.

Lecture 2: Theory of the disacte series.
H is reductive
$$\Rightarrow$$
 H mimodular \Rightarrow
 $X = G/H$ has help invariant measure dre
 $U(G/H)$ carries the left region repⁿ L;
 $L_{g} \varphi(x) = \varphi(g^{-1}x) (\varphi \in U(G/H), x \in X, g \in G).$
Harmonic Analysis Planchevel dero of $U(G/H)$ in terms
of invariable unitary reps.
Basic Representation theory.
Setting: V Fréchet (or complete loc $\infty \times J$.
Def: A continuous tepⁿ of G in V is a group homonic
 $TI G \rightarrow GU(Y)$ s.t. $(q, v) \mapsto Togv, G \times V \rightarrow V$ is ets.

1) invariant subspace of V: a linear subspace W E V s.t.

.

 $\pi(q) W \subset W (\forall q \in G)$

. . .

.

.

.

.

•

.

.

.

0

.

An intertaining querator from (π₁, V₁) to (π₂, V₂) 2-4
is a continuous linear map T: V₁ → V₂ s.t V(q∈G):

.

$$V_{1} \xrightarrow{T} V_{2}$$

$$\pi_{1}(q_{1}) \downarrow \qquad (j \qquad \downarrow \qquad T_{2}(q_{1}))$$

$$V_{1} \xrightarrow{T} V_{2}$$

. . . .

14) Exercise: Versions of Schner's lemma:
for V admissi (q, k) - module : Virred^e ⇒ End (V) = CI
for (π, V) admissible : π irred^e ⇒ Ene (V) = C^T.
15) Def: a Harigh-Chandre module is a fourtely generated admissible (J, k) - module.

.

 \bullet

.

.

.

•

•

.

.

. . .

.

•

.

•

.

•

.

.

.

•

.

.

.

.

.

.

.

.

.

•

•

.

•

.

.

Back to D(G/H)

DE D(G/H), formal adjoint D'E D(G/H) is defined by $\langle Df, q \rangle = \langle f, D'q \rangle$ (f, q $\in C^{\infty}_{c}(\mathbb{R}^{n})$). (Hore $\langle f, g \rangle = \int_{Y} H_{2} g(x) dx$). The D = D' => D is essentially self-adjoint with operator core L²(X)^{os} In the IR - algebra Ds(G/H) = { DE D(G/H) | D'= D} ن finitely generated and its elements strongly commute Prof D(G/H) ~ S(ad*) W(ad) is finitely generated on a I-elgebra. From this, the first assertion follows. By a thin of Melson, the final conclusion follows. D.

Noth For XE D(G/H) ^A , put	2-8
$\mathcal{E}_{\infty}(G/H) := \{ f \in C^{\infty}(G/H) Df = \mathcal{H}(D) f (D \in D) \}$	ל כואי
Goal: For each X& DG/H)^ describe the irreduvible	
Goal: For each $\chi \in D(G/H)^{\Lambda}$ describe the itreduvible $(g, k) - \pi b modules of \mathcal{E}_{\chi}(G/H)_{k} \cap L^{2}(G/H)^{\infty}$	
Flensted - Jensen's idea: Use duality G/H <> Gd/K?	
For simplicity: assume G <go and="" as<br="" define="" gd,="" hd="" kd,="">Lie subgps of Go with Lie algebra's of</go>	kd, 54.
Note: G ₁ = exp(gpnog) (KnM), so G ₁ C GnG ^d .	
for $f \in C^{\infty}(G/H)_{K}$ and $x \in G_{+}$ the finite	m
kins flans has a huigue an alytic estension	•
to $f_x: \mathcal{K}_{\mathcal{C}} \to \mathcal{C}$.	

•

The (F-J) $\exists ! map <math>\sharp \mapsto {}^{d}f, C^{o}(G/H)_{K} \to C^{o}(G'/K^{d})_{H^{d}}$ s.t. 1) $df = f on G_+$ 2) for all $x \in G_+$, $h \in H^d$, $f(hx) = f_x(h)$. For all DE D(G/H), d(Df) = dD df. Cor port gives Eq (G/H) ~ Edg (Gd/Kd) where dx E D(Gd/Kd) is defined by $d\chi(dD) = \chi(D).$

Intermezzo Poisson transform an G/K. 2-10 Setting: Orcop max. abelian, $\Sigma = Z(0, \sigma), W \simeq N_k los / Z_k(\sigma)$ $\Sigma^+ m_{\mathcal{T}} \mathcal{T} = \Sigma \mathcal{J}_{\alpha}, N = e_{\mathcal{T}} \mathcal{T}_{\alpha}, N = e_{\mathcal{T}$ • Iwesawe dero: G = KAN (~ K × A × N) • M = ZK(OI) normalites A and N · P:= MAN<G closed subgp (minimal parabeler) • For λ ∈ αt the char? X ∈ D(G/K) is def by $\chi_{\lambda}(D) = \gamma(D, \lambda), \quad (D \in D(G/K_{\lambda})).$ • Notation: $\mathcal{E}_{\lambda}(G|K) = \mathcal{E}_{\chi}(G|K)$. • Exponential; for FEOt, put a := e Elleges (aEA)

