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1 Hydrodynamic equations

1.1 Conservation laws

One-component systems (one kind of particles) in the simplest case are char-
acterized by just three conserved densities: mass density, ρ(r, t), momentum
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density, G(r, t) ≡ ρ(r, t)u(r, t), with u(r, t) the local mass velocity, and
energy density, ǫ(r, t). Microscopically, for a system of N particles in an
external potential mV(r, t) and with pair potential φ(rij), between each pair
i, j of particles, these densities are defined through:

ρmic(r, t) =
N∑

i

mδ(r − ri(t)), (1)

Gmic(r, t) =

N∑

i

mvi(t)δ(r − ri(t)), (2)

ρmic(r, t)ǫmic(r, t) =

N∑

i

[m{1
2
v2

i (t) + V(ri(t), t)}+

1

2

∑

j 6=i

φ(rij(t))]δ(r − ri(t)), (3)

with rij ≡ | rij | ≡ | ri − rj | . From these the macroscopic densities may be
obtained either by spatial averaging (integrate over a little sphere around r
and divide by its volume), or by ensemble averaging (average over a large
collection of systems that are considered to be macroscopically equivalent
according to some criterium, perhaps up to small fluctuations), or by taking
a Fourier transform and keeping only the long-wave-length components. It
is common to split the energy density into macroscopic contributions and an
internal energy density, in the simplest case according to

ǫ(r, t) = [
1

2
u2(r, t) + V(r, t)] + ǫ̃(r, t), (4)

with microscopic internal energy density satisfying

ρmic(r, t)ǫ̃mic(r, t) =
∑

i

δ(r − ri(t))[
1

2
m | vi(t)− u(r, t) |2 +

1

2

∑

j 6=i

φ(rij, t)].

(5)
Often part of the interaction energy also is counted as macroscopic energy,
e.g. elastic energy in the case of reversible bending of an elastic rod, or
Coulomb energy in the case of a charged object. But in this assignment
there is quite some arbitrariness.
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Thermodynamics teaches that internal energy density and pressure p(r, t)
can be expressed through equations of state,

ǫ̃(r, t) = ǫ̃(T (r, t), ρ(r, t)), (6)

p(r, t) = p(T (r, t), ρ(r, t)). (7)

For systems with very large gradients (or extremely long-ranged potentials)
these relationships may have to be generalized to non-local ones.

1.2 Continuity equation

For an arbitrary volume the change of the mass contained can be expressed
as

dM

dt
=

∫

V

∂ρ

∂t
dr. (8)

Because of mass conservation it may also be expressed as

u

dS

Figure 1: The mass flow through the surface element dS is ρu dS

dM

dt
= −

∫

S

ρu · dS,

= −
∫

V

∇ · (ρu)dr, (9)
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where Gauss’ divergence theorem was used. Since (8) has to equal (9) for
arbitrary V , the continuity equation

∂ρ

∂t
= −∇ · (ρu) (10)

follows. After defining the comoving derivative

D

Dt
≡ ∂

∂t
+ u · ∇ (11)

we may rewrite this as
Dρ

Dt
+ ρ∇ · u = 0. (12)

A consequence is that for an incompressible fluid, where ρ is strictly constant,
∇ · u = 0.

1.3 Momentum current equation

In a similar way one may obtain the local momentum conservation law in
the form

∂ρu

∂t
+∇ · Ju − f extρ = 0, (13)

with f ext the external force per unit mass. The momentum current is the
sum of the macroscopic momentum current and the pressure tensor,

Ju = ρuu+ P. (14)

Here Pαβ is the flow per unit area of momentum in the α-direction, measured
in the local rest frame, through a surface element normal to the β-direction,
moving with the local velocity u. This may alternatively be described as the
force per unit area in the α-direction, exerted upon each other by the masses
of fluid on either side of the surface element. For our system one can define
a microscopic pressure tensor, describing this momentum flow for a specific
configuration in phase space. It has the form

P
mic(r, t) =

∑

i

m(vi − u(r, t))(vi − u(r, t))δ(r − ri)

+
∑

i<j

∫ 1

0

dλ rijFijδ(r − λri − (1− λ)rj). (15)

6



The continuity equation may be used to simplify (13) to

ρ
Du

Dt
= ρf ext −∇ · P. (16)

1.4 Energy equation

In the simplest case (no internal degrees of freedom, no long range inter-
actions) the energy contained within a (small) volume V may be written
as

E =

∫

V

ρ(
1

2
u2 + V + ǫ̂)dr, (17)

with ρ the (average) mass density within the volume, E the total energy
contained within it, V the external potential per unit mass and ǫ̂(r, t) the
local internal energy per unit of mass. Energy conservation gives rise to the
following equation:

dE

dt
= −

∫

S

u·P·dS+

∫

V

ρu·f̃ extdr−
∫

S

ρ(
1

2
u2+V+ ǫ̂)u·dS−

∫

S

q ·dS, (18)

with f̃ ext ≡ f ext +∇V that part of the external force field that is not caused
by the external potential (of course this may vanish). The first term on the
rhs. describes the work done by displacing and deforming the mass within
V . In case the pressure is uniform it may be identified with −pdV . The
second term describes the average work done by external forces, the third
one changes due to convection and the last term the contributions from the
heat current density q. Combining these two equations and using Gauss’
divergence theorem one obtains

∂[ρ(1
2
u2 + V + ǫ̂)])

∂t
= −∇· [P ·u+ ρu(

1

2
u2 +V + ǫ̂)]+ ρu · f̃ ext−∇· q. (19)

By using both the continuity and the momentum current equation one may
reduce this to

ρ
Dǫ̂

Dt
= −P:∇u−∇ · q, (20)

with the convention A:B ≡
∑

ij AijBji. Further reformulations can be made
by using e.g. the first and second law of thermodynamics to write

Dǫ̂

Dt
= T

Dŝ

Dt
− pDρ

−1

Dt
, (21)
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with ŝ the entropy per unit mass.

Like for the momentum current equation one can define a microscopic heat
current. The microscopic internal energy density satisfies equation (20) with
P and q the microscopic pressure tensor and heat current density respectively.

1.5 Phenomenological laws

In order to obtain a set of closed hydrodynamic equations one has to express
the currents in terms of the densities or of thermodynamically equivalent
fields, such as temperature and chemical potential. For simple fluids the
standard form for the heat current is Fourier’s law of heat conduction,

q = −λ∇T, (22)

where λ is a transport coefficient, called the heat conduction coefficient. The
standard phenomenological expression for the pressure tensor is

P = [p− κ∇ · u]I − 2η
˚̃∇u. (23)

Here p is the local equilibrium pressure, depending on e.g. local temperature
and mass density the same way as in equilibrium; κ is called the bulk viscosity

and η the shear viscosity. In this notation the tilde denotes a symmetric
tensor, so one has Ãij ≡ 1

2
(Aij +Aji), and the dot denotes a traceless tensor,

so in the end

(
˚̃∇u)ij =

1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
− 1

3
δij∇ · u. (24)

The intuitive ideas behind this are: in a system of uniform temperature there
should be no heat currents and in a system of uniform velocity there should
be no momentum currents. For non-uniform systems the currents should de-
pend on the gradients of temperature respectively velocity and the simplest
assumptions one can make are linear relationships. Since ∇T is a vector,
the heat current can simply be assumed being proportional to it. The ve-
locity gradient is a second-degree tensor, the trace of which transforms as
a scalar under coordinate transformations. In an isotropic system the trace
of the pressure tensor and its traceless part transform independently; the
former may be assumed to be proportional to the trace of the velocity gra-
dient and the latter to the traceless part of this tensor. In addition, one can
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easily see from the definition of the microscopic pressure tensor (15) that
this tensor is symmetric (more generally this follows from angular momen-
tum conservation), therefore it should be proportional to the symmetrized

traceless velocity gradient. Note that for an incompressible fluid the bulk
viscosity has to vanish because of (12). Inserting (23) into (16) and (22) plus
(23) into (20) one obtains the hydrodynamic equations.

1.6 The diffusion equation

A much simpler case than the full hydrodynamic equations is the equation
describing the transport of a dilute component in an inert background (often
a fluid in equilibrium). Examples are Brownian motion and the diffusion of
tracer particles (e.g. radioactive isotopes). If ρ(r, t) is the density of these
tracer particles, this quantity satisfies again a continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0, (25)

with u(r, t) the average local velocity of the tracer component. But now
the integral of ρu is not conserved, as it is just the momentum of the tracer
component alone. Instead it is a diffusion current, satisfying again a linear
phenomenological equation, known as Fick’s first law,

ρu = −D∇ρ. (26)

D is called the diffusion constant. Combining (25) and (26) one obtains
Fick’s second law, or the linear diffusion equation

∂ρ

∂t
= D∇2ρ. (27)

In an infinite system with initial density ρ(r, 0) this equation can be solved
easily, e.g. by using Fourier transform, with the result

ρ(r, t) =

∫
dr0G(r − r0, t)ρ(r0, 0). (28)

Here G(r, t) is the diffusion Green function,

G(r, t) =
e−

r2

4Dt

(4πDt)d/2
, (29)
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in d dimensions. As always, the Green function describes the decay of an
initial delta function in space. For linear equations this suffices to describe
the time evolution of an arbitrary initial distribution. An alternative for
using the Green function is expanding the solution in terms of eigenfunc-
tions. In the present case these are plane waves, exp(ik · r), with eigenvalue
−Dk2. For short times the Green function method converges faster (the
Green function is still close to a δ function), but for long times the expansion
in eigenfunctions is more efficient (only those that decay very slowly remain).

[Question: what is a good criterium to separate these regimes?]

1.7 The Euler equations

The simplest form of the hydrodynamic equations is obtained by neglecting
all dissipative terms, i.e. all terms containing transport coefficients. This
leaves the Euler equations:

Dρ

Dt
= −ρ∇ · u,

Du

Dt
= f ext − 1

ρ
∇p, (30)

Dŝ

Dt
= 0.

The last equation is obtained by combining (20) and (21) with the continuity
equation. It teaches us that entropy does not increase under the action of
the Euler equations (the effect of throwing away all dissipative terms!). And
for a system starting out in a homogeneous state, the entropy per unit mass
remains homogeneous throughout.

Let us further restrict ourselves to stationary systems in which the exter-
nal force satisfies f ext = −∇V. Using the identity

(u · ∇)u =
1

2
∇u2 − u× (∇× u)

we can rewrite (30) as

∇(
1

2
u2 + V) +

1

ρ
∇p = u× (∇× u). (31)
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This may be simplified in two important cases:
1) For incompressible fluids ρ is constant and from (30) it follows, by taking
the curl, that ∇ × u ≡ 0 if this is satisfied at the initial time. Then (31)
reduces to Bernoulli’s equation,

∇(
1

2
ρu2 + ρV + p) = 0. (32)

Of course the curl term may be left on the rhs. if it does not vanish.
2) For initially homogeneous systems the thermodynamic relationship

dĥ = Tdŝ+
1

ρ
dp (33)

for the enthalpy per unit mass may be used to replace ∇p/ρ in (30) by ∇ĥ,
leading to

∇(
1

2
u2 + V + ĥ) = u× (∇× u), (34)

where again the rhs. vanishes for curl-free flows.

The Euler equations may also be used to describe sound propagation,
ignoring damping. Using again the condition of initial homogeneity, which
in this case is completely natural, and assuming there is no external potential
(or, its gradient is sufficiently weak), one may rewrite (30) now as

Du

Dt
= −1

ρ
∇p = −1

ρ

(
∂p

∂ρ

)

ŝ

∇ρ, (35)

as the additional ∇ŝ-term vanishes. Inserting this into the time derivative of
the continuity equation and linearizing the resulting equations 1 one obtains
the sound propagation equation

d2ρ

dt2
=

(
∂p

∂ρ

)

ŝ

∇2ρ. (36)

Taking the Fourier transform of this equation, one immediately finds that
the eigenfunctions (the sound modes) are of the form

ρ(r, t) = exp(−iωt± ik · r),

with ω = ±ck and c2 =
(

∂p
∂ρ

)
ŝ
.

