 4.3 The operator L with domain Dχ is self-adjoint.

Proof From Lemma 4.10 it follows that Dχ = Dχ. The adjoint G∗ of the
operator G = Gλ has integral kernel G∗λ(t, τ) := Gλ(τ, t). This is precisely
the Green kernel associated with the eigenvalue λ̄ and the boundary data
χ̄a, χ̄b. As its image Dχ̄ equals Dχ, it follows that G∗ is the two-sided
inverse of the bijection L − λ̄I : Dχ → L2( ] a, b [ ). These facts imply
that the adjoint L∗ equals L.

At this point one can prove the following generalization of Theorem
3.1, due to Weyl, [29], Satz 4. Let σ(L, χ) be the set of λ ∈ C for which
Eλ ∩ Dχ 6= 0.

Theorem 4.4 (Weyl 1910) Let L be of limit circle type at both end
points. Then σ(L, χ) is a discrete subset of R, without accumulation
points. Moreover, L2( ] a, b [ ) is the orthogonal direct sum of the spaces
Eλ ∩ Dχ.

Proof Weyl proved this by using the Green operator G corresponding
to the eigenvalue i. Let G2 be the imaginary part of its kernel. Then G2

is real valued, symmetric and square integrable, hence admits a diago-
nalization. In today’s terminology, the associated integral operator G2,

which equals (2i)−1[G − G∗], is self-adjoint and Hilbert-Schmidt, hence
compact. All its eigenspaces are finite dimensional, and contained in Dχ,

since Dχ = Dχ̄. Moreover, each of them is invariant under the symmetric
operator L.

The regular case may be viewed as a special case of the above. Indeed,
if ξa, ξb are the boundary data of Theorem 3.1, let µ ∈ C\R be arbitrary,
and for x = a, b, let χx be the constant function with value Jξx. Then
Eλ,ξ = Eλ ∩ Dχ, for all λ ∈ C.

5 Weyl’s spectral theorem

Using Green’s function Gλ for non-real λ and his earlier work on singular
integral equations, [28], Weyl was able to establish the existence of a
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spectral decomposition of L2( ] a, b [ ) in terms of eigenfunctions of L with
real eigenvalue. In [29] he considers the case a = 0, b = ∞, and assumes
that L is regular (hence of circle limit type) at 0. Let ξa ∈ R2 \ {0}
be a boundary datum at a, and fix a unit vector η ∈ R2 perpendicular
to ξ. Let χ0 be the constant function with value η and let χ∞ be a
boundary datum at ∞ (if L is of limit point type at ∞, we take the
dummy boundary datum χ∞ = 0). For each λ ∈ C let ϕλ be the unique
eigenfunction of L with eigenvalue λ and ϕλ(a) = η. Then according
to Weyl, [29], Satz 5,7, there exists a right-continuous monotonically
increasing function ρ such that each function f ∈ C2( ] 0,∞ [ ) ∩ Dχ

admits a decomposition of the form

f(x) =
∫

R
ϕλ(x) dF (λ) (5.1)

with uniformly and absolutely converging integral; here dF (λ) is a reg-
ular Borel measure, defined by

dF (∆) =
∫ ∞

0

f(t)
∫

∆

ϕλ(t) dρ(λ) dt. (5.2)

In the above, dρ denotes the regular Borel measure determined by the
formula dρ( ]µ, ν]) = ρ(ν)− ρ(µ), for all µ < ν.

Actually, Weyl’s original formulation was different and involved a dis-
crete and a continuous part. His formulation follows from the one above
by the observation that ρ admits a unique decomposition ρ = ρd + ρc

with ρc a continuous monotonically increasing function with ρc(0) = 0,
and with ρd a right-continuous monotonically increasing function which
is constant on each interval where it is continuous.

In case L is of the limit circle type at infinity, the decomposition is
discrete by Theorem 4.4, so that ρc = 0, so that the above gives rise to
a discrete decomposition. In case L is of the limit point type at ∞, the
decomposition is of mixed discrete and continuous type.

It has now become customary to write

dF (λ) = Ff(λ) dρ(λ), Ff(λ) =
∫ ∞

0

f(t)ϕλ(t) dt, (5.3)

with the interpretation that the integral converges as an integral with
values in L2(R, dρ).

We will call ρ the spectral function associated with the operator L,
the boundary data χ0, χ∞, and the choice of eigenfunctions ϕλ. In [29],
Weyl also addressed the natural problem to determine its continuous
part ρc.
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Theorem 5.1 (Weyl 1910) Assume L is a Sturm–Liouville operator
of the form (2.1) on [0,∞ [ , regular at 0. Assume moreover that the
coefficients p and q satisfy the conditions

(a) limt→∞ t|p(t)− 1| = 0, limt→∞ t q(t) = 0,
(b)

∫∞
0

t|p(t)− 1| dt <∞,
∫∞
0
t|q(t)| <∞.

Then L is of the limit point type at ∞. Let ξa, η, χa and ϕλ be defined as
above and let ρ be the associated spectral function. Then the support of
dρd is finite and contained in the open negative real half line ] −∞, 0 [ .
The support of dρc is contained in the closed positive real half line [0,∞ [.
There exist uniquely determined continuous functions a, b : ] 0,∞ [→ R
such that

ϕλ(t) = a(λ) cos(t
√
λ) + b(λ) sin(t

√
λ) + o(t). (5.4)

In terms of these coefficients, the spectral measure dρc is given by

dρc(λ) =
1

a(λ)2 + b(λ)2
dλ

π
√
λ
.

Here we note that by (5.4) and the condition on f, the integral (5.3)
is absolutely convergent. If p = 1 and q = 0, then of course one has
a(λ) = η1 and b(λ) = η2, and one retrieves the continuous measure
dρc(λ) = (π

√
λ)−1dλ.

Let c(
√
λ) := 1

2 (a(λ)− ib(λ)). Then

ϕλ(t) = c(λ)eit
√

λ + c(λ)e−it
√

λ + o(t)

and the spectral measure is given by

dρ(λ) =
d
√
λ

2π|c(
√
λ)|2

(5.5)

We may view the operator L as a perturbation of the operator−d2/dt2.

At infinity the eigenfunction ϕλ behaves asymptotically as a linear com-
bination of the exponential eigenfunctions for the unperturbed problem,
with amplitudes of equal modulus |c(

√
λ)|. The spectral measure of the

perturbed problem is obtained from the spectral measure of the un-
perturbed problem by dividing through |c(

√
λ)|2. As we will see later,

this principle is omnipresent in the theory of harmonic analysis of non-
compact Riemannian symmetric spaces, of non-compact real semisimple
Lie groups, and of their common generalization, the so-called semisimple
symmetric spaces.
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6 Dependence on the eigenvalue parameter

In this section we will prove holomorphic dependence of the Green func-
tion Gλ on the parameter λ. This is not obvious from the definition
(4.3). Indeed, in the limit circle case at b, the particular normalization
of ϕb,λ chosen only guarantees real analytic dependence on the param-
eter λ (this fairly easy result will not be needed in the sequel). In the
limit point case, only the line Cϕb,λ does not depend on the choices
made, but the dependence of ϕb,λ on λ may be arbitrary. The following
result suggests to look for differently normalized eigenfunctions, which
do depend holomorphically on λ.