Induced Representation For $\lambda \in O_{\mathbb{C}}^*$ define (1@2 @ 1): $\mathbb{P} \longrightarrow \mathbb{C}$ by $(1 \otimes \lambda \otimes i)(man) = a^{\lambda} (= e^{\lambda(\log a)}).$ We define $T_{\lambda} \doteq Ind_{p}(+ o(-\lambda) o +)$ to be the representation on $C^{\circ}(G/P:-\lambda) = \{ f \in C^{\circ}(G) \mid f(x = a) = a^{\lambda-P_{e}} f(x) \}$ $(x \in G, m \in \mathcal{H}, a \in \mathcal{A}, n \in \mathcal{N})$ gren by $(\pi_{\chi}(q) f)(m) = L_{q}f(m) = f(q^{-1}m).$ Def The Poisson transform P2: C(G/P:-11-) -> Co(G/K) is defined by $\mathcal{F}_{\lambda}\varphi(n) = \int_{K} \varphi(nk) dk$ $(\pi \in G).$

シーリ

$$\begin{aligned} & \mathcal{F}_{\lambda}: \ C(G/\Gamma: -\lambda) \to & \mathcal{E}_{\lambda}(G/\kappa) \\ & \simeq & \text{freethr} & & \\ & \mathcal{F}_{\lambda} \\ & C(K/M) & & & \end{aligned}$$

. . .

Def $B'(K/M) = [C^{\omega}(K/M)dk]'(hyperfinitions)$

.

2-13 The Helgaron's conjecture. Pr admits a mique extension to a continues linear map B'(KIM) -> Er(GIK). which intertaines T_{λ} and L. For $e(\lambda) \neq 0$ ($\in \langle Re\lambda, R \rangle > 0$ \forall_{REZ^+}) this estimate is a topological linear isomorphism $\mathcal{B}'(\mathcal{K}(\mathcal{M}) \longrightarrow \mathcal{E}_{\lambda}(G)\mathcal{K}).$ Proven by KKMOOT, late 1970's. The men is given by c(2)-1BZ, with c. the HC c-function, and Br a boundary value map. (generalizes the classical Poisson hernel on S!). *) Kashiware, Kowata, Minemure, Oshima, Okamoto, Tanaka

Results of Flensted Jensen. 2-14 This the GIH = rek KIKAH $\Rightarrow (GIH)_{ds} \neq \phi$. Method of mont; by the rele conditions of her a Cartan subspace ACJ n'h Acknoz. • ord = it is moximal abelian in pd and or < pd , bd ~ E(ord), Wd · (HalGa/Pa) closed want wa (KnH) PA CH V · Flensted - Junsen's functions $, \lambda \in (\sigma^{d})^{*}$ $\Psi_{v,\lambda} = \mathcal{P}_{\lambda}(\delta_{(k \cap H)v/M^d}, \lambda \in (\sigma \Gamma^a)^n)$ if λ satisfies an integrality conditions, then

$$\begin{split} \Psi_{n,k} &= \overset{d}{\mathcal{H}}_{\nu,\lambda} \quad \text{for } f \in \overset{e}{\mathcal{E}}_{\chi}(G/H) \wedge L^{2}(G/H)^{\infty}, \overset{2-15}{} \\ \overset{d}{\mathcal{N}} &= \mathcal{Y}^{d}(\cdot,\lambda). \\ \text{Classification by Othima & Matuchi, 1982.} \\ \underline{\text{Thm}} : (G/H)^{n}_{ds} &= \mathcal{Y}^{k} \iff \mathcal{H} \in \mathcal{G}\mathcal{H} = \mathcal{H} \in \mathcal{K}/\mathcal{K}\mathcal{R}\mathcal{H}. \\ \hline \mathcal{O} \in \mathcal{H} \text{ showed}: \quad \text{functions } f \in \overset{e}{\mathcal{E}}_{\chi}(G/H)^{k} \wedge L^{2}(G/H)^{\infty} \\ \text{Salisby: } (\mathcal{N}_{E \rightarrow \lambda}) \\ 1) \quad \beta^{d}_{\lambda}(f^{d}) \quad \text{myuntal in class} \\ \chi_{\mathcal{H}} \text{ obts on } G^{d}/\mathcal{P}^{d}. \\ z) \quad \langle \lambda, \alpha \rangle \in \mathcal{R} \quad \forall \alpha \in \Sigma(\mathcal{R}^{d}). \quad (\text{tual}) \\ 3) \quad \langle \lambda_{i} \propto \rangle \neq \circ \quad \forall \alpha \in \Sigma(\mathcal{R}^{d}). \quad (\text{bylary}) \\ \hline \text{This is sufficient for own purposes.} \end{split}$$

-

.

.