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Problem 25. Mode-coupling equations for diffusion in a
random environment
(See: M.H. Ernst, J. Machta, J.R. Dorfman and H. van Beijeren, J. Stat. Phys.
34, 477 (1983) )

Diffusion of a tracer particle in a random environment may be descibed by the
equation

∂n(r, t)

∂t
+∇ · [jav(r, t) + jr(r, t)] = 0, (1)

with the average and the random current satisfying

jav(r, t) = −
[
K(r) · ∇n(r, t)

neq(r)

]
(2)

< jr(r, t) > = 0.

Here neq(r) and K(r) express the local inhomogeneity of the medium, which is
independent of time. The nonuniform equilibrium density is due to a varying
local potential and K(r) is a local diffusion tensor that fluctuates as function
of r. Set K(r) = D01 + δK(r). D0 has to be chosen such that the spatial
average of δK(r) vanishes. The average <> is to be taken over the realizations
of the random current. Correlations between random currents should satisfy a
fluctuation-dissipation theorem, but the kernel appearing in this can only be
identified after applying the mode-coupling procedure. We may use the fact
however, that these correlations will take care of keeping equilibrium correlations
such as < n(r1, t)n(r2, t) > independent of t. For small inhomogeneity we may
set neq(r) = n0+δneq(r), with n0 =< neq(r) >sp, where <>sp denotes an average
over all realizations of the spatial randomness. We may assume then that δK(r)
and δneq(r) typically are small compared to D0 and < neq(r) >sp repectively.
Eq. (1), with (2) substituted into it, may then be linearized in these fluctuations
to

∂n(r, t)

∂t
= D0∇2n(r, t) +∇ · δK(r)

n0

· ∇n(r, t)

−D0∇2n(r, t)δneq(r)

n0

−∇ · jr(r, t), (3)

with <>sp the average over spatial fluctuations.
If one does an additional averaging over the possible realizations of the random
environment the resulting equations will be translation invariant. The Fourier
components of the tracer density then will satisfy an equation of the form

n(k, t) = G(k, t)n(k, 0) or
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G(k, t) =
< n(−k, 0)n(k, t) >

< n(−k)n(k) >
(4)

with a lowest order solution of the form

G(0)(k, t) = exp(−D0k
2t). (5)

Show that a mode coupling analysis of (1) to leading order gives rise to the result

G(k, t) = G(0)(k, t) +
∫ t

0
d t1

∫ t

t1
d t2 G(0)(k, t1)

1

V

∑
q

G(k − q, t2 − t1)

G(k, t− t2)

〈 |k · δK(q − k) · (q − k)|
n0

〉2

sp

, (6)

with δK(k) the Fourier transform of δK(r) and n0 =< neq(r) >sp.
(Hint: show that the third term on the right hand side of (3) only gives corrections
of order k2 to this.) Derive from this that the long-time behavior of the velocity
autocorrelation function to a good approximation is given by

< v(0) · v(t) > = −A

V

∑
q

q2 exp(−D0q
2t) ≈ − A

4
√

π(D0t)d+2
(7)

with

A =
< δK(k = 0):δK(k = 0) >sp

dn2
0

. (8)

Problem 26. Random walk on a disordered chain
(see: HvB, Rev. Mod. Phys. 54, 195 (1982))

The simplest example where the results of the previous problem can be applied
is that of a one-dimensional random walk on a set of points that are distributed
randomly. Suppose these points are located at positions · · · , x−1x0, x1, x2, · · ·,
with ξn ≡ xn − xn−1 > 0 a set of independent identically distributed random
variables, with mean a and variance ∆. A tracer particle makes a continuous
time random walk with average jump frequency ν on these points, as defined in
problem 16 (without noticing the differences in distances between neighboring
points).

a) Show that the mean square displacement of the tracer particle for long
times satisfies

< [x(t)− x(0)]2 >= 2νta2 +

√
2νt

π
∆ (9)

and derive the long-time behavior of the velocity autocorrelation function
from this. Hint: use either the recursion relation 2nIn(x) = x[In−1(x) −
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In+1(x)] or the gaussian behavior as function of n for large x of the function
exp(−x)In(x):

exp(−x)In(x) ≈ 1√
2πx

exp−n2

2x

b) In this one-dimensional case K(x) is defined through the relationship

j(x) = −K(x)∂/∂x [n(x)/n0].

Therefore, for xn−1 < x < xn one has K(x)/n0 = νξ(n)/2. Now consider
a system with periodic boundary conditions with N sites. The allowed k-
values are ki = 2πni/L with L the length of the system. Show that for
small k1 one has the identity

< δK(k1)δK(k2) >

n2
0

= δn1n2

ν2

4
L∆. (10)

Why does Lδn1n2 reduce to 2πδ(k1 − k2) in the continuum limit, L →∞?

c) Derive the long time behavior of the velocity autocorrelation function from
the mode coupling equations (7) and (8) and compare with the result ob-
tained in a).
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