Lemma 6.1 The Green kernel Gλ defined by (4.2) depends on ϕa,λ and
ϕb,λ through their images in P(Eλ).

Proof This is caused by the division by the Wronskian w(λ) = [ϕb,λ, ϕa,λ].

The following result follows by application of the method of variation
of the constant as explained in [7], Thm. 2.1, p. 225. The assertion
about holomorphic dependence is not given there, but follows by the
same method of proof.

Lemma 6.2 Let a < c < b and assume that for some λ0 ∈ C the
eigenspace Eλ0 |[c,b [ is contained in L2([c, b [ ). Then for each eigenvalue
λ ∈ C the associated eigenspace Eλ|[c,b [ is contained in L2([c, b [ ).

Moreover, for each c ∈ ] a, b [ and all v ∈ C2, the function λ 7→
sc(λ, · )v|[c,b [ (see (2.8)) is entire holomorphic as a function with values
in L2([c, b [ ).

In the following, we assume that L is of limit circle type at b. From
the text below (4.5) we recall the definition of the map βλ,b : Db → Eλ,

for every λ ∈ C \ R.

Lemma 6.3 Let L be of the limit circle type at b. Then for all µ, λ ∈
C \ R,

(a) βµ,b ◦βλ,b = βµ,b;
(b) the restriction βµ,b|Eλ

is a linear isomorphism onto Eµ;
(c) the restriction βµ,b|Eλ

induces a projective isomorphism P(Eλ) →
P(Eµ), mapping the limit circle Cλ,b onto the limit circle Cµ,b.
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Proof Assertion (a) is proved in the same fashion as assertion (a) of
Lemma 4.10. Since [ · , · ]b is non-degenerate on both Eλ and Eµ, assertion
(b) follows by application of Corollary 4.8. Finally, (c) follows from the
identity of Corollary 4.8, in view of Lemma 4.3.

The following result suggests the modification of the eigenfunctions in
(4.2) that we are looking for.

Lemma 6.4 Let L be of the limit circle type at b. Let χb ∈ Db and
assume that for some µ ∈ C \ R the function βµ,b(χb) is non-zero and
represents a point of the limit circle Cµ,b. Then

(a) for each λ ∈ C\R the function βλ,b(χ) is a non-zero eigenfunction
in Eλ which represents a point of the limit circle Cλ,b;

(b) for each c ∈ ] a, b [ , the map λ 7→ [εc(βλ,b(f))] is holomorphic
from C \ R to P1(C) \ P1(R).

Proof By the first assertion of Lemma 6.3, βλ,b(χ) = βλ,bβµ,b(χ) =
βλ,b(ϕb,µ). Assertion (a) follows by application of the remaining asser-
tions of the mentioned lemma.

We now turn to (b). We will prove the holomorphy in a neighborhood
of the fixed point λ0 ∈ C \ R. As βλ,b(χ) = βλ,b(βλ0,b(χ)) we may as
well assume that χ ∈ Eλ0 and that [χ] ∈ Cλ0,b. Select a sequence xn

in ] a, b [ converging to b, and for each n a point pn ∈ Cλ0,xn
such that

pn → [χ]. There exist χn ∈ Eλ0 such that [χn] = pn and χn → χ in
Eλ0 . We define ϕλ,n ∈ Eλ by εxn

ϕn,λ = εxn
χn. Then in the notation of

(4.5), ϕn(λ) equals βλ,xn(χn) and represents a point of Cλ,xn . For each
fixed λ the sequence βλ,xn

|Eλ0
in Hom(Eλ0 , Eλ) has limit βλ,b. Hence

ϕn(λ) → βλ,b(χ), pointwise in λ.

Let c ∈ ] a, b [ . Passing to a subsequence we may assume that xn > c

for all n ≥ 1. The map εc : P(Eλ) → P1(C) maps the circle Cλ,c onto
P1(R). Let Ω be a connected open neighborhood of λ0. Then it follows
by application of Proposition 4.1 that all circles εc(Cλ,xn

) are contained
in one particular connected component U of P1(C)\P1(R). This implies
that ψn(λ) := εcβxn,λ(f) ∈ U for every λ ∈ Ω. By using an affine
chart containing the compact closure of U we see that the sequence ψn

has a subsequence converging locally uniformly to a holomorphic limit
function ψ : Ω → U. By pointwise convergence, ψ(λ) = [εcβλ,b(χ)], and
(b) follows.
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Corollary 6.5 Let L be of the limit circle type at b and let χb ∈ Db be as
in the above lemma. There exists a family of functions ϕλ,b ∈ C2( ] a, b [ )
depending holomorphically on λ ∈ C \ R such that for each λ ∈ C \ R

(a) ϕb,λ ∈ Eλ \ {0};
(b) ϕb,λ represents the point [βλ,b(χb)] of the limit circle Cλ,b.

The following analogous result in the limit point case can be proved
using a similar method, see [7], Thm. 2.3, p. 229, for details.

Lemma 6.6 Let L be of the limit point type at b. Then there exists a
family of functions ϕb,λ ∈ C2( ] a, b [ ), depending holomorphically on the
parameter λ ∈ C \ R, such that for each λ ∈ C \ R,

(a) ϕb,λ ∈ Eλ \ {0};
(b) the function ϕb,λ represents the limit point in P(Eλ).

Let L be arbitrary again. We fix boundary data χa, χa as indicated
in the previous section, so that L : Dχ → L2( ] a, b [ ) is self-adjoint.
Accordingly, we fix holomorphic families of eigenfunctions ϕa,λ, ϕb,λ ∈
Eλ in the manner indicated in Corollary 6.5 and Lemma 6.6.

Finally, we define the Green function Gλ by means of the formula
(4.3). The functions ϕa,λ, ϕb,λ used here are renormalizations of those
used in Section 4. By Lemma 6.1 this does not affect the definition of
the Green kernel.

Corollary 6.7 The Green kernel Gλ ∈ C( ] a, b [× ] a, b [ ) depends holo-
morphically on the parameter λ ∈ C \ R.

This result of course realizes the resolvent (L−λI)−1 of the self-adjoint
operator L with domain Dχ explicitly as an integral operator with kernel
depending holomorphically on λ.

7 A paper of Kodaira

For the general singular Sturm–Liouville problem, there exists a spec-
tral decomposition similar to (5.1), but with a spectral matrix instead
of the spectral function ρ. Weyl observed this in [30]. The spectral ma-
trix was later determined by E.C. Titchmarsh who used involved direct
computations using the calculus of residues, see [27].

Independently, K. Kodaira [23] rediscovered the result by a very el-
egant method, combining Weyl’s construction of the Green function
with the general spectral theory for self-adjoint unbounded operators
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on Hilbert space, as developed in the 1930’s by J. von Neumann and M.
Stone. Weyl was very content with this work of Kodaira, as becomes
clear from the following quote from the Gibbs lecture delivered in 1948,
[31], p. 124: ‘The formula (7.5) was rediscovered by Kunihiko Kodaira
(who of course had been cut off from our Western mathematical liter-
ature since the end of 1941); his construction of ρ and his proofs for
(7.5) and the expansion formula [...], still unpublished, seem to clinch
the issue. It is remarkable that forty years had to pass before such a
thoroughly satisfactory direct treatment emerged; the fact is a reflection
on the degree to which mathematicians during this period got absorbed
in abstract generalizations and lost sight of their task of finishing up
some of the more concrete problems of undeniable importance.’