1Linearizing implies ignoring all terms that are of higher than linear order in deviations
from equilibrium. Such deviations include gradients of hydrodynamic fields and non-
vanishing local velocities
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1.8 The Navier-Stokes equations

Keeping the dissipative terms, but assuming that the transport coefficients
are constant (which is not really correct; they do depend on temperature,
density etc. But the approximation is a good one in many cases) one obtains
the Navier-stokes equations:

Dρ

Dt
= −ρ∇ · u

ρ
Du

Dt
= ρf ext −∇p+ η∇2u+ (κ+

1

3
η)∇(∇ · u), (37)

ρ
Dǫ̂

Dt
= −p∇ · u+ (κ− 2

3
η)(∇ · u)2 + η[(∂αuβ)(∂βuα) + (∂αuβ)(∂αuβ)]

+λ∇2T,

with summation convention for repeated indices. In order to have a closed
set of equations one has to supplement the Navier-Stokes equations with
equations of state for p and ǫ̂. In most cases these are used to eliminate the
energy density in favor of the temperature.

1.8.1 Simple solutions

In general the Navier-Stokes equations are hard to solve and require heavy
numerical methods. In simple geometries and with simple boundary condi-
tions analytical solutions (or approximate solutions) may be obtained. A few
examples follow:

Couette flow

This is the case of two infinite parallel plates at temperature T , moving
with constant velocity with respect to each other. The most common bound-
ary conditions used are stick boundary conditions, requiring that at contact
points the fluid moves with the same velocity as the plate it touches. Suppose
the plates are parallel to the xy-plane, the lower one is at rest at z = 0 and
the upper one moves at z = z0 with velocity v0x̂ (with â the unit vector in
the direction of the vector a). Then the momentum equation is solved by

u(r) =
z

z0
v0x̂.
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The pressure is constant. If the system is incompressible, Landau and Lifshitz
show in [1] Ch. V that the energy equation may be reduced to an equation
for the temperature of the form

ρcp
DT

Dt
= λ∇2T + Pαβ(∂αuβ). (38)

For Couette flow this gives rise to a temperature profile of the form

T (r) = T0 −
ηv2

0

2λz2
0

z (z0 − z) .

[Question: what changes if η depends on temperature? Hint: multiply
Eq.(38) by ∂T/∂z and integrate in two steps.]

Poiseuille flow

In the case of Poiseuille flow the plates are kept at rest, but the fluid is
driven forward between them by means of a constant homogeneous pressure
gradient (to be specific: assume in the x-direction, with strength px). Under
stick boundary conditions this gives rise to a stationary velocity field

u(r) = −px

2η
z (z0 − z) x̂.

The resulting temperature field now is of the form

T (r) = T0 −
p2

x

12ηλ

[(
z − z0

2

)4

−
(z0

2

)]4

.

2 Green-Kubo formalism

See references[2, 3, 4, 5, 6, 7, 9]

2.1 Tracer diffusion and self diffusion

Tracer diffusion is the phenomenon of diffusion of a very dilute substance
in a macroscopically homogeneous background. The background may be a
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gaseous or a liquid system, but it may also be a crystal or amorphous solid.
In case the tracer particles are mechanically identical to the surrounding
particles constituing the background, but are distinguishable from these, e.g.
through the orientation of their nuclear spin, one talks of self diffusion. In
any case, mutual interactions between different tracer particles should be
negligible.

As argued in subsection 1.6 tracer diffusion is described at the macro-
scopic level by the diffusion equation

∂n(r, t)

∂t
= D∇2n(r, t), (39)

where, this time, I used the number density rather than the mass density. Mi-
croscopically, n(r, t) is a fluctuating field. Its average behavior (i.e. averaged
either over many tracer particles, or over many macroscopically equivalent
realizations of the process) is described by (39). On the other hand it should
also satisfy

n(r, t) =
∑

i

Pi(r, t), (40)

where i runs over all tracer particles and Pi(r, t) is the probability den-
sity for finding particle i at r at time t. Again, the probabilistic nature
comes from averaging over macroscopically equivalent realizations of the ini-
tial state. From (40) and the linearity of the diffusion equation it follows that
on macroscopic time and length scales also Pi(r, t) must satisfy the diffusion
equation.

As stated before, the solution of the diffusion equation starting out from
a δ-function in space as initial condition, in a d-dimensional system is of the
form

GD(r, t) =
1

(4πDt)d/2
exp

(
− r2

4Dt

)
. (41)

Applied to Pi(r, t) this describes the probability density for a tracer particle
to be displaced over r during a time interval of length t. Hence, we may
conclude that the mean squared displacement of a tracer particle as function

14



of time may be found as

〈| r(t)− r(0) |2〉 =

∫
d rGD(r, t)r2,

=

∫
d r

r2

(4πDt)d/2
exp

(
− r2

4Dt

)
,

= 2dDt. (42)

In physical processes the actual probability density will differ from the dif-
fusion Green function, but for long enough times and large enough displace-
ments it will approach to it. This implies that (42) will be valid asymptoti-
cally for t→∞. This is expressed by the famous Einstein relation

D = lim
t→∞

〈| r(t)− r(0) |2〉
2dt

. (43)

Under mild conditions this can be transformed in a few steps to a Green-Kubo

expression:

D =
1

2d
lim
t→∞

d

dt
〈| r(t)− r(0) |2〉,

(provided this limit exists)

= lim
t→∞

1

d
〈(r(t)− r(0)) · v(t)〉,

= lim
t→∞

1

d

∫ t

0

d τ〈v(τ) · v(t)〉,

= lim
t→∞

1

d

∫ t

0

d τ〈v(0) · v(t− τ)〉

=
1

d

∫ ∞

0

d t〈v(0) · v(t)〉. (44)

In these expressions the brackets indicate averaging over an equilibrium
ensemble (e.g. the canonical ensemble). This does not imply though that
the diffusion constant is an equilibrium property that can be obtained from
thermodynamics. It is crucial that the average involves products of phase
space functions at different times (in this case just two velocities of the
same particle). Equilibrium averages of such products are called equilib-

rium time correlation functions. The specific correlation function considered
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here, 〈v(0) · v(t)〉, is known as the velocity autocorrelation function. In equi-
librium, or more generally in stationary states, time correlation functions
possess time translation invariance:

〈A(t1)B(t2)〉 = 〈A(t1 + τ)B(t2 + τ)〉 = 〈A(0)B(t2 − t1)〉. (45)

This has been used in the chain of simplifications leading to (44).

2.2 Frequency and wave number dependent diffusion

coefficient

Fourier and Laplace transform of the diffusion equation leads to

(z +Dk2)ñ(k, z) = n(k, t = 0), or

ñ(k, z) = GD(k, z)n(k, t = 0), with

GD(k, z) =
1

z +Dk2
. (46)

This should describe physical diffusive systems on large time and length
scales, corresponding to the limit of both k and z tending to zero. Hence, it
is reasonable to assume that the full Green function of such a system can be
written in the form

G(k, z) =
1

z + U(k, z)k2
, (47)

with D = lim
k→0
z→0+

U(k, z). (48)

The limit D > 0 should be independent of the direction from which the point
k, z = 0, 0 is approached, as long as Re(z) > 0.

G(k, z), and consequently U(k, z), may be expressed in terms of time corre-
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lation functions:

G(k, z) =

∫ ∞

0

d t e−zt

∫
d r e−ik·r〈δ(r1(t)− r1(0)− r)〉,

=

∫ ∞

0

d t e−zt〈e−ik·(r1(t)−r1(0))〉,

=

[−e−zt

z
〈e−ik·(r1(t)−r1(0))〉

]∞

0

+
1

z

∫ ∞

0

d t e−zt〈−ik · v1(t)e
−ik·(r1(t)−r1(0))〉,

=
1

z
+

∫ ∞

0

d t
e−zt

z
〈−ik · v1(0)e−ik·(r1(0)−r1(−t))〉,

=
1

z
−
[

1

z2
e−zt〈−ik · v1(t)e

−ik·(r1(t)−r1(0))〉
]∞

0

− 1

z2

∫ ∞

0

d te−zt〈(k · v1(0))(k · v1(−t))e−ik·(r1(0)−r1(−t))〉,

G(k, z) =
1

z
− k2

z2

∫ ∞

0

d te−zt〈(k̂ · v1(0))(k̂ · v1(t))e
−ik·(r1(t)−r1(0))〉, (49)

≡ 1

z
− k2

z2
C(k, z). (50)

Here the inverse Laplace transform of C(k, z) is the wave number dependent

velocity autocorrelation function

C(k, t) = 〈(k̂ · v1(0))(k̂ · v1(t))e
−ik·(r1(t)−r1(0))〉. (51)

Some algebra yields

U(k, z) =
zC(k, z)

z − k2C(k, z)
, (52)

or C(k, z) =
zU(k, z)

z + k2U(k, z)
. (53)

From the regular behavior around k, z = 0, 0 of U(k, z) we may conclude
that the diffusion coefficient follows from C(k, z) as

D = lim
z→0

lim
k→0

C(k, z). (54)

This is again the Green-Kubo expression (44). But note that C(k, z) has a
very discontinuous behavior near the origin! For example, one has

lim
k→0

C(k, αk2) =
αD

α +D
.
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So far no physical details have been invoked yet. We only have seen state-
ments of the type ”If a system behaves diffusively on large time and length
scales, its diffusion coefficient can be expressed as ...”. To determine the
actual properties of functions such as U(k, z) for some physical system one
should in some way start from the equations of motion (classically or quantum
mechanically) and derive from these the form of U(k, z). The expressions in
terms of time correlation functions are a very convenient tool for reaching
this goal, but basically no more than that.

Once the function U(k, z) is known explicitly one may rewrite the diffusion
equation as a non-local equation (both in position and time) that takes full
account of all information contained in U(k, z). The form of this equation is

∂n(r, t)

∂t
= ∇2

∫
d r′

∫ t

0

d t′u(r′, t′)n(r − r′, t− t′). (55)

Here u(r, t) is the inverse Fourier and Laplace transform of U(k, z). If the
density changes only on time and length scales that are large compared to
the ranges in time and space of u(r, t), this equation reduces to the ordinary
diffusion equation, with indeed, D =

∫
d r
∫∞

0
d t u(r, t) = U(0, 0).

Remark: Instead of the Laplace transform one often uses the Fourier
transform with respect to time, defined through

f̂(ω) =

∫ ∞

−∞

d t eiωtf(t).

For even functions f this is simply related to the Laplace transform through
f̂(ω) = f̃(iω) + f̃(−iω). Autocorrelation functions 〈f(0)f(t)〉 are even be-
cause of time translation invariance.

2.3 Projection operator formalism

The projection operator method has been introduced in Green-Kubo theory
by Zwanzig[10] and Mori[11]. It can be avoided, but there are a number of
advantages in using it:
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1) The connections between Green-Kubo formalism for hydrodynamic fluc-
tuations and linear response theory become more transparent.

2) The structure of equations remains simpler in more complicated situa-
tions, such as the description of hydrodynamic fluctuations in liquids,

3) The physical ideas underlying the method are interesting and illumi-
nating.

4) It appears very frequently in the physics literature, so it is useful know-
ing it.

As preliminaries we first introduce a Hilbert space of square integrable
functions on phase space under the inner product

〈f | g〉 =
∑

N

∫
dΓρG(Γ)(f(Γ)− 〈f(Γ)〉)∗(g(Γ)− 〈g(Γ)〉). (56)

Here Γ ≡ (r1 · · ·rN ,p1 · · ·pN) and ρG denotes the grand canonical density.

