"Many particle systems out of equilibrium" Problems, Series 9, 2006-07.

Problem 20. Fluctuation dissipation theorem

Consider a system described by the time dependent Hamiltonian $H=H_{0}-$ $A \phi(t) \theta\left(t-t_{0}\right)$, with A a Hermitean operator and ϕ a real function of time. For $t<t_{0}$ the system is in thermal equilibrium at temperature $1 /\left(k_{B} \beta\right)$.
a) Show that, in linear response approximation, the time derivative of the average energy satisfies the equation

$$
\begin{equation*}
\left\langle\frac{d H}{d t}\right\rangle=-2 i \dot{\phi}(t) \int_{t_{0}}^{t} d \tau M_{A A}(\tau) \phi(t-\tau) . \tag{1}
\end{equation*}
$$

b) Determine the response of the expectation values of A to driving fields $\phi(t)=\phi_{0} \exp i \omega t$ and $\phi(t)=\phi_{0} \exp -i \omega t$ respectively. From the fact that the response to the real field $\phi(t)=\phi_{0} \cos \omega t$ has to be real, show that the following two identities hold:

$$
\begin{align*}
\operatorname{Im}[(\omega)] & =\operatorname{Im}\left[M_{A A}(-\omega)\right], \tag{2}\\
\operatorname{Re}\left[M_{A A}(\omega)\right] & =-\operatorname{Re}\left[M_{A A}(-\omega)\right] . \tag{3}
\end{align*}
$$

c) Show that the average energy dissipated per unit time into the system in response to the field $\phi(t)=\phi_{0} \cos \omega t$ is given by

$$
\begin{equation*}
Q(\omega)=\frac{\omega}{2 \hbar}[1-\exp (-\beta \hbar \omega)] S_{A A}(\omega) \phi_{0}^{2} \tag{4}
\end{equation*}
$$

Since this equation relates the dissipation in response to an oscillating field of frequency ω to the average strength of the Fourier components of the fluctuations in A, this relationship is called the fluctuation dissipation theorem. There are slight variations in the way this theorem is formulated. Extensions to relationships between $S_{B A}$ and $M_{B A}$ are also called fluctuation dissipation theorems.

How does the theorem generalize to the case of an arbitrary driving field, which is a superposition of fields at various frequencies?

Problem 21. Quantum mechanical dielectric response

We consider again a dilute gas consisting of diatomic molecules. We approximate these molecules as rigid rotors with a fixed moment of inertia $I=\mu_{\text {rel }} a^{2}$ with respect to the axis of rotation and a fixed electric dipole moment μ_{0}. Here $m_{\text {rel }}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ and a is the fixed distance between the atoms. The Hamiltonian of one such molecule is given by

$$
\begin{equation*}
H=H_{t r}+H_{r o t}, \tag{5}
\end{equation*}
$$

with the translational part given by

$$
\begin{equation*}
H_{t r}=-\frac{\hbar^{2}}{2 M} \nabla_{\boldsymbol{R}}^{2} \tag{6}
\end{equation*}
$$

and the rotational part by

$$
\begin{equation*}
H_{\text {rot }}=\frac{\boldsymbol{L}^{2}}{2 I}, \tag{7}
\end{equation*}
$$

with $M=m_{1}+m_{2}$ the total mass of the molecule, $\boldsymbol{R}=\left(m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}\right) / M$ the center of mass position operator and \boldsymbol{L} the angular momentum operator.
a) What are the eigenvalues and eigenfunctions of $H_{\text {rot }}$?
b) Show that the dissipation function for a single molecule subject to a canonical distribution satisfies

$$
\begin{equation*}
\left.\left\langle\dot{\mu}_{z}(0) \mid \mu_{z}(t)\right\rangle=\sum_{l} \frac{\mu_{0}^{2}(l+1) \omega_{l+1}}{3 Z_{\text {rot }}} \cos \left(\omega_{l+1} t\right) \exp -\frac{\beta \hbar^{2} l(l+1)}{2 I}\right]\left[1-\exp \left(-\beta \hbar \omega_{l+1}\right)\right] \tag{8}
\end{equation*}
$$

with $\omega_{l}=\hbar l / I$ and

$$
\begin{equation*}
Z_{r o t}=\sum_{l}(2 l+1) \exp -\frac{\beta \hbar^{2} l(l+1)}{2 I} . \tag{9}
\end{equation*}
$$

(Hint: evaluate the trace involved by summing over the eigenfunctions of $H_{\text {rot }}$.)
c) Now assume again that the molecules collide with other molecules with a small collision frequency ν and express the frequency dependent dielectric constant in terms of a sum over the rotational quantum numbers l and m through a calculation analogous to that of problem 18c.
d) Determine the low temperature behavior of the dielectric constant (how does ν depend on temperature?) and show that for high temperatures the classical result found in problem 18c is recovered.

A useful relationship satisfied by spherical harmonics is

$$
\begin{equation*}
\cos \theta Y_{l}^{m}(\theta, \phi)=\left[\frac{(l+1)^{2}-m^{2}}{(2 l+1)(2 l+3)}\right]^{\frac{1}{2}} Y_{l+1}^{m}(\theta, \phi)+\left[\frac{l^{2}-m^{2}}{(2 l-1)(2 l+1)}\right]^{\frac{1}{2}} Y_{l-1}^{m}(\theta, \phi) . \tag{10}
\end{equation*}
$$

Another useful relationship is

$$
\sum_{-l}^{l} m^{2}=\frac{1}{3}(2 l+1)(l+1) l .
$$