We will now describe the spectral decomposition essentially as pre-
sented by Kodaira [23]. Fix boundary data χa and χb as in Theorem
4.3. We use the notation H := L2( ] a, b [ ). Then the operator L with
domain Dχ is a self-adjoint operator in the Hilbert space H; it therefore
has a spectral resolution dE.

To obtain a suitable parametrization of the space of eigenfunctions
for L, fix c ∈ ] a, b [ and recall that the map εc : f 7→ (f(c), p(c)f ′(c))
is a linear isomorphism from Eλ onto C2, for each λ ∈ C. We define
the function s(λ) = sc(λ, · ) : ] a, b [→ Hom(C2,C) as in (2.6). Then
λ 7→ s(λ) may be viewed as an entire holomorphic map with values in
C2( ] a, b [ )⊗Hom(C2,C)). Moreover, for each λ ∈ C the map v 7→ s(λ)v
is a linear isomorphism from C2 onto Eλ.

For f ∈ Cc( ] a, b [ ) and λ ∈ R we define the Fourier transform

Ff(λ) =
∫ b

a

s(λ, x)∗f(x) dx, (7.1)

where s(λ, x)∗ ∈ Hom(C,C2) is the adjoint of s(λ, x) with respect to the
standard Hermitian inner products on C2 and C.

By a spectral matrix we shall mean a function P : R → End(C2) with
the following properties

(a) P (x)∗ = P (x), i.e., P (x) is Hermitian with respect to the stan-
dard inner product, for all x ∈ R;

(b) P is continuous from the right;
(c) P (0) = 0 and P (y)− P (x) is positive semi-definite for all x ≤ y.

Associated with a spectral matrix as above there is a unique regular
Borel measure dP on R, with values in the space of positive semi-definite
Hermitian endomorphisms of C2, such that dP ( ]µ, ν]) = P (ν) − P (µ)
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for all µ ≤ ν. Conversely, a measure with these properties comes from a
unique spectral matrix P. Given a spectral matrix P, we define M2 =
M2,P to be the space of Borel measurable functions ϕ : R → C2 with

〈ϕ , ϕ〉P :=
∫

R
〈ϕ(ν) , dP (ν)ϕ(ν)〉 <∞.

Moreover, we define H = HP to be the Hilbert space completion of the
quotient M2/M⊥

2 .

Let Tλ := εc ◦Gλ. Then Tλ : H → C2 is a continuous linear map. We
denote its adjoint by T ∗λ . Kodaira uses the elements γ1(λ), γ2(λ) of H
determined by prj ◦Tλ = 〈 · , γj(λ)〉.

Theorem 7.1 (Kodaira 1949) The spectral function P determined by

dP (ν) = |ν − λ|2 Tλ ◦ dE(ν) ◦T ∗λ (7.2)

is independent of λ ∈ C \ R. Moreover, it has the following properties.

(a) The Fourier transform extends to an isometry from the Hilbert
space H = L2( ] a, b [ ) onto the Hilbert space H = HP .

(b) The spectral resolution dE(ν) of the self-adjoint operator L with
domain Dχ is given by

F ◦ dE(S) = 1S ◦F ,

for every Borel measurable set S ⊂ R; here 1S denotes the map
induced by multiplication with the characteristic function of S.

For the proof of Theorem 7.1, which involves ideas of Weyl [29], we re-
fer the reader to Kodaira’s paper [23]. In addition to the above, Kodaira
proves more precise statements about the nature of the convergence of
the integrals in the associated inversion formula.

After having introduced the spectral matrix, Kodaira gives an inge-
nious short proof of an expression for the spectral matrix which had been
found earlier by Titchmarsh. We observe that the C2-valued functions
Fa(λ) = εc(ϕa,λ) and Fb(λ) = εc(ϕb,λ) are holomorphic functions of
λ ∈ C \R. The matrix F (λ) with columns Fa(λ) and Fb(λ) is invertible
for λ ∈ C \ R. By the above definitions,

ϕa,λ(t) = s(λ, t)Fa(λ), ϕb,λ(t) = s(λ, t)Fb(λ). (7.3)

We now define the 2×2 matrix M(λ), the so-called characteristic matrix,
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by M(λ) = −(detF )−1FaF
T
b , i.e.,

M(λ) = −detF (λ)−1

(
Fa1Fb1 Fa1Fb2

Fa2Fb1 Fa2Fb2

)
λ

(7.4)

Actually, Kodaira uses the symmetric matrix M(λ)− 1
2J, which has the

same imaginary part. The matrix M(λ) depends holomorphically on the
parameter λ ∈ C \ R.

Theorem 7.2 (Titchmarsh, Kodaira) The spectral matrix P is given
by the following limit:

P (ν) = lim
δ↓0

lim
ε↓0

1
π

∫
[δ,ν+δ]+iε

ImM(λ) dλ. (7.5)

Proof Multiplying both sides of (7.2) with |ν−λ|−2 and integrating over
R, we find that ∫

R
|ν − λ|−2 dP (ν) = TλT

∗
λ .

By a straightforward, but somewhat tedious calculation, using (2.2) and
[ϕa,λ, ϕa,λ]a = [ϕb,λ, ϕb,λ]b = 0, it follows that

Imλ TλT
∗
λ =

1
2i

1
|[Fb, F a]|2

( [Fa, Fa]FbF
T

b − [Fb, Fb]FaF
T

a ).

This in turn implies that Imλ · TλT
∗
λ = ImM(λ). Hence,∫

R
|ν − λ|−2Imλ dP (ν) = ImM(λ).

From this (7.5) follows by a straightforward argument.

After this, Kodaira shows that the above result can be extended to a
more general basis of eigenfunctions. A fundamental system for L is a
linear map s(λ) : C2 → Eλ, depending entire holomorphically on λ ∈ C
as a C2( ] a, b [ )-valued function, such that the following conditions are
fulfilled for all λ ∈ C :

(a) s(λ)v = s(λ̄)(v̄), (v ∈ C2);
(b) det(εx ◦ s(λ)) = 1, (x ∈ ] a, b [ ).

Put sj(λ) = s(λ)ej , then condition (b) means precisely that the Wron-
skian [s1(λ), s2(λ)]x equals 1. Write ψ(λ) = εc ◦ s(λ) ∈ End(C2). Then
it follows that ψ entire holomorphic, and that detψ(λ) = 1. Moreover,

s(λ, x) = sc(λ, x)ψ(λ).
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We may define the Fourier transform associated with s by the identity
(7.1). The associated spectral function P is expressed in terms of the
spectral matrix Pc for sc by the equation

dP (λ) = ψ(λ)−1 dPc(λ) ψ(λ)∗−1.