The time evolution of phase functions (i.e. functions depending on the po-
sition and momentum coordinates of the particles in the system) may be
described formally through the action of the Liouville operator, i.e.

df(Γ)

dt
= Lf(Γ) =

N∑

i=1

{
pi

m
· ∂
∂ri
− ∂V (r1 · · ·rN)

∂ri
· ∂
pi

}
f(Γ), (57)

f(Γ(t)) = eLtf(Γ). (58)

In addition the time evolution of an ensemble in phase space is described by2

∂ρ(Γ)

∂t
= −Lρ(Γ), (59)

ρ(Γ, t) = e−Ltρ(Γ, 0) = ρ(e−LtΓ, 0). (60)

For infinite systems or systems with periodic boundary conditions, without
external potential, L commutes with the translation operator T (a), defined
through

T (a)f(r1 · · ·rN ,p1 · · ·pN ) = f(r1 + a · · ·rN + a,p1 · · ·pN). (61)

2Here Γ denotes an arbitrary point in phase space and not the set of coordinates of all
particles, as in (57).
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The reason for this is that in these cases the potential depends on relative
coordinates only and therefore is invariant under the action of T (a). Then
the Hilbert space can be decomposed into Fourier components consisting of
functions of the form

e−ik·Rf(ρ1 · · ·ρN ,p1 · · ·pN)

with R the center of mass and ρi = ri − R. The operator eLt maps each
Fourier component onto itself3

Let us assume that the system contains exactly one tracer particle, which
we will label as particle 1. Consider all square integrable functions un-
der the inner product (56) of its coordinates, r1,p1 and their equilibrium
averages 〈f(r1,p1)〉. They can be decomposed into functions of the form
exp(−ik ·r1)Pn(p1), with Pn a complete set of orthogonal polynomials under
the inner product (56). Note that the equilibrium averages vanish for all
non-zero k. One may investigate how the averages of all these functions over
a non-equilibrium ensemble evolve in time. For k → 0 one should expect this
decay is very slow for the averages 〈exp(−ik · r1)〉, since these are the Fourier
components of the tagged particle density, which ought to satisfy a diffusion
equation. There is no reason to expect an independent slow decay for any
of the other functions of particle 1, since the distribution of its momentum,
if not an equilibrium distribution initially, will approach such a distribution
rapidly. Averages of other phase space functions of particle 1 may have a
small component that decays diffusively as well, because the microscopic
function that on average decays according to the diffusion equation is not
entirely identical to exp−ik · r1. But these slow decays are not independent
of the decay of 〈exp(−ik · r1)〉 and in the projection operator formalism it
is the latter that is entirely representing them. There could in principle be
phase space functions involving other particles that would decay slowly, but
for the time being we will assume that the ”bath” consisting of these parti-
cles is perfectly in equilibrium, or at most shows small deviations that are
determined completely again by the tagged particle density 〈exp(−ik · r1)〉.

3One may also describe the momenta in the center of mass frame, in other words set
the total momentum equal to zero. For the decomposition into Fourier components this
is not necessary, but in doing so-called molecular dynamics simulations it is the standard
choice.

20



We now introduce the projection operator4 5 with the idea that the aver-
age time evolution of the set of functions nt(k) will determine the slowly
decaying part of an arbitrary function f(r1,p1). In addition we define

P⊥ = 1− P (62)

and
L̂ = P⊥LP⊥. (63)

Let the system to be considered be described by an ensemble of the form

ρ(t) = ρ0(1 + ∆(t)) = ρ0 (1 + P∆(t) + P⊥∆(t)) , (64)

with ρ0 the Grand canonical distribution. The time evolution of this is
described by Liouville’s equation (59)

∂ρ(t)

∂t
= −Lρ(t) = −ρ0L∆(t), (65)

where the identity Lρ0 = 0 was used. This may be worked out into the two
equations

∂P∆(t)

∂t
= −PLP⊥∆(t), (66)

∂P⊥∆(t)

∂t
= −P⊥LP⊥∆(t)− P⊥LP∆(t). (67)

In deriving (66) we used PLP = 0, following from 〈nt(k) | L | nt(k)〉 = 0.
Eq. (67) can be solved for P⊥LP∆(t), as

P⊥∆(t) = −
∫ t

0

d τ e−
bL(t−τ)P⊥LP∆(τ) + e−

bLtP⊥∆(0). (68)

Substitution into (66) results into

∂P∆(t)

∂t
=

∫ t

0

d τPLP⊥e
− bLτP⊥LP∆(t− τ)−PLP⊥e

− bLtP⊥∆(0). (69)

4There is no need here to subtract the averages of phase space functions, as is done in
(56). For k 6= 0 the averages all vanish. For k = 0 nt(k) reduces to a constant, so it’s
time evolution is trivial.

5In order to have P to project onto slowly decaying functions only one should specify
an upper cut-off on the value of k. The choice of this is somewhat arbitrary. Fortunately,
since the time evolution in the present case does not couple different values of k this
does not really matter. For any value of k the projection operator projects onto a single
function within the corresponding set.
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Next use:

Lnt(k) = Le−ik·r1 = −ik · p1

m1
e−ik·r1 ≡ −ikjt(k). (70)

Insert this into (69) letting the first L act to the left. This yields

∂P∆(t)

∂t
= −

∑

k

k2

∫ t

0

d τ
〈
jt(k)|e− bLτ jt(k)

〉
P∆(t − τ)−PLP⊥e

− bLtP⊥∆(0).

(71)
Let us denote the average tracer density by nt(k, t). It is given by

nt(k, t) =
∑

N

∫
dΓ ρ0[1 + ∆(t)]nt(k)

= δk0 + 〈∆(t) | nt(k)〉 (72)

With this notation we may rewrite the adjoint of (71) as

∂nt(k, t)

∂t
= −k2

∫ t

0

d τ
〈
jt(k) | e bLτjt(k)

〉
nt(k, t−τ)+

〈
∆(0) | P⊥e

bLtP⊥Lnt(k)
〉
,

(73)

where we used that −L̂ is the adjoint of L̂. We expect that for the perturba-
tions under consideration (only particle 1 out of equilibrium) the propagator

e
bLt induces a rapid decay to zero6. Then the second term on the rhs. of (73)

may be neglected and we recover the generalized diffusion equation

∂nt(k, t)

∂t
= −k2

∫ t

0

d τ u(k, τ)n̄t(k, t− τ). (74)

with now
u(k, t) =

〈
jt(k) | e bLtjt(k)

〉
. (75)

From (74) we see that
〈
jt(k) | e bLτjt(k)

〉
describes the response of ∂nt(k, t)/∂t

to nt(k, t− τ). The orthogonal projection in e
bLτ prevents double counting of

6The assumption underlying this is that it is true for k = 0, where all functions depend
on p1 only. The function nt(0) is just unity and does not decay. The averages of all
functions of p1 orthogonal to this under the inner product (56) are expected to decay
rapidly to their equilibrium value, which is zero, because it is just the inner product with
the unit function). Then it will remain true for small k, because the spectrum of L̂ depends
smoothly on k.
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the response to nt(k, τ
′), with t− τ < τ ′ < t. In the limit k → 0 nt(k, τ

′) is

not excited and e
bLτ becomes identical to eLτ , as follows from (53).

We may also use the projection operator technique for deriving (53) in an
alternative way. First note the identity

C(k, z) =
〈
jt(k) | (z −L)−1jt(k)

〉
. (76)

Next we need a chain of algebraic operator identities:

P⊥(z−L)−1P⊥ = P⊥

[
(z − L̂ )−1 + (z − L̂ )−1(PLP⊥ + P⊥LP)(z − L)−1

]
P⊥,

again using PLP = 0. Next use P⊥(z − L̂ )−1P = 0 to obtain

P⊥(z−L)−1P⊥ = P⊥(z−L̂ )−1
[
1 + P⊥LP

{
(z − L̂ )−1 + (z − L̂ )−1PLP⊥(z −L)−1)

}]
P⊥,

The same identity has been used again for (z−L)−1, plus P(z−L̂ )−1P⊥ = 0.
Using this once more leads to

P⊥(z−L)−1P⊥ = P⊥(z−L̂ )−1
[
1− | ikjt(k)

〉〈
nt(k) | (z − L̂)−1nt(k)

〉
ikjt(k) | (z − L)−1

]
P⊥.

(77)

Next use (z−L̂ )−1nt(k) = nt(k)/z and take the inner product 〈jt(k) | · · · jt(k)〉
on both sides. This reproduces eq. (52);

C(k, z) = U(k, z)(1− k2

z
C(k, z)).

An important remark to be made here is that the tagged particle density-
density time correlation function satisfies exactly the same generalized diffu-
sion equation (73) as the tagged particle density itself. This follows from the
identities

〈nt(k) | nt(k, t)〉 =
〈
nt(k) | eLtnt(k)

〉
,

and 〈∆(t) | nt(k)〉 =
〈
e−Lt∆(0) | nt(k)

〉
=
〈
∆(0) | eLtnt(k)

〉
.

The right hand sides are identical in case P⊥∆(0) = 0. This demonstrates
Onsager’s regression hypothesis: Thermally excited fluctuations in an equilib-
rium system on average decay in exactly the same way as small macroscopic
deviations from equilibrium. The decay of the probability distribution P (r, t)
for the position of a tagged particle according to the (generalized) diffusion
equation is just one example of this.
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2.4 Hydrodynamic equations for a simple fluid

In this section I will represent the hydrodynamic fields of a simple fluid
primarily by number density, momentum density and energy density. Their
Fourier components are given, microscopically, by

n̂(k) =
N∑

i=1

e−ik·ri, (78)

Ĝ(k) =

N∑

i=1

pie
−ik·ri, (79)

ǫ̂(k) =
N∑

i=1

ǫie
−ik·ri, (80)

with

ǫi =
p2

i

2m
+

1

2

∑

j 6=i

φ(rij). (81)

Since we will only consider small deviations from total equilibrium we need
not define the densities in a local comoving frame, as in (2,3). Other hydro-
dynamic fields may be defined as linear combinations of the above ones. For
example the temperature field may be introduced as

T (r, t) = T0(r, t) +

(
∂T

∂n

)

ǫ

δn(r, t) +

(
∂T

∂ǫ

)

n

δǫ(r, t), (82)

with δn(r, t) = n(r, t)−n0(r, t) and δǫ(r, t) = ǫ(r, t)−ǫ0(r, t) the deviations
of number and energy density from their equilibrium values. For the Fourier
components this leads to

T̂ (k, t) =

(
∂T

∂n

)

ǫ

n̂(k, t) +

(
∂T

∂ǫ

)

n

ǫ̂(k, t). (83)

This has to be generalized slightly as k is increased; in fact the dependence of
temperature on density and energy density exhibits mild non-local effects due
to the interactions between particles. In Appendix A it is shown how these
effects can be taken into account. On our Hilbert space we may introduce
the projection operator P , projecting for each k onto the d+ 2 (five in three

24



dimensions) densities specified above. For a compact description of this it is
useful introducing the d+ 2-dimensional vector

ψ(k) =

n̂(k)

Ĝ(k)
ǫ̂(k)

(84)

plus the adjoint vector

φ(k) = ψ(k) ◦ χ−1(k). (85)

Here ◦ denotes the simple inner product a ◦ b =
∑

i aibi in the (d + 2)-
dimensional space spanned by ψ(k). In other words,

φi(k) =
∑

j

ψj(k)χ−1
ji (k).

The matrix χ is defined through

χij(k) = 〈ψi(k) | ψj(k)〉 , (86)

from which one immediately obtains the identities

〈ψi(k) | φj(k)〉 = 〈φi(k) | ψj(k)〉 = δij .

In terms of these vectors the projection operator may be expressed as

P =
∑

k

|ψ(k)
〉
◦
〈
φ(k)|, (87)

=
∑

k

|φ(k)
〉
◦
〈
ψ(k)|. (88)

This may be rewritten in a physically more appealing form as

P =
1

V

∑

k

[
|n̂(k)

〉〈
ν̂(k)|+ β0

mn0
|Ĝ(k)

〉
·
〈
Ĝ(k)| − |ǫ̂(k)

〉〈
β̂(k)|

]
. (89)

Here we introduced the fields β and ν. These are defined through

β(r, t) =
1

kBT (r, t)
, (90)

ν(r, t) = β(r, t)µ(r, t), (91)
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with µ the chemical potential. Precise definitions and a derivation of (89) are
given in Appendix A. An alternative for (89) may be obtained by replacing
the energy density ǫ̂(k) and the variable ν̂(k) by k-dependent generalizations
of the entropy per unit mass, σ̂(k) and the pressure, p̂(k) (Appendix A). This
yields

P =
β0

V n0

∑

k

[
| n̂(k)

〉〈
p̂(k) | + 1

m
| Ĝ(k)

〉
·
〈
Ĝ(k) | + n2

0 | σ̂(k)
〉〈
T̂ (k) |

]
.

