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Whittaker functions

Setting
I G real reductive group
I K maximal compact, G = KAN0 Iwasawa decomposition
I χ : N0 → U(1) unitary character, regular (!)

i.e.: ∀α ∈ Σ(n0, a) simple: dχ(e)|gα 6= 0.

Whittaker functions

M(G/N0, χ) := {f : G meas−→ C | f (xn) = χ(n)−1f (x) (x ∈ G,n ∈ N0)}

L2(G/N0, χ) := {f ∈M(G/N0, χ) | |f | ∈ L2(G/N0)}

I Left regr repn: L = IndG
N0

(χ) is unitary



Whittaker Plancherel formula

Abstractly
I IndG

N0
(χ) =

∫ ⊕
Ĝ mππdµ(π).

Concrete realization
I Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141- 307,
eds. R. Gangolli, V.S. Varadarajan, Springer 2018.
Final step not clear.

I N.R. Wallach, Independent treatment.

Real reductive groups II, Acad. Press 1992.
Erroneous estimate. Repair addressed in arXiv:1705.06787.

I Today: final step in HC through new inversion theorem.



Discrete part of decomposition

Discrete part
π ∈ Ĝ (unitary dual) is said to appear discretely in L2(G/N0, χ) if it
can be realized as a closed subrepresentation.

Theorem (HC, W)
If π ∈ Ĝ appears discretely in L2(G/N0, χ), then it appears discretely
in L2(G), i.e., it belongs to the discrete series of G.

Corollary
If π ∈ Ĝ appears discretely in L2(G/N0, χ), then its infinitesimal
character is real and regular, while rk(k) = rk(g).

This result is crucial for the separation of tempered spectra in the
Whittaker Plancherel decomposition.



Schwartz functions

Define ρ ∈ a∗ by ρ(X ) = 1
2 tr(ad(X )|N0 ). Let Z := center U(g)

Definition (Schwartz space)
C(G/N0, χ): the space of f ∈ C∞(G/N0, χ) s.t. ∀u ∈ U(g),N ∈ N,

|Luf (kan)| ≤ Cu,N (1 + | log(a)|)−Na−ρ (kan ∈ KAN0).

For (τ,Vτ ) a finite dimensional unitary representation of K ,

C(τ,G/N0, χ) := (C(G/N0, χ)⊗ Vτ )K

A2(τ,G/N0, χ) := {f ∈ C(τ,G/N0, χ) | dimZf <∞}.

Theorem (HC, W)
A2(τ,G/N0, χ) = L2

d (τ,G/N0, χ).

The space is finite dimensional.



Parabolic subgroups

I Σ = Roots(g, a), Σ+ := {α ∈ Σ | gα ⊂ n0}, ∆ ⊂ Σ+ simple roots,
I W (a) = NK (a)/ZK (a).

I P0 := ZK (A)A N0, minimal psg.

I P(A) : (finite) set of psg’s P ⊃ A.
I Pst := {P ∈ P(A) | P ⊃ P0} (standard psg’s).

I For P a psg: Langlands deco: P = MPAPNP .

Associated parabolics
For P,Q ∈ P(A) define: P ∼ Q iff aP and aQ are W (a)-conjugate. If
so,

W (aQ | aP) := {T ∈ Hom(aP , aQ) | ∃w ∈W (a) : T = w |aP}



Parabolic induction and Whittaker integrals

For P = MPAPNP ∈ Pst , put A2,P := A2(τ |KP ,MP/MP ∩ N0, χ|MP∩N0 ).

For λ ∈ a∗PC, Reλ >P 0 ,

IndG
P̄ ( · ⊗ −λ) : A2,P 3 ψ 7→Wh(P, λ, · , ψ) ∈ Atemp(τ,G/N0, χ)

Remark
The above Whittaker integral is essentially a finite sum of generalized
matrix coefficients (defined by Jacquet integrals) of IndG

P̄ (σ ⊗−λ⊗ 1),

with σ ∈ Ĝds appearing in A2,P . (Analogue of Eisenstein integral.)

Viewpoint
The Whittaker integral Wh(P, λ) is viewed as a (K -fixed) element of

Atemp(G/N0, χ)⊗ Hom(A2,P ,Vτ )

depending holomorphically on λ ∈ a∗PC in the region Reλ >P 0.



