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Problem 22. Brownian motion

a) Two variables x and y are distributed according to the bivariate gaussian
distribution

P (x, y) =
1

N
exp−1

2

[
α(x− 〈x〉)2 + 2β(x− 〈x〉)(y − 〈y〉) + γ(y − 〈y〉)2

]
.

(1)
Find expressions for the averages 〈x2〉, 〈y2〉 and 〈xy〉.

b) A Brownian particle is described by the Langevin equation. If it starts at
position r0 with velocity u0, show that its position r and velocity u at time
t satisfy the fluctuation equations

〈(u− u0)(u− u0)〉 − 〈(u− u0)〉〈(u− u0)〉 =
kBT

M
1[1− exp(−2ζt)] (2)

〈(r − r0)(r − r0)〉 − 〈(r − r0)〉〈(r − r0)〉 =
2kBT

Mζ
1

[
t− t0 − 2

ζ
(1− exp(−ζ(t− t0))+

1

2ζ
(1− exp−2ζ(t− t0)

]
(3)

〈(u− u0)(r − r0)〉 − 〈(u− u0)〉〈(r − r0)〉 =
kBT

Mζ
1 [1− exp−ζ(t− t0)]

2 (4)

c) Find the joint distribution for the variables r and u, at time t, for given r0

and u0.

d) Under what condition are also the distributions of r − r0 and u, averaged
over the initial velocity, gaussian? How does the mean square displacement
including this average differ from the mean square displacement with fixed
initial velocity?

e) How does the mean square displacement behave for very short times? What
is the persistence time, i.e. the characteristic time for the decay of the initial
velocity? The persistence length lp(|u0|) is defined as the total average
displacement from the initial position at fixed initial velocity. How does it
depend on the initial speed u0? Show that the diffusion coefficient may be
expressed as

D =
1

d
〈ulp(u)〉. (5)
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Make an estimate how the persistence length of a colloidal particle in water
at room temperature (shear viscosity ∼ 1 mPa) depends on its radius. How
long is it about for a typical radius of 1 micron?

Problem 23. Diffusion equation with time dependent dif-
fusion coefficient

When the displacement r of a tagged particle from its initial position satisfies a
Gaussian distribution, with zero mean and second moment 〈r2(t)〉, show that its
distribution satisfies the generalized diffusion equation

∂P (r, t)

∂t
= D(t)∇2P (r, t), (6)

with

D(t) =
1

2d

∂〈r2(t)〉
∂t

. (7)

This may be turned around: suppose the Fourier transform of the distribution
P (r, t) satisfies the equation

∂P (k, t)

∂t
= −D(t)k2P (k, t), (8)

with D(t) independent of k. It then follows that P (r, t) is gaussian (so the Fourier
transform of a gaussian is a gaussian!, as is well-known from wave packets in quan-
tum mechanics). Going back to the definition of the frequency and wave number
dependent diffusion coefficient, one may identify some plausible conditions under
which this is satified for small k and large t. Remember that C(k, t) is defined
as

C(k, t) =
1

d
〈v · v(t) exp(−ik · [r(t)− r(0)])〉. (9)

Now assume that the velocity correlation is independent for large t of the displace-
ment r(t)−r(0). Assume also (to be confirmed a posteriori) that the distribution
for this diplacement is a gaussian. Then we have

C(k, t) = C(t) exp(− 1

2d
k2〈|r(t)− r(0)|2〉), (10)

with C(t) 1/d times the velocity autocorrelation function. Assume that for long
times

C(t) ≈ ctα−2, (11)

hence

〈|r(t)− r(0)|2〉 ≈ 2dc

α(α− 1)
tα. (12)
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Next consider the Laplace transform of C, which satisfies

C(k, z) =
∫ ∞

0
d t exp(−zt)C(t) exp(− 1

2d
k2〈|r(t)− r(0)|2〉). (13)

One may distinguish two basic ranges for the variables k, z, namely k2〈|r(1/z)−
r(0)|2〉 ¿ 1 and k2〈|r(1/z)− r(0)|2〉 À 1.
Show that in the former range C(k, z) ≈ C(z) and in the latter C(k, z) ≈ C(k, 0).
Next show, with the aid of (11) and (12), that as a consequence of this, in the
former range U(k, z) ≈ C(z) and in the latter U(k, z) ≈ 0. Hence U(k, z), and
consequently D(k, t), is basically independent of k.

A specific case for which the factorization property (10) can be shown explic-
itly, is the model of single file diffusion treated in problem (16). See for example:
H. van Beijeren, K. W. Kehr and R. Kutner, Diffusion in concentrated lattice
gases III, Tracer diffusion on a one-dimensional lattice, Physical Review B28
(1983) 5711-5723.
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