(92)
Now we are ready to formulate the hydrodynamic equations linearized around
a total equilibrium state in a homogeneous system. Set again

ρ(t) = ρ0[1 + P∆(t) + P⊥∆(t)]. (93)

Like in the case of tracer diffusion the equation for the time evolution can be
split up as

∂P∆(t)

∂t
= −PLP∆(t) −PLP⊥∆(t), (94)

∂P⊥∆(t)

∂t
= −P⊥LP⊥∆(t)− P⊥LP∆(t), (95)

from which P⊥∆(t) can be solved as

P⊥∆(t) = −
∫ t

0

d τ e−
bL(t−τ)P⊥LP∆(τ) + e−

bLtP⊥∆(0). (96)

Now substitution into (94) gives

∂P∆(t)

∂t
= −PLP∆(t) +

∫ t

0

d τPLP⊥e
− bLτP⊥LP∆(t− τ)

−PLP⊥e
− bLtP⊥∆(0). (97)

Set ψ(k, t) =
〈
∆(t) | ψ(k)

〉
=
〈
ψ(−k) | ∆(t)

〉
. Using (88) and neglecting the

last term in (97) one obtains

∂ψ(k, t)

∂t
= φ(k, t) ◦

〈
ψ(k) | Lψ(k)

〉

+

∫ t

0

d τφ(k, t− τ) ◦
〈
ψ(k) | PLP⊥e

bLτP⊥LPψ(k)
〉
. (98)
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Next we have to introduce some further notation:

Ω(k) =
−1

ikV

〈
ψ(k) | Lψ(k)

〉
, (99)

U(k, t) =
−1

k2V

〈
ψ(k) | LP⊥e

bLtP⊥Lψ(k)
〉
. (100)

These matrices may be reexpressed in terms of the currents,

J(k) =
Lψ(k)

−ik , (101)

which are called this way in view of the conservation laws7

dψi(k)

dt
= −ik · Ji(k). (102)

In terms of these we have

Ω(k) =
1

V

〈
ψ(k) | J(k)

〉
, (103)

U(k, t) =
1

V

〈
J(k) | e bLtJ(k)

〉
. (104)

We can now rewrite (98) in terms of the generalized hydrodynamic equations

∂ψ(k, t)

∂t
= V

[
−ikφ(k, t) ◦ Ω(k)− k2

∫ t

0

d τφ(k, t− τ) ◦ U(k, τ)

]
. (105)

The Laplace transform of this equation reads

zψ̃(k, z) = V φ̃(k, z) ◦ Ω
[
−ikΩ(k)− k2U(k, z)

]
+ψ(k, t = 0). (106)

These equations are still very general. They provide a good description of the
macroscopic time evolution of a fluid close to equilibrium, whenever all slow
variations in the long-wave-length Fourier components of our Hilbert space
can be parameterized by the behavior of number density, momentum density
and energy density alone. In order to have them reducing to the ordinary
(linearized) hydrodynamic equations on macroscopic time and length scales,
the limit lim k→0

z→0+
U(k, z) has to exist (and be positive definite!), just like in

the case of the diffusion equation.

7for the interpretation of (102) as a set of conservation laws it is crucial that the limit
of J(k) for k→ 0 exists, implying dψ(0)/dt = 0.
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2.4.1 Specific form of the hydrodynamic equations

To appreciate that indeed (105,106) represent the hydrodynamic equations
as we have seen them, one has to work out the matrices Ω and U more
explicitly. First of all, we specify the hydrodynamic densities and currents
in more detail:

Lmn̂(k) = −ik · Ĝ(k), (107)

LĜ(k) = −ik · P̂(k), (108)

T0Lσ̂(k) = −ik · Ĵq(k). (109)

Here Ĝ(k) was defined in (79). The Fourier components of the microscopic

pressure tensor P̂(k) are defined as

P̂(k) =
∑

i

pipi

m
e−ik·ri −

∑

i<j

e−ik·ri − e−ik·rj

ik · rij
rijFij. (110)

From this the k-dependent pressure is obtained as

p̂(k) = Pk̂k̂:P̂(k). (111)

The Fourier components of the microscopic density of entropy per particle
follow from the conditions

〈σ̂(k) | p̂(k)〉 = 0 (112)

plus

lim
k→0

σ̂(k) =
1

n0T0

[
ǫ̂(k)− p0 + ǫ0

n0
n̂(k)

]
. (113)

As shown in Appendix A this leads to

σ̂(k) =
1

n0T0
[ǫ̂(k)− h0(k)n̂(k)], (114)

with h0(k) the k-dependent enthalpy density (defined there). From this the
heat current is obtained as

Ĵq(k) =
−T0

ik
Lσ̂(k). (115)
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Notice that, thanks to (112), PĴq = 0. The matrix elements of L may now
be worked out as

〈
n̂(k) | Ln̂(k)

〉
=
〈
n̂(k) | Lǫ̂(k)

〉
=
〈
ǫ̂(k) | Lǫ̂(k)

〉

=
〈
ǫ̂(k) | Ln̂(k)

〉
= 0, (116)

〈
Ĝ(k) | LĜ(k)

〉
= 0, (117)

〈
n̂(k) | LĜ(k)

〉
=
〈
Ĝ(k) | Ln̂(k)

〉
= − 1

m

〈
Ĝ(k) | ik · Ĝ(k)

〉

=
−ikV n0

β0

, (118)

〈
Ĝ(k) | Lσ̂(k)

〉
=
〈
σ̂(k) | LĜ(k)

〉
= ik

〈
σ̂(k) | p̂(k)

〉
= 0. (119)

The wave number and frequency dependent linearized hydrodynamic equa-
tions may now be cast in more explicit form. The continuity equation be-
comes

∂n(k, t)

∂t
= −ik

m
·G(k, t) = −ik · n0u(k, t), (120)

with u(k, t) again the Fourier transform of the local velocity. The ”Navier-
Stokes equation” becomes

∂G(k, t)

∂t
= −ikp(k, t)

− k2

n0m

∫ t

0

d τ

[
η(k, τ)G(k, t− τ) + {κ(k, τ) +

1

3
η(k, τ)}k̂k̂ ·G(k, t− τ)

]

−k
2n0β

2
0 k̂

V

∫ t

0

d τ
〈
P⊥(k̂k̂:P̂(k) | e bLτP⊥k̂ · Ĵq(k)

〉
kBT (k, t− τ). (121)

Here the transport kernels η and κ are defined as

η(k, t) =
β0

V

〈
k̂l̂:P̂(k) | e bLtk̂l̂:P̂(k)

〉
, (122)

κ(k, t) +
2(d− 1)

d
η(k, t) =

β0

V

〈
P⊥k̂k̂:P̂(k) | e bLtP⊥k̂k̂:P̂(k)

〉
, (123)

with l̂ an arbitrary unit vector perpendicular to k̂. The equation of heat
conduction, finally, is of the form

∂σ(k, t)

∂t
= − k2

n0T0

∫ t

0

d τ λ(k, τ)T (k, t− τ) (124)

−kBβ
2
0k

2

mn0V

∫ t

0

d τ
〈
P⊥k̂ · Ĵq(k) | e bLτP⊥k̂k̂:P̂(k)

〉
k̂ ·G(k, t− τ),
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with

λ(k, t) =
n2

0kBβ
2
0

V

〈
P⊥k̂ · Ĵq(k) | e bLtP⊥k̂ · Ĵq(k)

〉
. (125)

Like in the case of tracer diffusion the k- and z-dependent transport coeffi-
cients may also be expressed in terms of current-current correlation functions
with unprojected time evolution operators. Setting

U(k, z) =
1

V

〈
P⊥J(k) | (z − L̂)−1P⊥J(k)

〉
(126)

C(k, z) =
1

V

〈
P⊥J(k) | (z − L)−1P⊥J(k)

〉
(127)

one has the relationship

U(k, z) = C(k, z)
[
I + k2

{〈ψ(k) | ψ(k)〉
V

z + ikΩ− k2C(k, z)
}−1

C(k, z)
]
.

(128)

In the limit k → 0 U and C become equal again. In this limit we ob-
tain the standard Green-Kubo expressions for the hydrodynamic transport
coefficients. For the shear and bulk viscosity,

η =
β0

V

∫ ∞

0

d t
〈
k̂l̂:P(0)k̂l̂:P(t)

〉
, (129)

κ =
β0

V

∫ ∞

−∞

d t 〈 1

d
Tr[P(0)]−

(
∂p

∂e

)

n

(H − 〈H〉)−
(
∂p

∂n

)

e

(N − 〈N〉)− pV |
(130)

1

d
Tr[P(t)]−

(
∂p

∂e

)

n

(H − 〈H〉)−
(
∂p

∂n

)

e

(N − 〈N〉)− pV 〉 . (131)

Here P(t) is 1
d
TrP̂(k = 0) evaluated as function of the particle coordinates

at time t. In (131) we have used (111) and subtracted pV = 〈p̂(k = 0)〉.
By combining Eqs. (125), (115), (112) and (107) one finds that the heat
conduction coefficient becomes

λ =
β0

dV T0

∫ ∞

0

d t

〈
Je(0)− h0

m
G| · Je(t)−

h0

m
G

〉
. (132)

Here the energy current is

Je(Γ) =
∑

i

ǫi
pi

m
+

1

2

∑

i<j

(pi

m
· Fij

)
rij (133)

and G is the total momentum.
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2.4.2 Positivity of transport coefficients

For Re(z) > 0 the real parts of η(k, z), λ(k, z) and κ(k, z)+2(d−1)η(k, z)/d
are positive. This follows from the antihermiticity of P⊥L̂P⊥: the operator
(z − L̂) (and therefore also its inverse) has a spectrum with a positive real
part. For z = iω Forster[3] gives the following, more subtle argument: one
has

I ≡ 〈
∫ T

−T

d t1 e
L̂t1J(k)e−iωt1 |

∫ T

−T

d t2 e
L̂t2J(k)e−iωt2 〉 ≥ 0. (134)

Time translation invariance allows rewriting I as

I = T

∫ 2T

0

d τ
(
1− τ

2T

) [〈
J(k) | eL̂τJ(k)

〉
e−iωτ + cc

]
. (135)

Here τ = t2 − t1 and an integration has been performed over (t1 + t2)/2.

If
〈
J(k) | eL̂τJ(k)

〉
= o(1/τ) for τ → ∞ the contribution of the term with

τ/(2T ) will vanish in the limit T → ∞. In this case the remaining term
approaches combinations such as [η(k, iω)+η(k,−iω)]. From (134) it follows
that this is ≥ 0. The possibility that transport coefficients are 0 or infinite
remains open! For both possibilities there exist ample examples.

2.4.3 Mixtures

It is straightforward extending the Green-Kubo formalism to mixtures of s
species of particles with masses m1 · · ·ms and interparticle potentials φln(rij),
depending on the species l and n of the particles i and j. The hydrodynamic
space is now represented by the mass densities

ρ̂l(k) ≡ ml

Nl∑

j=1

e−ik·rj , (136)

together with momentum density and energy density, which are defined as
before, except that masses and potentials now depend on particle species.
The matrix χ has to be generalized to an (s+4)×(s+4) dimensional matrix
with matrix elements

χln(k) = 〈ρ̂l(k) | ρ̂n(k)〉 ; χle(k) = 〈ρ̂l(k) | ǫ(k)〉 (137)
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etc. The fields adjoint to the mass densities are ν̃l(k) = ν̂l(k)/ml, with µl

the chemical potential of species l. The other adjoint fields do not change.
The matrix Ω now has matrix elements

ΩlG = ΩGl = ρl0kBT0, (138)

between mass densities and the k̂-component of the momentum density, in
addition to the matrix elements between ǫ̂(k) and Ĝ(k) · k̂. For simplicity
we now concentrate on the equations in the limit of k, z → 0. These become

∂ρl(k, t)

∂t
= −ρl0

ρ0
ik ·G(k, t)− k2

[
∑

n

Llnν̃n(k, t)− Lleβ(k, t)

]
(139)

∂ǫ(k, t)

∂t
= −p0

ρ0

ik ·G(k, t)− k2

[
1

n0

λT (k, t) +
∑

n

Lenν̃n(k, t)

]
(140)

∂G(k, t)

∂t
= −ikp(k, t)− k2

[
ηG(k, t) + (κ+

d− 2

d
η)k̂k̂:G(k, t)

]
(141)

Here the Onsager coefficients were introduced, defined as

Lln = lim
k→0

−1

k2

∫ ∞

0

d t
〈
P⊥Lρl(k) | eLtP⊥Lρn(k)

〉
,

=
1

d

∫ ∞

0

d t 〈Jl(0) · Jn(t)〉 , (142)

Lle =
1

d

∫ ∞

0

d t 〈Jl(0) · Jq(t)〉 , (143)

Lel =
1

d

∫ ∞

0

d t 〈Jq(0) · Jl(t)〉 . (144)

Here the currents Jl are given explicitly by

Jl =

Nl∑

j=1

pj −
ρl0

ρ0
G. (145)

Notice that a mass-current of species l is not only driven by a gradient in
the mass density of this species, but may also result from gradients in the
other mass densities as well as from a temperature gradient. Similarly, a heat
current may also be the result of gradients in the densities. Notice further
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that the Onsager coefficients are not linearly independent. From Eqs. (142-
144) and (145) one obtains the relationships

∑

l

Lln =
∑

n

Lln = 0, (146)

∑

l

Lle =
∑

l

Lel = 0. (147)

2.4.4 Onsager relations

Onsager was the first one to note the symmetry relations

Lln = Lnl, (148)

Lle = Lel. (149)

These are a direct consequence of time reversal invariance of the equations
of motion. The Green-Kubo formalism makes this particularly transparent.
Define the time-reversal operator T by its action on an arbitrary phase func-
tion;

T f(r1 · · ·rN ,p1 · · ·pN) = f(r1 · · ·rN ,−p1 · · · − pN ). (150)

Obviously T 2 = 1 and for a Hamiltonian that is even in the momenta8 one
has

T LT = −L, (151)

T eLtT = e−Lt. (152)

On the basis of this, one obtains
〈
J1 | eLtJ2

〉
=

〈
T J1 | T eLtT T J2

〉
,

=
〈
T J1 | e−LtT J2

〉
,

=
〈
T J2 | eLtT J1

〉
.