Classical Whittaker functions

Example
I G = SL(2,R), τ ∈ SO(2)∧

I Wh(P, λ, ψ) is essentially a classical Whittaker function in the
variable a−α ∈ (0,∞).

I satisfies 2nd order ODE on (0,∞) with regular singularity at 0
I this ODE has irregular singularity at∞;

For a−α →∞
I generic solution W of ODE:

∀k ≥ 0 : |W (a)| ≥ a−kα (very fast growth).

I representation theory selects the special solution

∀k ≥ 0 : Wh(P, λ, ψ)(a) = O(akα) (very fast decay).



Holomorphic extension

Theorem (W)
Wh(P, λ), initially defined for Reλ >P 0, extends to entire holomc

function of λ ∈ a∗PC with values in C∞(G/N0, χ)⊗ Hom(A2,P ,Vτ ).

Remark: HC: there exists a meromc extension, regular on ia∗P .

Theorem (∼): Uniformly tempered estimates
Let ε > 0 be suff tly small. If u ∈ U(g) then ∃C,N, r > 0 s.t.

|Wh(P, λ,u; ka)| ≤ C(1 + |λ|)N(1 + | log a|)Ner |Reλ|| log a|a−ρ,

for all k ∈ K , a ∈ A, λ ∈ a∗PC with |Reλ| < ε.

I Bernstein-Sato type functional equation for Jacquet integrals.
I Uniformly moderate estimates.
I Wallach’s method of improving estimates along max psg’s, with

parameters.



C-function, Normalized Whittaker function

I W (P, λ) is Z-finite,
I top order asymptotic behavior of expl type

along cl(A+),

I rapid decay outside cl(A+).

 

At

decay

Lemma
Let P ∈ Pst . For ψ ∈ A2,P , Reλ ∈ a∗+P , m ∈ MP , a→∞ in A+

P ,

Wh(P, λ)(ma)ψ ∼ aλ−ρP [CP(λ)ψ](m),

with CP(λ) ∈ End(A2,P), meromc in λ ∈ a∗PC (regr for Reλ ∈ a∗+P ).

Definition (HC) Wh◦(P, λ) := Wh(P, λ) ◦ CP(λ)−1.



Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC)
Let P,Q ∈ Pst , P ∼ Q. Then for all s ∈W (aQ |aP),

Wh◦(Q, sλ) ◦ C◦Q|P(s, λ) = Wh◦(P, λ), (λ ∈ a∗PC),

with C◦Q|P(s, λ) ∈ Hom(A2,P ,A2,Q) a uniquely determined meromc

function of λ ∈ a∗PC.

Thm (Maass-Selberg relations, HC)
For all s ∈W (aQ |aP), λ ∈ a∗PC,

C◦Q|P(s,−λ̄)∗ ◦ C◦Q|P(s, λ) = IA2,P

In particular, for λ ∈ ia∗P , the map C◦Q|P(s, λ) is unitary.

Theorem (HC) λ 7→Wh◦(P, λ) is regular on ia∗P .



Fourier transform

Dualized Whittaker function (∼)

Wh∗(P, λ, x) := Wh◦(P,−λ̄, x)∗ ∈ Hom(Vτ ,A2,P).

Fourier transform
For f ∈ C(τ,G/N0, χ), P ∈ Pst , λ ∈ ia∗P ,

FP f (λ) :=

∫
G/N0

Wh∗(P, λ, x)f (x) dx ∈ A2,P .

Theorem (∼)
FP : C(τ,G/N0, χ)→ S(ia∗P)⊗A2,P ,

continuous linearly.

Remark: HC proves this for FP restricted to C∞c (τ,G/N0, χ).

Proof this follows from the uniformly tempered estimates.



Wave packets

Definition
For P ∈ Pst , ψ ∈ S(ia∗P)⊗A2,P , x ∈ G,

WPψ(x) :=

∫
ia∗

P

Wh◦(P, λ, x)ψ(λ) dλ.

Theorem (∼)
WP : S(ia∗P)⊗A2,P → C(τ,G/N0, χ)

is continuous linear.
Remark: HC proves this forWP restricted to C∞c (ia∗P)⊗A2,P .

