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Problem 24. Fluctuating hydrodynamic equations

a) The classical fluctuation-dissipation equation can be generalized to a set of
coupled Langevin equations with colored noise as follows: Let a(t) describe
a set of n random variables satisfying the Langevin equations

ȧ(t) = −
∫ ∞

0
d τ Z(τ) · a(t− τ) + ξ(t), (1)

with Z an n× n matrix and ξ(t) a gaussian noise vector satisfying

〈ξ(t)〉 = 0,

〈ξ(t1)ξ(t2)〉 = K(t1 − t2). (2)

satisfying

K(t1 − t2) = KT (t2 − t1),

with KT the transposed of K. Here 〈〉 denotes an average over the distribu-
tion of the random noise. If the characteristic decay times for the variables
a are large compared to the decay time of K(t) one may argue that to a
good approximation 〈ξ(t)a(0)〉 vanishes for t > 0, whereas for t < 0 this is
not the case. Under the same condition the integration over τ in (1) may
be restricted to the range [0, t] in most of the relevant cases, because Z(τ)
has decayed to zero already. If Z is a positive definite matrix the system
described by these equations will go to a stationary state. Using the above
approximations, show that the fluctuations of a in this stationary state
satisfy the fluctuation-dissipation theorem

K(t1 − t2) =
[
〈aa〉 · ZT (|t1 − t2|) + Z(|t1 − t2|) · 〈aa〉

]
, (3)

Hints: consider the Fourier transform of (2) with respect to both t1 and t2.
If the Fourier variables are ω1 and ω2 respectively, the result is proportional
to δ(ω1 +ω2). Next multiply (1) with itself, for two different time variables,
take a double Fourier transform as well and establish a relationship between
〈a(ω)a(−ω)〉 and 〈ξ(ω)ξ(−ω)〉. Find another expression for 〈a(ω)a(−ω)〉
by integrating 〈ȧ(t)a(0)〉 exp(iωt) respectively 〈a(0)ȧ(t)〉 exp(−iωt) from 0
to ∞ and using (1) for ȧ(t).
Note that in (1) the integration range for τ can be extended to [−∞,∞]
by setting Z(τ) = 0 for τ < 0.
One may conclude that given the fluctuations 〈aa〉 the matrices K and Z
cannot be chosen independently.
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b) One may extend this result to the case where a satisfies the equation

ȧ(t) = L · a−
∫ ∞

0
d τ Z(τ) · a(t− τ) + ξ(t), (4)

with L an anti-hermitean matrix. Show that (3) remains valid, but with
Z(t) replaced by Z(t)− 2Lδ(t) (with the convention

∫∞
0 δ(t)dt = 1/2).

c) (bonus question) Landau and Placzek have proposed extending the usual
hydrodynamic equations by adding fluctuating terms to them, analogous
to the fluctuating force in the Langevin equation describing Brownian mo-
tion. For simplicity, let us consider linearized hydrodynamic equations, but
with transport coefficients that do depend on frequency and wave number
(compare script section 2.4). In time representation these may be written
in the form

∂ρ(k, t)

∂t
= ρ0ik · u(k, t), (5)

ρ0
∂u(k, t)

∂t
= −ikp(k, t)−

∫ ∞

0
d τ k2η(k, τ)u(k, t− τ)

−
∫ ∞

0
d τ [ζ(k, τ) +

1

3
η(k, τ)]k(k · u(k, t− τ))

−ik · [Σr
sh(t) + 1Σr

b(t)] , (6)

n0T0
∂σ

∂t
= −

∫ ∞

0
d τ k2λ(k, τ)T (t− τ)− ik · jr

q (t). (7)

Here Σr
sh is a fluctuating traceless tensor, Σr

b is a fluctuating scalar and jr
q is

a fluctuating vector, all with zero mean. Using the results of item b) find the
relationships between correlations of these fluctuating currents at different
times and the transport kernels η(k, t), ζ(k, t) and λ(k, t). Relate the
results to the Green-Kubo expressions for the transport coefficients. Why
are these relationships only correct in the limit k → 0? What is missing
in the fluctuating hydrodynamic equations for k 6= 0? Hint: compare
the formal structure of the hydrodynamic equations and the Green-Kubo
expressions, obtained through the projection operator formalism, to that of
the fluctuating hydrodynamic equations.
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