(153)

If J1 and J2 have the same, definite parity in the momenta the time reversal
operators in the last equality may be taken out by replacing pi by −pi in
the equilibrium average 〈〉. This is the basis of all the Onsager symmetries
contained in (142-143).

8This means in practice that the forces do not depend on velocities. In the presence of
a magnetic field time reversal requires reversal of this field in addition to the momenta.

33



2.5 Linear response theory

The Green-Kubo formalism may also be used to describe the response of
densities to small driving fields. Also in this case Einstein’s treatment of
Brownian motion has been ground laying.

2.5.1 Einstein relation between conductivity and diffusion coeffi-
cient

Einstein considered the electrical current of charged tracer particles in an
equilibrium background due to a driving field on the one hand and to density
gradients on the other. Phenomenologically these may be written as

jel = −σ∇Φ, (154)

jdiff = −Det∇nt, (155)

with Φ the Coulomb potential, et the charge of a tracer particle and nt(r, t)
the number density of these particles. He noted that in equilibrium both of
these contributions would still be present, but ought to cancel each other.
Therefore, if one can establish a relationship between ∇Φ and ∇nt in an
equilibrium state, this will translate into a relationship between σ and D.
Ensemble theory allows one to establish just such a relationship. First of all,
we want to use the canonical ensemble to find out how the chemical potential
changes if a system is placed in an external potential. For simplicity, first
look at the case that species 1 · · · s are subjected to uniform potentials (per
particle) φ1 · · ·φs This leads to a canonical partition function

Z(T, V,Ni, φi) = exp(−
∑

i

Niβφi)Z(T, V,Ni), (156)

with Z(T, V,Ni) the partition function in absence of external potentials.
From this one finds

µi(T, V,Ni, φi) =
∂(−kBT lnZ)

∂Ni
= φi + µ̃i(T, V,Ni), (157)

with µ̃i the intrinsic chemical potential of species i. For a nonuniform system
with gradients on macroscopic length scales this may be generalized to a local
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relationship9

µi(T (r), ni(r), φi(r)) = φi(r) + µ̃i(T, ni(r)). (158)

In an equilibrium system µi should be uniform, hence

∇µ̃i(T, ni(r)) = −∇φi(r). (159)

In a system where only the tracer density is nonuniform one has

∇µ̃t =
∂µt

∂nt

∇nt. (160)

Substitution of (158-159) into (154-155), using φt = etΦ, and requiring the
vanishing of the sum of these currents leads to the Einstein relation

σ

e2t
= D

(
∂nt

∂µt

)

T,nb

. (161)

For the tracer particles the derivative
(

∂nt

∂µt

)
T,nb

may be worked out in detail

by using the Grand canonical ensemble: since tracer particles do not interact
it follows that the Grand canonical partition function for a system containing
some tracer particles assumes the form

Ξ(µt, µb, T, V ) = Ξ0(µb, T, V )

[
1 +

∞∑

nt=1

exp ntβµt
∆(µb, T, V )nt

nt!

]

= Ξ0 exp{exp[βµt]∆(µb, T, V )}, (162)

where ∆(µb, T, V ) is the ratio of the Grand partition function in the presence
of one tracer particle and that without any. From this one obtains for the
average tracer density

nt =
1

V

(∂kBT log Ξ)

∂µt
= exp[βµt]∆(µb, T, V ), (163)

leading to the identity (
∂nt

∂µt

)

T,nb

= βnt, (164)

9Adequate generalizations are also known in the case of strong gradients[12].
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solved by nt = C exp βµt. Substituting this into the Einstein relation (161)
one obtains

σ =
nte

2
tD

kBT
. (165)

Linear response theory allows one to generalize this to a frequency and wave
number dependent relationship. Set

H = H0 + ∆H(t)

(166)

with ∆H(t) = et

∑〈Nt〉
j=1 Φ(rj , t) = et

V

∑
k

Φ(k, t)nt(−k, t) and, for the time
being, ∆H(t) = 0 for t < 0. The corresponding Liouville operator, the time
dependent phase space density and the Liouville equation may be split up
similarly as

L = L0 + ∆L(t), (167)

ρ = ρ0(1 + ∆(t)), (168)

∂ρ

∂t
= −(L0 + ∆L(t))ρ. (169)

Linearization of the Liouville equation yields

∂∆(t)

∂t
= −L0∆(t)−∆L(t) log ρ0. (170)

Under the projection operator formalism ∆(t) is split up again as

∆(t) = P∆(t) + P⊥∆(t) (171)

and P⊥∆(t) can be solved as

P⊥∆(t) = −
∫ t

0

d τ e−L̂0(t−τ) [P⊥L0P∆(τ) + P⊥∆L(τ) log ρ0] , (172)

leaving for P∆(t) the equation

∂P∆(t)

∂t
= −PL0P∆(t)−P∆L log ρ0 (173)

+

∫ t

0

d τ PL0P⊥ exp(−L̂0τ) [P⊥L0P∆(t− τ) + P⊥∆L(t− τ) log ρ0] .
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Let us now apply this to the case of tracer diffusion in an external electric
field. In this case we have

P =
1

〈〈Nt〉〉
∑

k

| nt(k) 〉 〈 nt(k) | , (174)

∆L(t) =
∑

j

etE(rj, t) ·
∂

∂pj
, (175)

with E(r, t) = −∇Φ(r, t). Applying ∆L(t) to the Grand canonical distribu-
tion we obtain

∆L(t) log ρ0 = −
Nt∑

j=1

βpj

m
· etE(rj, t),

= −β
∫
d r jt(r) · etE(r, t),

= − β
V

∑

k

jt(k) · etE(−k, t), (176)

with jt(r) =
∑Nt

i=1(pi/mt)δ(r−ri). In the case of tracer diffusion P∆L log ρ0

vanishes. Inserting (174) and (176) into (174) we obtain

∂P∆(t)

∂t
=

∑

k

∫ t

0

d τ
| nt(k) 〉
〈Nt〉

〈 k̂ · jt(k) | exp(−L̂0τ)k̂ · jt(k) 〉
〈Nt〉

[
−k2 〈nt(k) | ∆(t− τ)〉 − β〈Nt〉

V
etik ·E(−k, t− τ)

]
.(177)

The second term between square brackets describes the ”direct response”
of ∆(t) to the electric field, the first term the ”indirect response” due to
diffusive decay of the density field resulting from the action of the electric
field at preceding times. From this one obtains the hydrodynamic equation
for the tracer density as

∂nt(k, t)

∂t
=

〈
∂P∆(t)

∂t

∣∣∣∣nt(k)

〉

=

∫ t

0

d τ U(k, τ)
[
−k2nt(k, t− τ) + βetnt0ik ·E(k, t− τ)

]
.

(178)
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The Laplace transform of this reads

zñt(k, z) = Ũ(k, z)
[
−k2ñt(k, z) + βetnt0ik · Ẽ(k, z)

]
+ nt(k.t = 0).

(179)

2.5.2 Linear response theory for full hydrodynamics

It is straightforward now extending the above derivations to the case of
the full hydrodynamic equations. First of all we have to evaluate the term
P∆L log ρ0. From (176) this immediately follows as

P∆L log ρ0 =
β

M
ik ·G(k)

∑

l

[nl0φl(−k, t)] , (180)

with M the average total mass. This contributes an external force term
to the Navier-Stokes equations. Furthermore, as follows from (177), the
external potentials have the effect of consistently replacing ∇νl by the sum
of the gradients of the intrinsic ν̃l and of βφl. In summary, the linearized
hydrodynamic equations in presence of external potentials become

∂ρ(k, t)

∂t
= −ik ·G(r, t), (181)

∂G(k, t)

∂t
= −ik

[
p(k, t) +

∑

l

nl0φl(k, t)

]

− k2

n0m

∫ t

0

d τ

[
η(k, τ)G(k, t− τ) + {κ(k, τ) +

d− 2

d
η(k, τ)}k̂k̂ ·G(k, t− τ)

]

−k
2n0β

2
0 k̂

V

∫ t

0

d τ
〈
P⊥(k̂k̂:P̂(k) | e bLτP⊥k̂ · Ĵq(k)

〉
kBT (k, t− τ). (182)

∂σ(k, t)

∂t
= − k2

n0T0

∫ t

0

d τ

[
λ(k, τ)T (k, t− τ) +

∑

l

Lel(k, τ)
[
ν̃l(k, t− τ) + βφl(k, t− τ)

]
]

−kBβ
2
0k

2

mn0V

∫ t

0

d τ
〈
P⊥k̂ · Ĵq(k) | e bLτP⊥k̂k̂:P̂(k)

〉
k̂ ·G(k, t− τ), (183)

∂ρl(k, t)

∂t
− ρl0

ρ0

∂ρ(k, t)

∂t
= −k2

∫ t

0

d τ
∑

n

Lln(k, τ)
[
ν̃n(k, t− τ) + βφn(k, t− τ)

]

+k2

∫ t

0

d τ Lle(k, τ)β(k, t− τ). (184)
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2.5.3 Quantum mechanical linear response theory

Let the Hamiltonian of a quantum mechanical system be given by

H = H0 −∆H = H0 −
∑

j

Ajφj(t). (185)

The density operator describing this system satisfies

∂ρ

∂t
=
i

~
[ρ,H]. (186)

Set ρ(t) = ρ0 + ∆ρ(t) and linearize (186). This leads to

∂∆ρ

∂t
=
i

~

{
[∆ρ,H0]−

∑

j

[ρ0, Aj]φj(t)

}
. (187)

This is solved by

∆ρ(t) = −
∫ t

0

d τ e−
i(t−τ)H0

~

i

~

∑

j

[ρ0, Aj]e
i(t−τ)H0

~ φj(τ),

≡ −
∫ t

0

d τ e−L0(t−τ) i

~

∑

j

[ρ0, Aj]φj(τ). (188)

The operator L now is defined through

LA = − i
~
[A,H] =

dA

dt
. (189)

This is solved by

A(t) = eLtA ≡ e
iHt

~ Ae−
iHt

~ . (190)

For the expectation value (under linearized dynamics) of an operator B one
finds

〈B(t)〉 = Tr(∆ρB) = − i
~

∫ t

0

d τ Tr
[
Be−L0(t−τ)

∑

j

[ρ0, Aj]φj(τ)
]
,

= − i
~

∫ t

0

d τ Tr
[∑

j

[ρ0, Aj ]e
L0(t−τ)Bφj(τ)

]

= − i
~

∫ t

0

d τ Tr
[∑

j

[ρ0, Aj ]B(t− τ)φj(τ)
]

= − i
~

∫ t

0

d τ Tr
[∑

j

ρ0[Aj , B(t− τ)]φj(τ)
]
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This may be abbreviated to

〈B(t)〉 = 2i

∫ t

0

d τ
∑

j

MBAj
(t− τ)φj(τ), (191)

with

MBA(t) =
−1

2~
Tr
{
[ρ0, A]eL0tB

}
,

=
−1

2~
Tr
{
ρ0[A, e

L0tB]
}
,

=
−1

2~

〈
[A, eL0tB]

〉
0
. (192)

In the canonical ensemble, with ρ0 = e−βH0 , [ρ0, A] is expressible by the
Kubo-identity

[e−βH0 , A] =

∫ β

0

d λ e−(β−λ)H0 [A,H0] e
−λH0

≡ −~

i

∫ β

0

d λ e−(β−λ)H0 Ȧe−λH0 .