We define the matrix F for s by the identity (7.3). Then the associated
matrix M, defined by (7.4) is given by

M(λ) = ψ(λ)−1 Mc(λ) ψ(λ)T−1.

Kodaira shows that with these definitions, the identity (7.5) is still valid.

8 A special equation

In the second half of the paper [23], Kodaira applies the above results
to the time independent one dimensional Schrödinger operator

L = − d2

dt2
+m(m+ 1)t−2 + V (t),

with m ≥ −1
2 and tV (t) a real valued real analytic function on an open

neighborhood of [0,∞ [ , such that

tV (t) = O(t−ε), for t→∞,

with ε > 0. Actually, Kodaira considers a more general problem with
weaker requirements both at infinity and zero, but we shall not need
this. It is in fact not clear that his condition on the behavior of V
at 0 is strong enough for the subsequent argument to be valid, as was
pointed out by [22], p. 206. Kodaira’s argumentation, which we shall now
present, is valid under the hypotheses stated above, as they imply that
the eigenequation Lf = λf has a regular singularity at zero. Because
of this, the asymptotic behavior of the eigenfunctions towards zero is
completely understood. Indeed, the associated indicial equation has
solutions m + 1 and −m, where m + 1 ≥ −m. Let c0 be any non-zero
real constant. Then there exists a unique eigenfunction s1(λ) ∈ Eλ such
that

s1(λ, t) = c0 t
m+1ϕ(λ, t)

with ϕ(λ, · ) real analytic in an open neighborhood of 0 and ϕ(λ, 0) = 1.
It can be shown that ϕ(λ, t) is entire holomorphic in λ and real valued for
real λ. Kodaira claims that there exists a second eigenfunction s2(λ) ∈
Eλ, depending holomorphically on λ, such that s1, s2 form a fundamental
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system fulfilling the requirements (a) and (b) stated below Theorem 7.2.
Using the theory of second order differential equations with a regular
singularity this can indeed be proved along the following lines.

If k := (m + 1) − (−m) = 2m + 1 is strictly positive, there exists a
second eigenfunction s2(λ) ∈ Eλ with

s2(λ, t) = −c−1
0 (2m+ 1)−1 t−m +O(t−m+ε), (t→ 0).

If k is not an integer, this eigenfunction is unique. If k is an integer, then
s2(λ) has a series expansion in terms of t−m+r and tm+1+s log t, (r, s ∈
N), and is uniquely determined by the requirement that the coefficient
of t−m+k = tm+1 is zero. Finally, if k = 0, i.e., m = − 1

2 , then there
exists a unique second eigenfunction s2(λ, t) with

s2(λ, t) = c−1
0 t1/2 log t+O(t1/2+ε), (t→ 0).

In all cases, by arguments involving monodromy for t around zero it
can be shown that s2(λ, t) is entire holomorphic in λ and real valued
for real λ. Finally, from the series expansions for these functions and
their derivatives, it follows that the Wronskian [s1(λ), s2(λ)]t behaves
like 1 + O(tε) for t → 0. Since the Wronskian is constant, this implies
that s1, s2 is a fundamental system.

From the asymptotic behavior of s1, s2 it is seen that at the boundary
point 0, the operator L is of limit circle type if and only if m > 1

2 . It is
of limit point type if − 1

2 ≤ m ≤ 1
2 . In the first case we fix the boundary

datum χ0 = s1(0, · ) at 0 and in the second case we fix the (dummy)
boundary datum χ0 = 0. In all cases s1 is square integrable on ] 0, 1], so
that ϕ0λ = s1(λ) and F0(λ) = (1, 0)T, in the notation of (7.3).

We now turn to the asymptotic behavior at ∞. Kodaira first shows
that for every ν with Im ν ≥ 0, ν 6= 0, there is a unique solution Φν to
the equation Lf = ν2f such that

Φν(t) ∼ eiνt, (t→∞),

the asymptotics being preserved if the expressions on both sides are
differentiated once with respect to t. Moreover, both Φν(t) and Φ′

ν(t)
are continuous in (t, ν) and holomorphic in ν for Im ν > 0.

For Im ν < 0 the function Ψν = Φν belongs to Eν2 and Ψν(t) ∼ e−iνt

for t→∞. This shows that Ψν is not square integrable towards infinity,
so that L is of limit point type at infinity. We may therefore take

ϕ∞λ = Φν , (Imλ > 0, Im ν > 0, ν2 = λ).

It follows from the above that Φν(t) = a(ν) s1(ν2, t)+b(ν) s2(ν2, t), with
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a, b continuous on Im ν ≥ 0, ν 6= 0, and holomorphic on Im ν > 0. We
note that F∞(λ) = (a(ν), b(ν))T. Using the similar expression for Φ−ν̄

it follows that

a(ν) = a(−ν̄), b(ν) = b(−ν). (8.1)

If ν is real and non-zero, then Φν and Φ−ν form a basis of Eν2 and
from the asymptotic behavior of the (constant) Wronskian [Φν ,Φ−ν ]t
one reads off that

b(ν) a(−ν)− a(ν) b(−ν) = 2iν, (ν ∈ R \ {0}). (8.2)

From (8.1) and (8.2) it follows that

Im a(ν)b(ν) = −ν, (ν ∈ R \ {0}). (8.3)

In particular, a and b do not vanish anywhere on R \ {0}.
We can now determine the spectral matrix for this problem. Indeed,

for Imλ > 0 and Im ν > 0, ν2 = λ,

F (λ) =
(

1 a(ν)
0 b(ν)

)
,

so that

ImM(λ) = −Im
(
a(ν)b(ν)−1 1

0 0

)
=

(
−Im a(ν)

b(ν) 0
0 0

)
by (7.4). From this we conclude that the spectral matrix P (λ) has zero
entries except for the one in the upper left corner, which we denote by
ρ(λ). The second component of Ff now plays no role in the Plancherel
formula. Indeed, define

F1f(λ) =
∫ ∞

0

f(t) s1(λ, t) dt,

then we have the following.

Corollary 8.1 F1 extends to an isometry from the space L2( ] 0,∞ [ )
onto L2(R, dρ). The spectral function ρ is given by

ρ(λ) = − 1
π

lim
δ↓0

lim
ε↓0

∫
[δ,λ+δ]+iε

Im
a(
√
µ)

b(
√
µ)

dµ, (8.4)

where the square root
√
µ with positive imaginary part should be taken.

Since a and b are holomorphic in the upper half plane, a(
√
µ) b(

√
µ)−1

is meromorphic over the interval ] −∞, 0 [ , so that on ] −∞, 0 [ , the
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measure dρ is a countable sum of point measures. Indeed, let S be the
(discrete) subset of zeros for a on the positive imaginary axis i ] 0,∞ [ .
Then

dρ| ]−∞,0 [ =
∑
σ∈S

2Resν=σ
ν a(ν)
b(ν)

· δ[σ2]

On the other hand, for λ > 0, if µ→ λ, then the integrand of (8.4) tends
to Im a(

√
λ)b(

√
λ)−1, with local uniformity in λ. In view of (8.3) it now

follows that

dρ(λ)| ] 0,∞ [ = − 1
π

Im
a(
√
λ)

b(
√
λ)

=
1
π

√
λ dλ

|b(
√
λ)|2

=
2
π

λ d
√
λ

|b(
√
λ)|2

.