Proof requires
I the uniformly tempered estimates
I theory of constant term with parameter
I families of type IIhol(Λ) (as in previous joint work with Carmona

and Delorme for reductive symmetric space G/H).



Plancherel formula

If P,Q ∈ Pst , P ∼ Q then from the MS rels: ‖FP f (λ)‖ = ‖FQ f (λ)‖.

Plancherel identity (HC)
With suitable normalization of the Lebesgue measures on ia∗P ,

‖f‖2
L2(τ,G/N0,χ) =

∑
P∈Pst/∼

‖FP f‖2
L2(ia∗

P )⊗A2,P
,

for f in the linear spanW ⊂ C(τ,G/N0, χ) of the wavepacketsWQ(ψ),
for Q ∈ Pst , and ψ ∈ C∞c (ia∗Q)⊗A2,Q .

Problem of the final step: IsW dense in L2(τ,G/N0, χ)?

Theorem (∼)
Yes! More precisely, for f ∈ C(τ,G/N0, χ) we have

f =
∑

P∈Pst/∼

WP ◦ FP(f ).



Series expansion

Strategy for the final step: use Paley-Wiener shift argument and
residue calculus as known from the theory of symmetric spaces
(previous joint work with Schlichtkrull).

Let P = P0 be minimal. Then Wh(P, λ) ∈ C∞(τ,G, χ)⊗A∗2,P is
holomorphic in λ ∈ a∗C. The function is Z-finite, hence satisfies a
cofinite system of differential equations, which has regular
singularities at infinity in the direction of A+.

Expansion at infinity

Wh(P, λ) =
∑

s∈W (a)

Wh+(P, sλ)CP|P(s, λ)

where Wh+(P, λ) ∈ C∞(τ,G, χ)⊗A∗2,P is meromc in λ ∈ a∗C, and

Wh+(P, λ)(a) = aλ−ρ
∑
µ∈N∆

a−µΓµ(λ), (a ∈ A),

with Γµ(λ) ∈ Hom(A2,P ,Vτ ) meromorphic, Γ0(λ)(ψ) = ψ(e).



Fourier inversion

Key theorem (∼)

f (x) = Tη(f )(x) := |W (a)|
∫

ia∗+η

Wh+(P, λ, x)FP f (λ) dλ,

∀f ∈ C∞c (τ,G/N0, χ), ∀x ∈ G, provided η ∈ a∗, η >>P̄ 0.

NB: For generic λ ∈ a∗C, the function Wh+(P, λ) is globally defd on X ,
but may exhibit super expl growth in directions difft from cl(A+).

Ideas of proof
I Tη : C∞c (τ,G/N0, χ)→ C∞(τ,G/N0, χ).

I ∃D ∈ Z : DTη = DT0 = D ◦WP ◦ FP .

I By PW shift η →∞ in P̄-dominant direction: suppDTηf ⊂ K suppf .

=⇒ rad(DTη) is a differential operator on A



Proof of Fourier inversion

Ideas of proof:
I rad(DTη) differential operator commuting with rad(Z)

I By asymptotic analysis along A+
P : DTη = D on C∞c (τ,G/N0, χ).

I By Holmgren’s uniqueness theorem for analytic PDO:

DTηf = Df =⇒ D(Tηf − f ) = 0 =⇒ Tηf − f = 0.



Residual kernels

By Fourier inversion, if f ∈ C∞c (τ,G/N0, χ), x ∈ G,

f (x) = |W (a)|
∫

ia∗+η

Wh+(P, λ, x)FP f (λ) dλ.

Shifting η towards zero and organizing residues, one gets

f (x) =
∑

Q∈Pst

[W : NW (aQ)] t(Q)T t
Q f (x),

where

T t
Q f (x) =

∫
ia∗

Q+εQ

∫
G/N0

K t
Q(λ, x , y)f (y) dy dλQ .

I εQ ∈ a∗+Q sufficiently close to 0.
I t : Pst → [0,1] is a weight function describing a certain

organization of residue shifts.



Conclusion

Theorem (∼)

K t
Q(λ, x , y) = Wh◦(Q, λ)(x) ◦Wh∗(Q, λ)(y) = KWQ◦FQ .