(193)

One may define a scalar product, the Kubo product as

〈A | B〉 =
1

β

∫ β

0

d λ
〈
A†e−λH0 B eλH0

〉
0
. (194)

In terms of this MBA may be expressed as

MBA(t) =
β

2i

〈
Ȧ† | B(t)

〉
. (195)

For β → 0 (T → ∞) the Kubo product 〈A | B〉 approaches the correlation
function

〈
A†B

〉
.

2.5.4 Response of tracer density to an external field

For a system with a single tracer particle the tracer density now is represented
by the operator

nt(k) = exp(−ik · r1). (196)
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In the Heisenberg representation the time evolution of this operator in the
absence of an external field is generated by

ṅt(k) = − i
~
[nt(k),H0] = −ik · jt(k), (197)

with

jt(k) =
1

2

{p1

m
,nt(k)

}
. (198)

Consider a perturbation of the Hamilton operator for t > 0 of the form

∆H = − 1

V

∑

k

etnt(−k)Φ(k, t). (199)

Note, first of all, the identity
∑

k

ṅt(−k)Φ(k, t) =
∑

k

ik · jt(−k)Φ(k, t),

= −
∑

k

jt(−k) ·E(k, t). (200)

From (191), (195) and (200) one finds

n̄t(k, t) = 2i

∫ t

0

d τ
βet

2iV
E(k, τ) · 〈jt(k) | nt(k, t− τ)〉 ,

= ntetβ

∫ t

0

d τ E(k, τ) · 〈jt(k) | exp[L0(t− τ)]nt(k)〉 ,

∂n̄t(k, t)

∂t
= −ntetβ

∫ t

0

d τ ikE(k, τ): 〈jt(k) | exp[L0(t− τ)]jt(k)〉 ,

(201)

where the identity nt = 1/V was used for the equilibrium tracer density.
Introduce again the projection operator on the tracer density. Now this has
the form

P =
∑

k

| nt(k) 〉 〈 nt(k) |
〈nt(k) | nt(k)〉 . (202)

Note that in the classical classical limit β → 0 the inner product 〈nt(k) | nt(k)〉
reduces to unity. With the aid of this the streaming operator may be decom-
posed again as

exp(L0t) = exp(L̂0t) +

∫ t

0

d τ exp[L0(t− τ)](PLP⊥ + P⊥LP) exp(L̂0τ).

(203)
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Substitution into (201) reproduces the equation

∂n̄t(k, t)

∂t
= −ik ·

∫ t

0

d τ U(k, τ)

[
ntetβE(k, t− τ)− ik nt(k, t− τ)

〈nt(k) | nt(k)〉

]
,

(204)
with

U(k, t) =
〈
jt(k) · k̂ | exp(L̂t)jt(k) · k̂

〉
. (205)

2.5.5 Correlation functions

The Kubo product between densities at different times satisfies the same
equations as the correlation function in the classical case. E.g. in absence of
a driving field one has

∂ 〈nt(k) | nt(k, t)〉
∂t

= −k2

∫ t

0

d τ
U(k, τ)

〈nt(k) | nt(k)〉〈nt(k) | nt(k, t− τ)〉. (206)

But the Kubo product for finite temperatures is not the same as the corre-
lation function. Under a few mild conditions the two may be related to each
other. For this we first of all need the identities

∫∞

−∞
d t exp(iωt) 〈(A− 〈A〉0)(B(t)− 〈B〉0)〉0

= Tr

∫ ∞

−∞

d t exp(iωt)

{
exp(−βH0)

Z
(A− 〈A〉0) exp(−βH0)

exp(βH0) exp

(
iH0t

~

)
(B − 〈B〉0) exp

(
−iH0t

~

)}
,

= Tr

∫ ∞

−∞

d t exp(iωt)
exp(−βH0)

Z
(B(t− i~β)− 〈B〉0)(A− 〈A〉0).

(207)

Now set t′ = t − i~β and deform the integration path so that t′ runs from
−∞− i~β to ∞− i~β along two vertical line pieces and the real axis. This
then yields

∫ ∞

−∞

d t exp(iωt) 〈(A− 〈A〉0)(B(t)− 〈B〉0)〉0

= exp(−β~ω)

∫ ∞

−∞

d t exp(iωt) 〈(B(t)− 〈B〉0)(A− 〈A〉0)〉0 , (208)

under the following two conditions:
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• i) Tr [exp(−βH0)(B(z)− 〈B〉0)(A− 〈A〉0)] is analytic on the strip
−β~ ≤ Im(z) ≤ 0.

• ii) limRe(z)→±∞ Tr [exp(−βH0)(B(z)− 〈B〉0)(A− 〈A〉0)] = 0. This cor-
responds to the Kubo-Martin-Schwinger, or KMS-condition:
limt→∞ 〈B(t)A〉0 = 〈B〉0 〈A〉0.

Using this we obtain the fluctuation dissipation theorem through

M ′
BA(ω) ≡

∫ ∞

−∞

d t exp(iωt)MBA(t)

=
−1

2~

∫ ∞

−∞

d t exp(iωt) (〈AB(t)〉0 − 〈B(t)A)〉0)

=
1− exp(−β~ω)

2~

∫ ∞

−∞

d t exp(iωt) 〈(B(t)− 〈B〉0)(A− 〈A〉0)〉0 ,

≡ 1− exp(−β~ω)

2~
SBA(ω). (209)

Alternatively, through (195)M ′
BA(ω) may be expressed in terms of the Kubo

product as

M ′
BA(ω) =

β

2i

∫ ∞

−∞

d t exp(iωt)
〈
B†(t)

∣∣∣Ȧ
〉
. (210)

Next use

〈
B†(t)

∣∣∣Ȧ
〉

= lim
ǫ→0

〈
B†(t)

∣∣∣A(ǫ)− A(0)

ǫ

〉
= lim

ǫ→0

〈
B†(t− ǫ)− B†(t)

ǫ

∣∣∣A(0)

〉

= − d

dt

〈
B†(t) | A(0)

〉
. (211)

Inserting this into (210) and applying a partial integration one obtains

∫ ∞

−∞

d t exp(iωt)
〈
B†(t) | A

〉
=

1− exp(−β~ω)

β~ω
SBA(ω). (212)

Notice that for temperatures of 1o K or higher β~ ≤ 10−11 s, so for practically
all hydrodynamic applications the factor (1 − exp(−β~ω))/(β~ω) may be
replaced by unity. But in interactions with radiation fields frequencies ≥ 1011

Hz are quite common, in which case the full expression is needed.
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2.5.6 Full hydrodynamics

For the full hydrodynamic equations results similar to that for tracer diffusion
may be derived again. One should be careful defining momentum and energy
densities by anticommutators of pi and δ(ri − r) and the like, one should
use Kubo products instead of correlation functions to formulate the hydro-
dynamic equations at first and also define the χij of (86) in terms of Kubo
products. For the latter the ratio between Kubo product and correlation
function approaches unity in the limit k → 0 . Therefore the transforma-
tions from density and energy density to chemical potential and pressure,
based upon correlation expressions in the Grand canonical ensemble, can
still be used. In the k-dependent generalizations of these fields one should
use Kubo-products to remain consistent. But, as argued in the previous sub-
section, in hydrodynamic applications the difference between Kubo product
and correlation function usually can be ignored. However, one should notice
that correlation functions between conserved densities may get more com-
plicated due to quantum effects. E.g. in a Bose or Fermi gas the momenta
of different particles may become correlated in equilibrium, due to Bose or
Fermi statistics. In addition the momentum distribution at low temperatures
and not too low densities is not a Maxwellian any more.

2.5.7 Dielectric response

A relatively simple application is the dielectric response to an external electric
field10. In this case the Hamiltonian may be written as

H = H0 −MzEz(t), (213)

with Ez(t) the time dependent electric field strength, which is supposed to be
in the z-direction, and Mz the total electric polarization in the z-direction.
This equation looks simpler than it is in reality. First of all, the electric
field is the sum of the externally applied field and the internal field that is
generated through the dielectric response of the medium. In analogy with the
hydrodynamic equations we studied before, one might expect the response
to a driving field to be separated into a direct response to the externally
applied field and an indirect response to the hydrodynamic fields generated

10See [2] Ch. 21-5,6
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by this field. However, this has some undesirable consequences as becomes
clear especially in the case of a spatially oscillating field. Since the response
to such a field has to follow the frequency of the driving field and the speed
of light in the medium is different from that in vacuo, the total field has
a wave length that is shorter than that of the driving field. Therefore the
”response field” generated by the medium obviously has to consist of an
”extinction field” that is exactly opposite to the driving field, together with
the field, in this case of shorter wave length, appearing in (213). In fact it is
no problem generalizing this equation to the case of an inhomogeneous field,
but it becomes more obvious in that case that for E one cannot just take the
external field. From (191) and (195) one finds that the average polarization
at time t can be obtained as

〈Mz(t)〉 = β

∫ t

0

d τ
〈
Ṁz

∣∣∣Mz(t− τ)
〉
Ez(τ). (214)

Moving the time at which the field is turned on to −∞ and requiring causal
behavior (no response to fields at times > t) one may reexpress this as

〈Mz(t)〉 = β

∫ ∞

−∞

d τ
〈
Ṁz

∣∣∣Mz(τ)
〉
θ(τ)Ez(t− τ). (215)

Taking the Fourier transform of this and dividing by V one finds that the
frequency dependent polarization satisfies the relationship

Pz(ω) = χ(ω)Ez(ω), (216)

with

χ(ω) =
β

V

∫ ∞

0

d t exp iωt
〈
Ṁz

∣∣∣Mz(t)
〉
. (217)

This may be translated to the dielectric constant by using the relationship[13]

D = ǫE = E + 4πP , (218)

yielding
ǫ(ω) = 1 + 4πχ(ω). (219)

The interpretation of the real and imaginary part of the dielectric constant
follows from the wave equation satisfied by the electric field [2, Appendix K],

∆E =
ǫµ

c2
∂2E

∂t2
, (220)

45



with µ the magnetic permeability, which for most materials is very close to
1. Setting µ = 1 one finds there are running wave solutions of the form

E(r, t) = E0 exp[i(ωt− kx)− κx]. (221)

Now, set
ǫ(ω) = n2(ω). (222)

It then follows from (221) that

n(ω) =
c

ω
(k − iκ). (223)

Since ω/k is the propagation speed of electromagnetic waves of frequency ω
in the medium, Re(n(ω)) (or n) is the index of refraction for this frequency.
Similarly the imaginary part of n(ω) is the field attenuation coefficient, de-
scribing the decay rate of the electric field per unit time. Notice that the
decay rate of the radiation intensity is twice as large, as the energy density
is proportional to the square of the field strength. Real and imaginary part
of the dielectric constant may be expressed in terms of n and κ through

Re[ǫ(ω)] = n2 −
(cκ
ω

)2

, (224)

Im[ǫ(ω)] = 2n
cκ

ω
. (225)

Debye developed a theory in which the correlation function
〈
Mz

∣∣∣Mz(t)
〉

decays exponentially in time with decay rate ν. In this case one obtains a
Lorentzian line shape with

Re[χ(ω)] ∼ ν2

ν2 + ω2
, (226)

Im[χ(ω)] ∼ ων

ν2 + ω2
. (227)

3 Brownian Motion

The most common way of describing the motion of a Brownian particle is by
means of the Langevin equation,

Mu̇ = −γu +Mξ(t)

or u̇ = −κu + ξ(t) (228)
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Mξ(t) is called random force and γ the friction coefficient. Usual assumptions
on ξ are:

< ξ(t) > = 0 (229)

< ξ(t)ξ(t′) > =
1

d
φ(| t− t′ |)I. (230)

The most common assumption for φ is that it has the properties of ”white

noise”: φ(| t− t′ |) = Φδ(t− t′)
Remark: If Φ is non-vanishing over an extended range of time one talks

of ”colored noise”. This gives rise to memory effects in the Langevin equation,
which then assumes the form:

u̇ =

∫
dτ κ(τ)u(t− τ).

We will return to this later.