Finally, if s1(0) is not square integrable at infinity, then ρ0 := dρ({0}) =
0. On the other hand, if it is, then ρ0 := dρ({0}) equals the squared
L2-norm of s1(0).

Finally, since s1(0, λ) is real valued for λ real, whereas Φ−ν = Φν for
real ν, there exists a real analytic function c : R \ {0} → C such that

s1(0, ν2) = c(ν)Φν + c(−ν)Φ−ν

for all ν ∈ R \ {0}. This gives rise to the equations{
a(ν)c(ν) + a(−ν)c(−ν) = 1
b(ν)c(ν) + b(−ν)c(−ν) = 0.

Using (8.2) we now deduce that

c(ν) = −b(ν)/2iν, (ν ∈ R \ {0}). (8.5)

Therefore,

dρ(λ)| ] 0,∞ [ =
1
2π

d
√
λ

|c(
√
λ)|2

.

We thus see that the principle formulated below (5.5) still holds in this
setting.

9 Riemannian symmetric spaces

A Riemannian symmetric space is a connected Riemannian manifold X
with the property that the local geodesic reflection at each point extends
to a global isometry of X. Up to covering, each such space allows a
decomposition into a product of three types of symmetric space. Those
with zero sectional curvature (the Euclidean spaces), those with positive
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sectional curvature (among which the Euclidean spheres) and those with
negative sectional curvature (among which the hyperbolic spaces). It
follows from the work of E. Cartan, that the spaces of negative sectional
curvature are precisely those given by X = G/K, where G is a connected
real semisimple Lie group of non-compact type, with finite center, and
where K is a maximal compact subgroup of G. The Killing form of G
naturally induces a G-invariant Riemannian metric on G/K. The group
K is the fixed point group of a Cartan involution θ of G; this involution
induces the geodesic reflection in the origin ē = eK of X.

A typical example of a symmetric space of this type is the space X of
positive definite symmetric n× n-matrices on which G = SL(n,R) acts
by (g, h) 7→ ghgT. The stabilizer of the identity matrix equals SO(n)
and the associated Cartan involution θ : G→ G is given by g 7→ (gT)−1.

The geodesic reflection in the identity matrix I is given by h 7→ h−1.

In the general setting, the derivative of the Cartan involution at the
identity element of G induces an involution θ∗ of the Lie algebra g. The
Lie algebra g decomposes as a direct sum of vector spaces

g = k⊕ p,

where k and p are the +1 and −1 eigenspaces of θ∗, respectively. It can
be shown that the map

(X, k) 7→ expXk, p×K → G (9.1)

is an analytic diffeomorphism onto G. In particular, this implies that
the exponential map induces a diffeomorphism Exp : X 7→ expXK,
p → G/K. Let a be a subspace of p, maximal subject to the condition
that it is abelian for the Lie bracket of g. Every other such subspace isK-
conjugate to a. The dimension r of a is called the rank of the symmetric
space G/K.

In the example G = SL(n,R), the Lie algebra sl(n,R) consists of
all traceless n× n-matrices, and θ∗ is given by X 7→ −XT. The Cartan
decomposition (9.1) is given by the decomposition of a matrix in terms of
a positive definite symmetric one times an orthogonal one. The algebra
a now consists of the traceless diagonal matrices, so that the rank of
SL(n,R)/SO(n) equals n − 1. For n = 2 the space is isomorphic to
the hyperbolic upper half plane, equipped with the action of SL(2,R)
through fractional linear transformations.

By a result of Harish-Chandra, the algebra D(G/K) of G-invariant
linear partial differential operators on G/K is a polynomial algebra
of rank r. More precisely, let M be the centralizer of a in K, and let
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W := NK(a)/M, the normalizer modulo the centralizer of a in K. As
a subgroup of GL(a), this group is the reflection group associated with
the roots of a in g. It is therefore called the Weyl group of the pair (g, a).
There exists a canonical isomorphism γ from D(G/K) onto P (a∗C)W , the
algebra of W -invariants in the polynomial algebra of the complexified
dual space a∗C (equipped with the dualized Weyl group action). By a
result of C. Chevalley, the algebra P (a∗C)W is known to be polynomial
of rank r.

In the example SL(n,R), the Weyl group is given by the natural ac-
tion of the permutation group Sn on the space a of traceless diagonal
matrices. Here the algebra P (a∗C)W corresponds to the algebra of Sn-
invariants in C[T1, . . . , Tn]/(T1 + · · ·+Tn), which is of course well known
to be a polynomial algebra of n− 1 generators of its own right. We note
that in the case of rank 1, the algebra D(G/K) consists of all polynomials
in the Laplace-Beltrami operator.

In the papers [12],[13], Harish-Chandra created a beautiful theory of
harmonic analysis for left K-invariant functions on the symmetric space
G/K, culminating in a Plancherel formula for L2(G/K)K , the space of
left-K-invariant functions on G/K, square integrable with respect to the
Riemannian volume form. We will now give a brief outline of the main
results.

For ν ∈ a∗C , we consider the following system of simultaneous eigenequa-
tions on G/K :

Df = γ(D, iν)f, (D ∈ D(G/K)). (9.2)

For r = 1, this system is equivalent to a single eigenequation for the
Laplace operator. Each eigenfunction is analytic, by ellipticity of the
Laplace operator. The space of K-invariant functions satisfying (9.2) is
one dimensional and spanned by the so-called elementary spherical func-
tion ϕν , normalized by ϕν(eK) = 1. This function can be constructed
as a matrix coefficient x 7→ 〈1K , πν(x)1K〉, with 1K a K-fixed vector
in a suitable continuous representation of G in an infinite dimensional
Hilbert space, obtained by the process of induction. By Weyl invariance
of the polynomials γ(D) it follows that ϕwν = ϕν , for all w ∈W.

In terms of the elementary spherical functions one may define the
so-called Fourier transform of a function f ∈ C∞c (G/K)K by

FG/Kf(ν) =
∫

G/K

f(x)ϕ−ν(x)dx, (ν ∈ a∗),

with dx the G-invariant volume measure on G/K.
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By analyzing the system of differential equations (9.2) it is possible
to obtain rather detailed information on the asymptotic behavior of the
elementary spherical functions ϕν towards infinity. It can be shown that
the map K/M × a → G/K, (kM,X) 7→ k expXK is surjective. For
obvious reasons, the associated decomposition

G/K = K exp a · ē (9.3)

is called the polar decomposition of G/K. In it, the a-part of an el-
ement is uniquely determined modulo the action of W. Let a+ be a
choice of positive Weyl chamber relative to W, then it follows that
G/K = K exp a+ · ē with uniquely determined a+-part. Moreover, the
map K/M × a+ → G/K is an analytic diffeomorphism onto an open
dense subset of G/K.