This identification relies on the Maass-Selberg relations. These also
imply that the functions λ 7→ K t

Q(λ, x , y) are regular on ia∗Q , hence we
may let εQ → 0 and then:

Plancherel formula

f (x) =
∑

Q∈Pst

[W : NW (aQ)]t(Q)WQFQ f (x).

I [W : NW (aQ)]t(Q) gives the weight by which Q contributes to its
class in Pst/ ∼ .



Bonus:



Bonus: Paley-Wiener theorem

Definition
A function f ∈ C(τ,G/N0, χ) is said to be cone supported (notation
Ccs) if ∃H0 ∈ a s.t.

 

Ho

tHo or

suppf ⊂ K exp(H0 − a++)N0.

Lemma
If f ∈ Ccs(τ,G/N0, χ), then ∀u ∈ U(g) ∀m > 0 ∃C > 0:

‖Luf (ka)‖ < C e−m| log a| (∀k ∈ K ,a ∈ A).

Paley-Wiener theorem
Let P = P0 (minimal). Then uFP (unnormalized) is injective on
Ccs(τ,G/N0, χ). The image of this space under uFP equals the space
PW(χ, τ) of holomorphic functions ϕ : a∗C → A2,P satisfying

I certain estimates of Paley–Wiener type;
I relations of Arthur–Campoli type.



Thank you



Arthur–Campoli type relations

More precisely, the definition of the PW space is as follows.

Definition Paley–Wiener space
PW(χ, τ) is the space of holomorphic functions ϕ : a∗C → A2,P
satisfying

I ∃R > 0: ∀λ0 ∈ a∗C, ∀N ∈ N, ∃C > 0 s.t.

|ϕ(λ)| ≤ C(1 + ‖λ‖)−NeR‖Reλ‖ (λ ∈ λ0 − a∗+C ).

I For all finite collections λi ∈ a∗C,ui ∈ S(a∗), ξi ∈ Hom(Vτ ,A2,P)∗,
1 ≤ i ≤ N,

N∑
i=1

〈 ξi , ∂ui
uWh∗(P, ·)(λi ) 〉 = 0 =⇒

N∑
i=1

〈 ξi , ∂uiϕ(λi ) 〉 = 0.



C-functions, Maass-Selberg relations

Thm (asymptotic behavior, HC)
Let P ∈ Pst , ψ ∈ A2,P . If Q ∈ Pst , Q ∼ P, then for λ ∈ ia∗P generic,
m ∈ MQ , a→∞ in A+

Q ,

Wh(P, λ)(ma)ψ ∼
∑

s∈W (aQ |aP )

asλ−ρQ [CQ|P(s, λ)ψ](m),

with CQ|P(s, λ) ∈ Hom(AP ,AQ) meromorphic in λ ∈ a∗PC.

If R ∈ P(A) \ Pst then Wh(P, λ)(ma) = o(a−ρR ) for a→∞ in A+
R .

Thm (Maass-Selberg relations, HC)
For all s ∈W (aQ |aP), λ ∈ ia∗P ,

C◦Q|P(s, λ) := CQ|P(s, λ)CP|P(1, λ)−1

is unitary A2,P → A2,Q .



Discrete part of Fourier transform

Discrete part of Fourier transform
If rk(k) = rk(g) one has aG = {0} and FG is given by the (finite rank)
L2-orthogonal projection

C(τ,G/N0, χ)→ A2,G = L2
d (τ,G/N0, χ).



HC’s fundamental theorem

I Σ = Roots(g, a), Σ+ := {α ∈ Σ | gα ⊂ n0}, ∆ ⊂ Σ+ simple roots.
I P0 := ZK (A)AN0, minimal psg; P(A) : (finite) set of psg’s P ⊃ A.

I Pst := {P ∈ P(A) | P ⊃ P0} (standard psgs).

Let P ∈ Pst , Langlands deco: P = MPAPNP .

Then P̄N0 is open dense in G.

Harish-Chandra’s Thm 1
Let u ∈ D′(G) be such that

Ln̄u = u, Rnu = χ−1(n)u, (n̄ ∈ N̄P ,n ∈ N0)

If χ is regular and u|P̄N0
= 0 then u = 0.

Ref. for proof also: J.A.C. Kolk, V.S. Varadarajan, Indag. Math. 1996.