Eq. (228) is solved by:

u(t) = e−κ(t−t0)u(t0) +

∫ t−t0

0

dτ e−κτξ(t− τ) (231)

3.1 Classical fluctuation dissipation theorem

From (228), (229) and (231) one finds:

d

dt
< u2(t) > = −2ζ < u2(t) > +2

∫ t−t0

0

dτ e−ζτ < ξ(t) · ξ(t− τ) >

= −2ζ < u2(t) > +2

∫ t−t0

0

dτ e−ζτΦδ(t− (t− τ))

= −2ζ < u2(t) > +Φ (232)

In the stationary state this has to vanish, so

Φ = 2ζ < u2 >eq= 2dζ
kBT

M
. (233)

This is the classical fluctuation dissipation theorem. Let us consider in more
detail this stationary process in which the Brownian particle is slowed down
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by the friction force −γu and accelerated by the random force Mξ(t) with
the properties described by (229). The initial velocity decays on average as:

< u(t) >u0= u0e
−ζ(t−t0).

Here <>u0 indicates an average over all realizations of the stochastic pro-
cess with given initial velocity u0 at time t0. Next consider the behaviour
of fluctuations. These are described by U(t | t0) ≡ u(t)− < u(t) >u0=∫ t−t0
0

dτ e−ζτξ(t− τ). They satisfy

< Uα(t | t0)Uβ(t | t0) > =

∫ t−t0

0

dτ1

∫ t−t0

0

dτ2 e
−ζτ1e−ζτ2 < ξα(t− τ1)ξβ(t− τ1) >

=

∫ t−t0

0

dτ1 e
−2ζτ1

2ζkBT

M
δαβ =

kBT

M
δαβ(1− e−2ζ(t−t0)),

where (229) has been used. Next assume that the distribution of ξα(t) for
each t is a gaussian and that for different times these distributions are com-
pletely uncorrelated. With this additional assumption satisfied the stochastic
process is known as Ornstein-Uhlenbeck process. For gaussian distributions
the average values of products of an even number of random variables (in this
case the random force components) can be written as a sum of contributions
from all different factorizations in products of pairs:

< ξα1(t1) . . . ξαn
(tn) >=

∑

choices of pairs

Π < ξαi1
(ti1)ξαj1

(tj1) >< ξαi2
(ti2)ξαj2

(tj2) > · · ·

(234)

So even moments of the distribution “factorize”, while odd moments van-
ish. For a proof: see Van Kampen[14] Ch. I. 6.

Now, if x1, x2 have a bivariate gaussian distribution, i.e.

P (x1, x2) ∼ e−
1
2
[α11(x1−<x1>)2+2α12(x1−<x1>)(x2−<x2>)+α22(x2−<x2>)2]

then all variables of the form λx1 + µx2 also have gaussian distributions.
E.g. introduce ξ = λx1 + µx2; η = νx1 − ρx2. Then x1 and x2 are linear
combinations of ξ and η and the Jacobian of the transformation from x1, x2

to ξ, η, is a constant. Therefore the distribution for ξ and η is of the form

P (ξ, η) =
1

(· · · )e
−[(··· )ξ2+2(··· )ξη+(··· )η2].
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Integration over one of the variables again leaves a gaussian distribution,
e.g.
∫
dη P (ξ, η) ∼ e−(··· )ξ2

. Similarly, fixing one of the variables, e.g. η at a
particular value leaves a gaussian distribution in the other one, but this may
be shifted towards a different average value.

All of this generalizes to distributions of sums of arbitrary many variables
with multivariate gaussian distribution. Specifically, in our case U(t | t0)
has a gaussian distribution.

The width of any gaussian distribution is determined by its second mo-
ment. Hence it follows from (234) that the distribution of U(t | t0) is given
by

W (u, t | u0) =

[
M

2πkBT (1− e−2ζ(t−t0))

]d/2

exp
−M | u− u0e

−ζ(t−t0) |2
2kBT (1− e−2ζ(t−t0))

(235)
Similarly, the distribution of the displacement of the Brownian particle is a

gaussian, since r(t)− r(t0) =

∫ t

t0

u(τ)dτ .

At fixed u0 it’s first moment is given by

< r(t)− r(t0) >u0 =
u0(1− e−ζ(t−t0))

ζ
. (236)

Performing an additional average over the equilibrium distribution of u0 one
finds that the second moment satisfies the equation

< | r(t)− r(0) |2 − | < r(t)− r(0) >u0 |2 >=

dkBT

Mζ2
[2ζ(t− t0)− 3 + 4e−ζ(t−t0) − e−2ζ(t−t0)].

From this the diffusion constant follows through the Einstein relation as

D = lim
t→∞

< | r(t)− r(0) |2 >
2dt

=
kBT

Mζ
. (237)

Alternatively it can be obtained through the Green-Kubo relation as

D =
1

d

∫ ∞

0

< u(0) · u(t) > dt

=
1

d

∫ ∞

0

< u2
0 > e−ζt dt =

kBT

Mζ
. (238)
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Finally D and ζ may be related to the Onsager coefficient, defined through

j = −L∇µ. (239)

For low densities of Brownian particles (no interactions between them) one
has µ(r) = Φ(r) + kBT log[n(r)λd

0], with Φ(r) the external potential of a
Brownian particle at position r and λ0 = h/

√
MkBT its thermal De Broglie

wavelength at temperature T , assumed to be uniform. Hence one has

j = −L
[
−F (r) +

kBT

n(r)
∇n(r)

]
. (240)

This may be identified with the phenomenological expression

j(r) = n(r)
F (r)

Mζ
−D∇n(r), (241)

leading to the identities

ζ =
n

ML
; D =

LkBT

n
(242)

For the distribution of the position of a Brownian particle starting off with
velocity u0 at r0 at time t0, one obtains

W (r, t | u0r0, t0) =
1

(π(. . .))d/2
exp

−d | r − r(t0)− < r(t)− r(t0) >u0 |2

2 < | r(t)− r(t0)− < r(t)− r(t0) >u0 |2 >
.

(243)
Notice that in the presence of a constant external force F the average dis-
placement < r(t) − r(t0) > picks up an additional contribution F t/γ. Fi-
nally, also W (u, r, t | u0, r0, t0) approaches a multivariate gaussian distribu-
tion This rapidly approaches the product of a Maxwellian and the distribu-
tion W (r, t | r0, t0).

3.2 The Fokker-Planck Equation

An alternative, but equivalent description, derives an evolution equation for
the probability distribution W (u, t) of finding the Brownian particle with
velocity u at time t. The derivation of this is based on the assumption
that there is a stationary transition probability per unit time, p(u,∆u) for
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velocity changes [due to collisions with bath particles!] from velocity u to
u+ ∆u. These transitions are assumed to establish a Markov process which
can only be justified really for a bath consisting of a very dilute gas. Under
these assumptions one has:

W (u, t+∆t) = W (u, t)+∆t

∫
d∆u{p(u−∆u,∆u)W (u−∆u, t)−p(u,∆u)W (u, t)}

Next one assumes that typical jumps ∆u are very small on the characteristic

scale for u: typical values of u are ∼
√
kBT

M
, whereas velocity changes are

of order
1

M
∆ | p | ∼ 1

M

√
mkBT , so smaller by an order

√
m

M
.

Then p(u − ∆u,∆u)W (u − ∆u, t) may be Taylor expanded around
p(u,∆u)W (u, t) [this is known as Kramers-Moyal expansion]. Expansion
through second order gives

W (u, t+ ∆t)−W (u, t)

∆t
=

∫
d∆u

[
−∆u · ∇u

{
p(u,∆u)W (u, t)

}
(244)

+
1

2
∆u∆u : ∇u∇u

{
p(u,∆u)W (u, t)

}]
+ (· · · )

Next identify:
∫
d∆u∆u p(u,∆u) =<

F (u)

M
>= −ζu+

F ext

M
(245)

plus, for ∆t→ 0:
∫
d∆u∆u∆u p(u,∆u) =

1

∆t

∫ ∆t

0

dt1

∫ ∆t

0

dt2 < ξ(t1)ξ(t2) >=
2ζkBT

M
I,

(246)
where Eqs. (229) and (233) have been used. Substituting (245) and (246)
into (244) one obtains the Fokker-Planck equation.

∂

∂t
W (u, t) +

∂

∂u

[(
−ζu+

F ext

M

)
W (u, t)

]
=

ζ

βM
∆uW (u, t) (247)

In the absence of an external force field, the solution of this equation with
W (u, t0) = δ(u− u0) is

W (u, t | u0, t0) =

[
M

2πkBT (1− e−2ζ(t−t0))

]d/2

exp
−M | u− u0e

−ζ(t−t0) |2
2kBT (1− e−2ζ(t−t0))

(248)
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So in this case the FP-equation is fully equivalent to the Langevin equation!

For a constant external force, only little changes: One obtains

< u(t) >=
F ext

mζ
+

(
u0 −

F ext

mζ

)
e−ζ(t−t0) (249)

W (u, t | u0, t0) remains the same function of u− < u(t) > as before.

3.3 The Chandrasekhar Equation

Chandrasekhar considered the case that the velocity distribution also de-
pends on position:

[
∂

∂t
+ u · ∂

∂r

]
W (u, r, t)+

∂

∂u
·
[(
−ζu+

F ext(r,u)

M

)
W (u, r, t)

]
=

ζ

βM
∆uW (u, r, t)

(250)
In case F ext = −∇Φ(r) the equilibrium solution of (250) is

W eq(r,u) = C
e−β( 1

2
Mu2+Φ(r))

(2πkBT/M)d/2

≡ neq(r)
e−

β

2
Mu2

(2πkBT/M)d/2
(251)

To find the decay to equilibrium of not too large initial deviations we may em-
ploy the Chapman-Enskog solution method which is mostly used to construct
“hydrodynamic solutions” of the Boltzmann equation and similar kinetic
equations.

We rearrange the Chandrasekhar equation as

(
∂

∂t
+ u · ∂

∂r
− ∇Φ(r)

M
· ∂
∂u

)
W (r,u, t) = ζ

(
∂

∂u
· u+

1

βM
∆u

)
W (r,u, t)

(252)
For solutions varying on macroscopic time and length scales, the terms on the

right hand side are of the order ζW versus order
1

L

√
kBT

M
W for the terms

on the left hand side. Therefore one may apply some type of perturbation
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expansion in which terms on the left hand side are always one order smaller
than corresponding terms on the right side.

The zeroth order equation only keeps the right side and reads

(
∂

∂u
· u+

1

βM
∆u

)
W (0)(r,u, t) = 0 (253)

The general solution of this is of the form

W (0)(r,u, t) = n(r, t)
e−

βMu2

2

(2πkBT/M)d/2
≡ n(r, t)ϕ(u) (254)

with n(r, t) an arbitrary function of r and t. We would like to find an
equation describing its time evolution, starting from an initial value n(r, 0).
A first step towards this is taken by constructing the next order equation by
equating the left hand operator acting upon W (0) to the right hand operator
acting upon W (1), hence

ϕ(u)

(
∂(1)n

∂t
+ u · (∇n + n∇βΦ)

)
= ζ

(
∂

∂u
· u+

1

βM
∆u

)
W (1)(r,u, t)

We find a first approximation for
∂n

∂t
by integrating both sides over u, with

the result
∂(1)n(r, t)

∂t
= 0 (255)

Substituting this on the left hand side we may solve for W (1) with the result

W (1)(r,u, t) = −1

ζ
ϕ(u)u · (∇n+ n∇βΦ)

One could add a term of form n(1)(r, t)ϕ(u) to this, but the Chapman-Enskog
convention is to assume that all terms of this form are accounted for in W (0).
The next order equation becomes

∂(2)n(r, t)

∂t
ϕ(u)− 1

ζ
ϕ(u)

{
u ·
(
∇∂n
∂t

+
∂n

∂t
∇βΦ

)
+ uu :

[
∇(∇n + n∇βΦ)

]

−∇Φ

M
· (∇n+ n∇βΦ) + uu :

[
n∇βΦ(∇n+ n∇βΦ)

]}
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= ζ

(
∂

∂u
· u+

1

βM
∆u

)
W (2)(r,u, t) (256)

Integration over u now gives the following contribution to
∂n

∂t
:

∂(2)n(r, t)

∂t
− kBT

Mζ

(
∇ · (∇n + n∇βΦ)

)
= 0 (257)

Through second level in the Chapman-Enskog expansion this is precisely the
hydrodynamic equation satisfied by the spatial density of Brownian particles.
Besides as diffusion equation it is known as the Smoluchovsky equation. It
may also be written as

∂n(r, t)

∂t
= D∇ · ǫ−βΦ(r)∇(neβΦ(r)) (258)

with D =
kBT

Mζ
.

