## "Many particle systems out of equilibrium" Problems, Series 1, 2006-07.

## Problem 1. Microscopic pressure tensor

a) Show that the microscopic momentum density $\boldsymbol{G}^{\text {micr }}(\boldsymbol{r}, t)$ satisfies the local conservation law

$$
\begin{align*}
& \frac{D \boldsymbol{G}^{m i c r}(\boldsymbol{r}, t)}{D t}=\frac{\rho^{m i c r}(\boldsymbol{r}, t)}{m} \boldsymbol{F}^{e x t}(\boldsymbol{r}) \\
& -\nabla \cdot\left[\mathrm{P}^{m i c r}(\boldsymbol{r}, t)+\left(\boldsymbol{G}^{\text {micr }}-\rho^{m i c r} \boldsymbol{u}(\boldsymbol{r}, t)\right) \boldsymbol{u}\right]-\boldsymbol{G}^{\text {micr }} \nabla \cdot \boldsymbol{u} \tag{1}
\end{align*}
$$

For brevity the arguments ( $\boldsymbol{r}, t$ ) were omitted after the first appearance. For an N -particle system with Hamiltonian

$$
\begin{equation*}
H=\sum_{i}\left[\frac{p_{i}^{2}}{2 m}+V^{e x t}\left(\boldsymbol{r}_{i}\right)\right]+\sum_{i<j} \phi\left(r_{i j}\right) \tag{2}
\end{equation*}
$$

the microscopic pressure tensor is defined as

$$
\begin{align*}
\mathrm{P}^{\text {micr }}(\boldsymbol{r}, t)= & \sum_{i} m\left(\boldsymbol{v}_{i}-\boldsymbol{u}(\boldsymbol{r}, t)\right)\left(\boldsymbol{v}_{i}-\boldsymbol{u}(\boldsymbol{r}, t)\right) \delta\left(\boldsymbol{r}-\boldsymbol{r}_{i}\right)+ \\
& \sum_{i<j} \int_{0}^{1} d \lambda \boldsymbol{r}_{i j} \boldsymbol{F}_{i j} \delta\left(\boldsymbol{r}-\lambda \boldsymbol{r}_{i}-(1-\lambda) \boldsymbol{r}_{j}\right) . \tag{3}
\end{align*}
$$

Here $\boldsymbol{F}_{i j} \equiv-\nabla_{\boldsymbol{r}_{i j}} \phi\left(r_{i j}\right)$.
b) Show that, on averaging, Eq. (1) reduces to Eq. (16) of the lecture notes. You may use the identities

$$
\left\langle\boldsymbol{G}^{\text {micr }}(\boldsymbol{r}, t)\right\rangle=\rho(\boldsymbol{r}, t) \boldsymbol{u}(\boldsymbol{r}, t) ; \quad\left\langle\mathrm{P}^{\text {micr }}(\boldsymbol{r}, t)\right\rangle=\mathrm{P}(\boldsymbol{r}, t)
$$

## Problem 2. Virial theorem

Derive the virial theorem: this states that the pressure in a $d$-dimensional simple fluid may be obtained as

$$
\begin{equation*}
p=n k_{B} T+\frac{n^{2}}{2 d} \int d \boldsymbol{r} g(r) r F(r) . \tag{4}
\end{equation*}
$$

Here $n$ is the average number density, $n=N / V$, of the system and $g(r)$ is the pair correlation function. For a homogeneous system this is defined as the ratio of the probability of finding a particle at a distance $r$ from a given particle and
that of finding it at an arbitrary position. This may be formulated in an equation as

$$
\left\langle\sum_{i \neq j} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{i}\right) \delta\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}_{j}\right)\right\rangle=n^{2} g\left(\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right) .
$$

## Problem 3. The energy equation

In some books (e.g. McQuarrie "Statistical Mechanics" and D.J. Evans and G.P. Morriss, "Statistical Mechanics of Nonequilibrium Liquids") the equation for heat conduction is given in the form

$$
\frac{D T}{D t}=\frac{1}{\rho c_{v}} \nabla^{2} T .
$$

In other books (e.g. Landau-Lifshitz "Fluid Mechanics") the same equality appears with $c_{p}$ instead of $c_{v}$. Check which equation is correct, or, if the answer is not unique, under which conditions which equation is correct. Hint: start by rewriting

$$
\frac{D \hat{\epsilon}}{D t}=\left(\frac{\partial \hat{\epsilon}}{\partial T}\right)_{\rho} \frac{D T}{D t}+\left(\frac{\partial \hat{\epsilon}}{\partial \rho}\right)_{T} \frac{D \rho}{D t}
$$

with $\hat{\epsilon}$ the energy density, and combine the resulting equation with the continuity equation to obtain an equation for $T$ alone.

