
”Many particle systems out of equilibrium”
Problems, Series 2, 2006-07.

Problem 4. Flow through a pipe

Find the stationary velocity, temperature and pressure profiles for laminar flow
through a vertical cylindrical pipe under the influence of a uniform gravitational
field. Use stick boundary conditions, i.e. the velocity at the wall (in rest) van-
ishes. In addition you may assume that the temperature gradient has no vertical
component.

Problem 5. Linearized hydrodynamic equations

The hydrodynamic equations can be linearized, by expanding the flow fields
around their equilibrium values, i.e. p(r, t) = p̄ + δp(r, t); ρ(r, t) = ρ̄ + δρ(r, t),
whereas u(r, t) = δu(r, t), and keeping only terms that are of zero’th and first
order in the deviations from equilibrium.

a) Show that the linearized hydrodynamic equations, in the absence of external
fields, can be written as

dρ

dt
= −ρ̄∇ · u, (1)

ρ̄
du

dt
= −∇p + 2η∇ · ˜(∇u) + (κ − 2

3
η)∇∇ · u, (2)

dE

dt
= − p̄

ρ̄
∇ · u +

λ

ρ̄
∇2T. (3)

b) Transform these equations into linear equations for the velocity field u(r, t)
the pressure field p(r, t) and the entropy per unit of mass, ŝ(r, t). To this
end, transform the temporal derivatives and the gradients by using ther-
modynamic relationships of the type dA = (∂A/∂B)C dB + (∂A/∂C)B dC.

c) Fourier transform these equations, determine the eigenvalues of the result-
ing set up to order k2 and the (right) eigenvectors to leading order in k.
Hint: decompose the velocity field into a component parallel to k (the
curl-free velocity field) and components normal to k (the divergence-free
velocity field). The equations for the latter decouple. Next apply standard
perturbation theory to the resulting equations.

Problem 6. Random flights

In a 1-dimensional random flight process a particle runs at constant speed (but
with changing directions) along a line, hitting scatterers at a constant rate ν
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(without memory effects. The scatterers just are at the line for an instant; they
neither stay around nor return). We will consider the case of isotropic scatter-
ing, where the probabilities of the particle turning around or continuing in the
same direction are 1/2 each. We also will assume the initial probabilities for the
velocity being v or −v are equal.

a) As usual, the Green function G(x, t), describes the probability density for
finding a particle at position x at time t, after starting out at the origin at
t = 0. Show that for this process it is given by

G(x, t) =
∞∑

n=0

νn
∫ t

0
d t1

∫ t

t1
d t2 · · ·

∫ t

tn−1

d tn

∫
∞

−∞

d x1 · · ·
∫

∞

−∞

d xn

G0(x1, t1)G0(x2 − x1, t2 − t1) · · ·G0(x − xn, t − tn), (4)

with

G0(x, t) =
1

2
θ(t)e−νt[δ(x − vt) + δ(x + vt)] (5)

describing the same probability density, with the additional condition that
the particle has not been scattered yet since the initial time.

b) The Fourier and Laplace transform of a function f(x, t) is defined as

f̃(k, z) =
∫

∞

−∞

d xe−ikx
∫

∞

0
d te−ztf(x, t)

Show that the Fourier and Laplace transform of the Green function is given
by

G̃(k, z) =
z + ν

z(z + ν) + k2v2
. (6)

Hint: by using the convolution theorems for both Fourier and Laplace trans-
forms, first show that G̃(k, z) can be expressed in terms of a geometric series,
as

G̃(k, z) =
G̃0(k, z)

1 − νG̃0(k, z)
,

with G̃0(k, z) the Fourier and laplace transform of G0(x, t).

c) Find an expression for the intermediate scattering function (just the Fourier
transform of the Green function) in the form

F (k, t) =
∑

i

aie
−zi(k)t. (7)

d) From this, one may obtain for G(x, t) the approximate expression

G(x, t) =

√√√√ νvt2

4π((vt)2 − x2)3/2
exp− ν

2v

(
vt −

√
(vt)2 − x2

)
. (8)
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by means of saddle point integration, also known as the steepest descent

method. This goes as follows: in order to evaluate
∫
∞

−∞
d k exp(αf(k)), with

α some large parameter, first find the stationary points of f(k) in the com-
plex plane, defined as the points for which f ′(k) = 0. Around such a point,
say k0, f(k) can be expanded as f(k0) + 1

2
f ′′(k0)(k − k0)

2. Now deform the
integration path such that it runs through (at least) one of the stationary
points, again denoted as k0, along the path of steepest descent, i.e. the line
z − z0 = |z − z0| exp(iφ), with 2φ + arg(f ′′(k0)) = π. If the absolute value
of the integrand on the new integration path attains an absolute maximum
at k = k0, the main contribution to the full integral for large α comes from
the direct neighborhood of k0. The integral may then be approximated by

a Gaussian integral with outcome
√

2π/|αf ′′(k0)| exp(αf(k0)).

e) Under which conditions is G(x, t) well-approximated by the diffusion Green
function

GD(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)

and under which conditions is the approximation poor? What is D for the
random flight? Finally, for which values of x is (8) obviously not correct?
And what should be the correct answer there?

Problem 7. Alternative derivation of G̃(k, z)

Instead of considering the random flight process of the previous

problem as a process with isotropic scattering at frequency ν one
may also consider it as a process with random velocity reversals,

ocurring at the frequency ν/2. Show, by starting from a similar
expression as used in problem 6a, with now t1, · · · tn the subsequent

times of velocity reversal, that this interpretation gives rise to the
same Green function indeed.
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