Accordingly, each elementary spherical function is completely deter-
mined by its restriction to A+ := exp(a+). Moreover, the restricted
function ϕν |A+ satisfies the system of equations arising from (9.2) by
taking radial parts with respect to the polar decomposition (9.3). Using
a characterization of D(G/K) in terms of the universal algebra U(g),
Harish-Chandra was able to analyze these radial differential equations
in great detail. This allowed him to show that, for generic ν ∈ C, the
behavior of the function ϕν towards infinity is described by

ϕν(k expX) =
∑

w∈W

c(wν)e(iwν−ρ)(X)[1 +Rwν(X)], (9.4)

for k ∈ K and X ∈ a+. Here ρ ∈ a∗ is half the sum of the positive roots,
counted with multiplicities, c(ν), the so-called c-function, is a certain
meromorphic function of the parameter ν ∈ a∗C , and Rν(X) is a certain
analytic function of X, depending meromorphically on the parameter ν.
Moreover, the asymptotic behavior of Rν is described by

Rν(tX) = O(e−tm(X)), (X ∈ a+, t→∞), (9.5)

with m(X) a positive constant, depending on X in a locally uniform
way. Each of the summands in (9.4) is an eigenfunction of the radial
system of differential equations of its own right.

Theorem 9.1 (Harish-Chandra’s Plancherel formula). The function
c has no zeros on a∗. Moreover, let

dm(ν) :=
dν

|c(ν)|2
, (9.6)

with dν a suitable normalization of Lebesgue measure on a∗ (see further
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down). Then dm(ν) is Weyl-group invariant and the Fourier transform
FG/K extends to an isometry from L2(G/K)K onto L2(a∗, dm(ν))W .

In footnote 3), p. 242, to the introduction of his paper [12], Harish-
Chandra mentions: ‘This is reminiscent of a result of Weyl [[29], p.
266] on ordinary differential equations.’ It seems that Harish-Chandra
was actually very inspired by Weyl’s paper. In [5], p. 38, A. Borel
writes: ‘[...] less obviously maybe, Weyl was also of help via his work
on differential equations [29], which gave Harish-Chandra a crucial hint
in his quest for an explicit form of the Plancherel measure. [...] It was
the reading of [29] which suggested to Harish-Chandra that the measure
should be the inverse of the square modulus of a function in λ describing
the asymptotic behavior of the eigenfunctions [...] and I remember well
from seminar lectures and conversations that he never lost sight of that
principle, which is confirmed by his results in the general case as well.’

It is the purpose of the rest of this section to show that for the rank
one case Theorem 9.1 is in fact a rather direct consequence of Kodaira’s
generalization of Weyl’s result, described in Section 8.

Before we proceed it should be mentioned that in [12] and [13] Theo-
rem 9.1 was completely proved for spaces of rank 1. Moreover, for these
spaces the c-function was explicitly determined as a certain quotient of
Gamma factors.

For spaces of arbitrary rank Theorem 9.1 was proved modulo two
conjectures. The first of these concerned the injectivity of the Fourier
transform and the second certain estimates for the c-function. The first
conjecture was proved by Harish-Chandra himself, in his work on the so-
called discrete series of representations for G, [14]. The validity of the
second conjecture followed from the work of S. Gindikin and F. Karpele-
vic, [11], where a product decomposition of the c-function in terms of
rank one c-functions was established. Simpler proofs of Theorem 9.1
were later found through the contributions of [20], [10], [26].

The precise normalization of the Lebesgue measure dν may be given as
follows. The polar decomposition (9.3) gives rise to an integral formula∫

G/K

f(x) dx =
∫

K

∫
a+
f(k expX)J(X) dX dk, (9.7)

with dk normalized Haar measure on K, J a suitable Jacobian, and
dX suitably normalized Lebesgue measure on a. The Jacobian J and
the measure dX are uniquely determined by the above formula and the
requirement that J(tX) behaves asymptotically as et2ρ(X), for X ∈ a+
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and t→∞. Let dξ denote the dual Lebesgue measure on a∗. Then

dν =
1
|W |

dξ

(2π)n
,

with |W | the number of elements of the Weyl group.
We now turn to the setting of a space of rank 1. A typical example of

such a space is the n-dimensional hyperbolic space Xn, which may be
realized as the submanifold of Rn+1 given by the equation x2

1 − (x2
2 +

· · ·+x2
n) = 1, x1 > 0. Its Riemannian metric is induced by the indefinite

standard inner product of signature (1, n) on Rn+1. As a homogeneous
space Xn ' SO(1, n)/SO(n).

More generally, as a is one dimensional, all roots in R are proportional.
Let α be the simple root associated with the choice of positive chamber
a+. Then −α is a root as well, and possibly ±2α are roots as well. No
other multiples of α occur. We fix the unique element H ∈ a with
α(H) = 1.

Via the map tH 7→ t we identify a with R; likewise, via the map
tα 7→ t we identify a∗ with R ' R∗. Then a+ = ] 0,∞ [ . Rescaling the
Riemannian metric if necessary we may as well assume that under these
identifications, both dX and dξ correspond to the standard Lebesgue
measure on R.

Let m1,m2 denote the root multiplicities of α, 2α, i.e., mj is the di-
mension of the eigenspace of ad(H) in g with eigenvalue j. Then with
the above identifications,

ρ =
1
2
(m1 + 2m2).

The Laplace operator ∆ satisfies γ(∆, iν) = (−‖ν‖2 − ‖ρ‖2) with ‖ · ‖
the norm on a∗ dual to the norm on a induced by the Riemannian inner
product on g/k ' p. Multiplying ∆ with a suitable negative constant,
we obtain an operator L0 with γ(L0, iν) = ν2 + ρ2. Let L̃ = L0 − ρ2,

then L̃ϕν = ν2ϕν .

The Jacobian J mentioned above is given by the formula

J(t) = (et − e−t)m1(e2t − e−2t)m2 .

Let L := J1/2 ◦ rad (L̃) ◦ J−1/2 be the conjugate of the radial part of L̃
by multiplication with J1/2. Put

s(ν, t) := J1/2(t)ϕν(exp tH). (9.8)

Then the system of equations (9.2) is equivalent to the single eigenequa-
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tion

Ls(ν, · ) = ν2s(ν, · )

By a straightforward calculation, see [10], p. 156, it follows that

L = − d2

dt2
+ q(t), q(t) =

1
2
J−1 d

2

dt2
J − 1

4
J−2(

d

dt
J)2 − ρ2.

By using the Taylor series of J(t) at 0 we see that there exists a real
analytic function V on R such that

q(t) = m(m+ 1)t−2 + V (t), (t > 0),

where

m =
1
2
(m1 +m2)− 1 ≥ −1

2
.

On the other hand, at infinity, J(t) equals e2tρ times a power series in
terms of powers of e−2t with constant term 1. From this we see that
q(t) = O(e−2t), so that V (t) = O(t−2) as t → ∞. It follows that our
operator L satisfies all requirements of Section 8.

We now observe that ϕν(e) = 1 and J(t)1/2 ∼ 2ρtm+1 (t → 0). Let
c0 := 2ρ and let s1(λ, t) be defined as in Section 8, for λ ∈ C. Then it
follows that s(ν, t) = s1(ν2, t) for all ν ∈ C. Moreover, it follows from
(9.4) that the function Φν of Section 8 is given by

Φν(t) = e−tρJ(t)1/2 c(ν) eiν(1 +Rν(t)).

In particular, it depends meromorphically on the parameter ν. From
this it follows that the functions ν 7→ a(ν), b(ν) are meromorphic. By
analytic continuation it now follows that the identity (8.5) extends to an
identity of meromorphic functions. From its explicitly known form as a
quotient of Gamma factors, it follows that the function ν 7→ c(ν) has no
zeros on i ] 0,∞ [ . Moreover, it has a zero of order 1 at 0. Using (8.5) we
now see that b has no zeros on i[0,∞ ] , so that the spectral measure dρ
has no discrete part. Hence,

dρ(λ) =
d
√
λ

2π|c(
√
λ)|2

∣∣∣∣∣
] 0,∞ [

.

Let F1 be the Fourier transform defined in terms of s1(λ, t) = s(
√
λ, t),

see Section 8. Then it follows by application of (9.7) and (9.8) that

FG/Kf(ν) = F1(J1/2f ◦ exp |a+)(ν2), (ν ∈ R), (9.9)

for every f ∈ Cc(G/K).
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By Corollary 8.1 the Fourier transform F1 is an isometry from the
space L2(a+, dX) onto the space L2( ] 0,∞ [ , dρ). Moreover, the map
f 7→ J1/2f ◦ exp |a+ is an isometry from L2(G/K)K onto L2(a+, dX).

Finally, since W = {±I}, whereas the function ν 7→ |c(ν)|2 is even by
(8.5) and (8.1), pull-back by the map ν 7→ ν2 defines an isometry

L2( ] 0,∞ [ , dρ) '−→ L2(a∗,
1
2

dξ

2π|c(ν)|2
)W . (9.10)

By (9.9) FG/K is the composition of the three mentioned isometries.
The assertion of Theorem 9.1 follows.

10 Analysis on groups and symmetric spaces

After his work on the Riemannian symmetric spaces, Harish-Chandra
continued to work on a theory of harmonic analysis for real semisim-
ple Lie groups in the 1960’s. His objective was to obtain an explicit
Plancherel decomposition for L2(G), the space of square integrable func-
tions with respect to a fixed choice of (bi-invariant) Haar measure on
G.

In the case of a compact group, the Plancherel formula is described in
terms of representation theory and consists of the Peter–Weyl decompo-
sition combined with the Schur-orthogonality relations.

In the more general case of a real semisimple Lie group, the situation
is far more complicated. If G is simple and non-compact, then the non-
trivial irreducible unitary representations of G are infinite dimensional.
Moreover, there is a mixture of discrete and continuous spectrum.

An irreducible unitary representation is said to be of the discrete series
if it contributes discretely to L2(G), i.e., it is embeddable as a closed
invariant subspace for the left regular representation. Equivalently, this
means that its matrix coefficients are square integrable. An irreducible
unitary representation has a character, which is naturally defined as
a conjugation invariant distribution on G. A deep theorem of Harish-
Chandra in the beginning of the 1960’s asserts that in fact all such
characters are locally integrable. Moreover, they are analytic on the
open dense subset of regular elements.

In [14] and [15], Harish-Chandra gave a complete classification of the
discrete series. First of all, G has discrete series if and only if it has a
compact Cartan subgroup. Moreover, the representations of the discrete
series are completely determined by the restriction of their characters
to this compact Cartan subgroup. Harish-Chandra achieved their clas-
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sification and established a character formula on the compact Cartan
which shows remarkable resemblance with Weyl’s character formula.

In the early 1970’s, Harish-Chandra, [16], [17], [18], completed his
work on the Plancherel decomposition. The orthocomplement of the
discrete part of L2(G) is decomposed in terms of representations of the
so-called generalized principal series. These are induced representations
of the form

πP,ξ,λ = IndG
P (ξ ⊗ eiλ ⊗ 1),

where P is a (cuspidal) parabolic subgroup of G, with a so-called Lang-
lands decomposition P = MPAPNP . Moreover, ξ is a discrete series
representation of MP and eiλ is a unitary character of the vectorial
group AP . The space L2(G) splits into a finite orthogonal direct sum of
closed subspaces L2(G)[P ], each summand corresponding to an equiva-
lence class of parabolic subgroups with K-conjugate AP -part. Here G
counts for a parabolic subgroup, and L2(G)[G] denotes the discrete part
of L2(G).

Each summand L2(G)[P ] decomposes discretely into a countable or-
thogonal direct sum of spaces L2(G)[P ],ξ parametrized by (equivalence
classes of) discrete series representations of MP . Finally, each of the
spaces L2(G)[P ],ξ has a continuous decomposition parametrized by λ ∈
a∗P . Harish-Chandra achieved this continuous decomposition by reduc-
tion to the space of functions transforming finitely under the action of
the maximal compact subgroup K.

Let δL, δR be two irreducible representations of K and let L2(G)[P ],ξ,δ

be the part of L2(G)[P ],ξ consisting of bi-K-finite functions of left K-type
δL and right K-type δR. The decomposition of this space is described
in terms of Eisenstein integrals. These are essentially K ×K-finite ma-
trix coefficients of type (δL, δR) of the induced representation involved.
The Eisenstein integrals E([P ], ξ, λ, ψ) are functions on G which depend
analytically on the parameter λ ∈ a∗. In addition, they depend linearly
on a certain parameter ψ, which ranges over a certain finite dimensional
Hilbert space A2(MP , ξ, δ) of functions M×K×K → C. The Eisenstein
integrals satisfy eigenequations coming from the bi-G-invariant differen-
tial operators on G. As in the previous section these equations can be
analyzed in detail, and it can be shown that the integrals behave asymp-
totically like

E([P ], ξ, λ, ψ)(k1m expX k2)

∼
∑

w∈W (aQ|aP )

e(iwλ−ρQ)(X) [cQ|P,ξ(w, λ)ψ](m, k1, k2)
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for m ∈ MQ, k1, k2 ∈ K, and as X tends to infinity in a+
Q; here Q is a

parabolic subgroup in the same equivalence class as P and W (aQ|aP )
denotes the finite set of isomorphisms aP → aQ induced by the ad-
joint action of K. Each coefficient cQ|P,ξ(w, λ) is an isomorphism from
the finite dimensional Hilbert space A2(MP , ξ, δ) onto the similar space
A2(MQ, wξ, δ). It can be shown that

cQ|P,ξ(w, λ)∗cQ|P,ξ(w, λ) = η(P, ξ, λ) I

with η(P, ξ, λ) a strictly positive scalar, independent of Q,w, δ and
depending real analytically on λ ∈ a∗P . Finally, the measure for the
Plancherel decomposition of L2(G)[P ],ξ is given by

dλ

η(P, ξ, λ)
. (10.1)

In this sense, Weyl’s principle is valid for all continuous spectral param-
eters in the Plancherel decomposition for G.

In the 1980’s and 1990’s, much progress was made in harmonic analysis
on general semisimple symmetric spaces. These are pseudo-Riemannian
symmetric spaces of the form G/H, with G a real semisimple Lie group
and H (an open subgroup of) the group of fixed points for an involution
σ of G. This class of spaces contains both the Riemannian symmetric
spaces and the semisimple groups. Indeed the group G is a homogeneous
space for the action of G×G given by (x, y) · g = xgy−1. The stabilizer
of the identity element eG equals the diagonal H of G×G, which is the
group of fixed points for the involution σ : (x, y) 7→ (y, x). As a decom-
position for the left times right regular action of G × G on L2(G) the
Plancherel decomposition becomes multiplicity free. This is analogous
to what happens for the Peter-Weyl decomposition for compact groups.

Another interesting class of semisimple symmetric spaces is formed by
the pseudo-Riemannian hyperbolic spaces SOe(p, q)/SOe(p−1, q), p > 1.

For general semisimple symmetric spaces, M. Flensted-Jensen, [9],
gave the first construction of discrete series assuming the analogue of
Harish-Chandra’s rank condition. The full classification of the discrete
series was then given by T. Oshima and T. Matsuki [25].

In [2], E.P. van den Ban and H. Schlichtkrull gave a description of
the most continuous part of the Plancherel decomposition. Here, a new
phenomenon is that the Plancherel decomposition may have finite mul-
tiplicities. Nevertheless, the multiplicities can be parametrized in such a
way that Weyl’s principle generalizes to this context. Then, P. Delorme,
partly in collaboration with J. Carmona, determined the full Plancherel
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decomposition for G/H, [6], [8]. Around the same time this was also
achieved by E.P. van den Ban and H. Schlichtkrull, [3],[4], with a com-
pletely different proof. In all these works, the appropriate analogue of
(10.1) goes through. For more information, we refer the reader to the
survey articles in [1].

Parallel to the developments sketched above, G. Heckman and E. Op-
dam [19] developed a theory of hypergeometric functions, generalizing
the elementary spherical functions of the Riemannian symmetric spaces.
For these spaces, the algebra of radial components of invariant differen-
tial operators is entirely determined by a root system and root multi-
plicities. The generalization is obtained by allowing these multiplicities
to vary in a continuous fashion. In the associated Plancherel decompo-
sition, established by Opdam, [24], Weyl’s principle holds through the
analogue of (9.6).

11 Appendix: circles in P1(C)

If V is a two dimensional complex linear space, then by P(V ) we denote
the 1-dimensional projective space of lines Cv, with v ∈ V \ {0}. In a
natural way we will identify subsets of P(V ) with C-homogeneous subsets
of V containing 0. In particular, the empty set is identified with {0}. The
group GL(V ) of invertible complex linear transformations of V naturally
acts on P(V ).

Let β be Hermitian form on V, i.e., β : V ×V → C is linear in the first
and conjugate linear in the second component, and β(v, w) = β(w, v)
for all v, w ∈ V. By symmetry, β(v, v) ∈ R for all v ∈ V. We denote by B
the space of Hermitian forms β on V for which the function v 7→ β(v, v)
has image R. Equivalently, this means that there exists a basis v1, v2 of
V such that β(v1, v1) = 1 and β(v2, v2) = −1. It follows from this that
the group GL(V ) acts transitively on B by g · β(v, w) = β(g−1v, g−1w).

We note that for any Hermitian form β on V the map v 7→ β(v, · )
induces a linear map from V to the conjugate linear dual space V

∗
. This

map is an isomorphism if and only if β is non-degenerate. Let γ be any
choice of positive definite Hermitian form on V. Then Hβ = γ−1 ◦β is
a linear endomorphism of V ; from β(v, w) = γ(Hβv, w) for v, w ∈ V

we see that Hβ is symmetric with respect to the inner product γ. The
condition that β ∈ B is equivalent to the condition that Hβ has both
a strictly positive and a strictly negative eigenvalue, which in turn is
equivalent to the condition that detHβ < 0. For obvious reasons we will
call B the space of Hermitian forms of signature (1, 1).
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By a circle in P(V ) we mean a set of the form

Cβ := {v ∈ V | β(v, v) = 0}

with β ∈ B. For g ∈ GL(V ) we have g(Cβ) = Cg·β so that the natural
action of GL(V ) on the collection of circles is transitive.

We now turn to the case of C2 equipped with the standard Hermitian
inner product. Accordingly, any form β ∈ B is represented by a unique
Hermitian matrix H of strictly negative determinant. We will use the
standard embedding C ↪→ P1(C) := P(C2) given by z 7→ C(z, 1). The
complement of the image of this embedding consists of the single point
∞C := C(1, 0). The inverse map χ : P1(C) \ {∞C} → C is called the
standard affine chart. It is straightforwardly verified that ∞C belongs to
Cβ if and only if the entry H11 equals zero. In this case the intersection
of Cβ with the standard affine chart is given by 2Re (H21z) = −H22,

which is the straight line −H−1
21 ( 1

2H22 + iR). In particular, the form

i[z, w] = i(z1w2 − z2w1) (11.1)

is represented by the Hermitian matrix iJ (see (2.4)), and the associated
circle in P1(C) equals the closure P1(R) := CR2 = R ∪ {∞C} of the real
line.

In the remaining case the circle Cβ is completely contained in the
standard affine chart, and in the affine coordinate it equals a circle with
respect to the standard Euclidean metric on C ' R2. The radius r and
the center α are given by

r2 = − detH
|H11|2

, α = −H12

H11
. (11.2)

The preimage under χ of the interior of this circle is the subset of P1(C)
given by the inequality

sign(H11)β(z, z) < 0.

We note that all circles and straight lines in C are representable in the
above fashion. In the standard affine coordinate, the action of the group
GL(2,C) on P1(C) is represented by the action through fractional linear
transformations on C. Accordingly, we retrieve the well-known fact that
this action preserves the set of circles and straight lines.

More generally, let v1, v2 be a complex basis of V. Then the natural
map z 7→ z1v1 + z2v2 induces a diffeomorphism v : P1(C) → P(V ).
The map χv := χ ◦ v−1 : P(V ) \ Cv1 → C is said to be the affine chart
determined by v1, v2. Note that z = χv(C(zv1 + v2)), for z ∈ C. The
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general linear group GL(V ) acts on the set of affine charts by (g, ψ) 7→
ψ ◦ g−1, so that g · χv = χgv. Clearly, the action is transitive. It follows
that the transition map between any pair of affine charts is given by a
fractional linear transformation.

From the above considerations it follows that a circle C in P(V ) cor-
responds to a circle in the affine chart χv if and only if Cv1 does not lie
on C. Otherwise, the circle is represented by a straight line in χv.
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[25] T. Ōshima and T. Matsuki. A description of discrete series for semisimple
symmetric spaces. In Group representations and systems of differential
equations (Tokyo, 1982), volume 4 of Adv. Stud. Pure Math., pages 331–
390. North-Holland, Amsterdam, 1984.

[26] J. Rosenberg. A quick proof of Harish-Chandra’s Plancherel theorem for
spherical functions on a semisimple Lie group. Proc. Amer. Math. Soc.,
63:143–149, 1977.

[27] E. C. Titchmarsh. Eigenfunction Expansions Associated with Second-
Order Differential Equations. Oxford, at the Clarendon Press, 1946.
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