The time scale on which the Chandrasekhar equation reduces to the
Smoluchovsky equation is the relaxation time ζ−1.

For a Brownian particle of radius R in a fluid ζ roughly follows from

Stokes’ Law as ζ =
6πηR

M
∼ 4.5η

ρR2
.

A typical diffusive time is
R2

D
=

4
3
ρπR5ζ

kBT
≈ 20R3η

kBT
.

The two times become equal for R ≈ kBTρ

100η2
. For water at room temper-

ature this amounts to less than a nm.

3.4 Colored noise, Brownian motion with memory

The assumption that the random force is δ-correlated in time obviously is an
idealization. A natural generalization is

< ξ(t1)ξ(t2) >= Iκ(| t1 − t2 |) (259)
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In this case the Langevin equation has to be extended to

u̇(t) = −
∫ ∞

0

dτ ζ(τ)u(t− τ) + ξ(t) (260)

Assume further

< ξ(t) >= 0 .and < u(0)ξ(t) >= 0 for t > 0. (261)

The second of these equalities in general is only an approximation. The ve-
locity at time 0 is correlated to the random force at negative times, so is the
random force at positive times, according to (259), hence there has to exist
a correlation between velocity at time 0 and random force at positive times.
In the limit of infinite mass ratio beween Brownian particle and bath parti-
cles though, this correlation will vanish; in this limit the Brownian velocity
tends to zero while the correlations between random forces at different times
become independent of the mass ratio (see also the next subsection). Taking
a one-sided Laplace transform of (260), one obtains

u(ω) ≡
∫ ∞

0

dt eiωtu(t) =
u(0) + ξ(ω)

−iω + ζ(ω)
. (262)

From this plus (261):

∫ ∞

−∞

dt eiωt < u(0)u(t) > =
< u(0)u(0) >

−iω + ζ(ω)
+ cc

=
kBT (ζ(ω) + ζ∗(ω))I

M(ω2 + | ζ(ω) |2)− 2ω Im(ζ(ω))
(263)

Next do a full Fourier transform of (260). This gives

(−iω + ζ(ω))û(ω) = ξ(ω) (264)

Multiply by cc plus take thermal average ⇒

< û(ω)û(−ω) >=
< ξ(ω)ξ(−ω) >

ω2 + | ζ(ω) |2 − 2ω Im(ζ(ω))
(265)

Next we use the Wiener-Khintchine theorem:

< û(ω)û(−ω) >= lim
t0→∞

∫ t0

−t0

dt1

∫ t0

−t0

dt2 < u(t1)u(t2) > eiω(t1−t2)
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Introduce τ = t1 − t2 and t =
t1 + t2

2
. Use

< u(t1)u(t2) > = < u(0)u(τ) >⇒

< û(ω)û(−ω) > = lim
t0→∞

∫ 2t0

−2t0

dτ (2t0 − τ) < u(0)u(τ) > eiωτ

≈ lim
t0→∞

2t0(ζ(ω) + ζ∗(ω))

ω2 + | ζ(ω) |2 − 2ω Im(ζ(ω))

kBT

M
I (266)

In a similar way

< ξ(ω)ξ(−ω) >≈ lim
t0→∞

∫ 2t0

−2t0

dτ(2t0 − τ) < ξ(0)ξ(τ) > eiωτ (267)

Combining (267), (266) and (265) one may conclude that

< ξ(t1)ξ(t2) >=
kBT

M
ζ(| t1 − t2 |)I, (268)

or κ(t) = kBT/M ζ(t). It is not known how to construct a corresponding
Fokker-Planck equation in this case. On the other hand, if the distribution
of ξ(t) is a multivariate gaussian, the distribution of u is a gaussian again,
determined by < u(t) > and < (u(t)− < u(t) >)(u(t)− < u(t) >) >.

Interpretation of ζ:

ζ(| t1 − t2 |) =
1

dMkBT
< (F (t1)− < F (t1) >) · (F (t2)− < F (t2) >) >

(269)

Since < F (t) >=

∫
dτ Mζ(τ) < u(t − τ) >, it vanishes in the limit of

M → ∞ (in this limit the initial velocity vanishes always). So, ζ(| t1 − t2 |)
is proportional to the force-force correlation function of a particle of infinite
mass, suspended in the fluid. In the case of finite mass, the subtraction of
the average force is crucial: otherwise one would have

“ζ” =

∫ ∞

0

dt < F (0) · F (t) > =

∫ ∞

0

dt < F (0) · d
dt
Mu(t) >

= < F (0) ·Mu(t) >

∣∣∣∣
∞

0

= 0
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because at t = 0 force and momentum in equilibrium are uncorrelated and in
the limit t→∞ the velocity of the Brownian particle becomes uncorrelated
from the initial force again.

3.5 Formal derivation with the aid of projection oper-
ator formalism

As projection operator we choose

P =
|PB〉 · 〈PB|
MkBT

=
|Mu〉 · 〈Mu|

MkBT
. (270)

For a Brownian particle this is sensible because the time scale on which PB

varies typically is
M

6πηR
=

2ρR2

9η
, which is very slow compared to (almost) all

time scales in the surrounding fluid. According to eq.(69) of the script, the
derivation of a distribution function from equilibrium, characterized through
ρ(t) = ρ0(1 + ∆(t)), satisfies

∂

∂t
P∆(t) =

∫ ∞

0

dτ PLe−L̂τLP∆(t− τ) (271)

where I used PLP = 0. Now take the inner product < u | and use LPB =
FB(R, r1 . . . rN) to obtain

∂

∂t
< u(t) >=

−1

MkBT

∫ ∞

0

dτ < F Be
−L̂τFB >< u(t− τ) > (272)

Next use:

L̂F B = (1− P)L(1−P)F B

= (1− P)

(
PB

M
· ∂

∂RB
+ F B ·

∂

∂PB
+ L(M=∞)

)
FB

= (L(M=∞))F B (273)

because FB does not depend on PB and (1−P)
PB

M
· ∂

∂RB
= 0. By induction,

(L̂n)F B = (Ln
M=∞)FB and so e−

bLτF B = e−L̂(M=∞)τF B. Hence, comparing
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with (261) averaged over the random force distribution, one recovers (269)
with the interpretation of 〈(F − 〈F (t1)〉)(F − 〈F (t2)〉)〉 as the infinite mass

limit of the force autocorrelation function. And for large M , e+L̂τFB may be
identified with the actual force minus its average, conditioned on the initial
force F B; for not too long times the actual dynamics will be virtually the
same as the infinite mass dynamics.

The memory kernel

The memory kernel may be obtained by solving linearized hydrodynamic
equations for the flow field around a sphere moving through a fluid with a
time dependent velocity.

For small ω the result for stick boundary conditions is[15]:

ζ(ω) =
6πηR

M

[
1 +R

(−iω
ν

) 1
2

− iωR2

9ν
,

]

with ν = η/ρ. This implies a long-time decay ∼ t−3/2. For the velocity

correlation function (263) implies, with C(ω) =

∫ ∞

−∞

dt eiωt < v(0) · v(t) >,

C(ω) =
3kBT

M

1

−iω + 6πηR
M

[1 +R(−iω
ν

)
1
2 − iωR2

9ν
]
+ cc.

When is the white-noise approximation good? This would amount to ζ(ω) =
6πηR

M
and would give rise to a pole at iω =

6πηR

M
.

For this value of ω the neglected terms in the memory kernel are

(−6πηR3

Mη/ρ

) 1
2

=

(
− 6πR3ρ

4
3
πR3ρB

) 1
2

=

(−9ρ

2ρB

) 1
2

and
ρ

−2ρB
. These have to be << 1, requiring ρB >> ρ. But under such

conditions, the Brownian particle will sediment to the bottom. This has
first been noted by Lorentz[16] and been rediscovered by Hauge and Martin-
Löf[17]. The effect of the iω-term in this kernel obviously is to replace the

Brownian mass by an effective mass Meff = M + 2
3
πR3ρ. The (−iω)

1
2 -term
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indicates the existence of a long-time-tail in the Brownian-particle velocity
autocorrelation function:

< v(0) · v(t) >∼ 2kBT

(4πνt)3/2ρ

As we will see, this may be interpreted as the effect of the left-over from the
initial momentum of the Brownian particle, diffusing slowly away from its
initial position. If the self-diffusion of the Brownian particle is taken into
account as well, this results in a replacement of ν by ν+D, but for Brownian
particles always D << ν. We may conclude that unless ρB >> ρ, the Fokker-
Planck equation is never adequate for Brownian motion. But the correctness
of the Smoluchowsky equation on time scales >> ζ−1 remains valid.

4 Long time tails

4.1 Velocity autocorrelation function

Look at < v1(0) · v1(t) > for a molecular liquid. Suppose particle 1 is at the
origin at t = 0 with velocity v0 in a system in equilibrium. On average this
has no influence on the velocity distribution of the rest of the system. This
means, on average this corresponds to an initial momentum density mv0δ(r).
Similarly, there is an initial tagged particle density δ(r). After a long time
t, the average velocity of the tagged particle will be given by

∫
dr nt(r, t)u(r, t).

If normal diffusive behavior holds one has:

nt(r, t) =
exp(− r2

4Dt
)

(4πDt)d/2
(274)

Or, for the Fourier components, which satisfy n̂t(k, 0) =

∫
dr e−ik·rδ(r) =

1,
n̂t(k, t) = e−Dk2t (275)
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For the velocity field, the Fourier components normal to k̂ satisfy

∂

∂t
û⊥(k, t) = −νk2û⊥(k, t) (276)

with u⊥ = (I − k̂k̂) · u and ν = η/ρ the so-called kinematic viscosity. This
is solved by

û⊥(k, t) =
mtv0

ρ
· (I − k̂k̂) e−νk2t (277)

The irrotational velocity field behaves as

û(k, t) · k̂k̂ =
∑

σ=±1

1

2

mtv0

ρ
· k̂k̂ eσickt− 1

2
Γk2t (278)

For the average velocity of the tagged particle at time t this leads to the
estimate

u(t) ≈
∫
dr nt(r, t)u⊥(r, t)

≈ 1

(2π)2d

∫
dr

∫
dk

∫
dk′ eik·reik

′

.rn̂t(k, t) û⊥(k′, t)

=
1

(2π)d

∫
dk

∫
dk′ δ(k + k′) n̂t(k, t) û⊥(k′, t)

=
1

(2π)d

∫
dk n̂t(k, t) û⊥(−k, t)

=
1

(2π)d

∫
dk e−Dk2t mtv0

ρ
· (I − k̂k̂)e−νk2t

=
(d− 1)mtv0

2ddρ[π(D + ν)t]d/2
(279)

Taking an inner product with v0 and averaging over the distribution of the
initial velocity one arrives at

< v0 · v(t) > =
(d− 1)kBT

ρ[4π(D + ν)t]d/2
(280)

Note that this result is independent of the mass of the tracer particle!
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4.2 Problems in low-dimensional systems

For d ≤ 2

∫ ∞ dt

td/2
diverges, so D and ν do not exist. This means < r2(t) >

grows faster than linearly with t. Its actual behavior may be estimated in
the following way: assume the distribution of the tracer particle’s position is
still gaussian, and so is the position depencence of the divergence free part
of the average velocity field, hence

p(r, t) =
exp(− r2

2<x2
D

(t)>
)

(2π < x2
D(t) >)d/2

etc. (281)

One then obtains

C(t) = (d− 1)
kBT

ρ

∫
dr exp

(
−r2

2<x2
D

(t)>

)
exp

(
−r2

2<x2
sh

(t)>

)

((2π)2 < x2
D(t) >< x2

sh(t) >)
d
2

= (d− 1)
kBT

ρ

1

(2π < x2
D(t) + x2

sh(t) >)
d
2

(282)

If < x2
D(t) >= f(t) and < x2

sh(t) > is proportional to this, then for d = 2

d2f(t)

dt2
=

C

f(t)
, (283)

which is solved by f(t) ∼ t
√

log t.

For d = 1 there are no shear modes. But longitudinal stress-stress cor-
relation functions may couple to pairs of opposite sound modes. The same
self-consistency argument then leads to

(
d2f(t)

dt2
=

C√
f(t)

)
⇒ f(t) ∼ t4/3.

This indeed is the correct result!
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4.3 Mode-coupling analysis

A possible starting point for the analysis of tracer diffusion are the fluctuating
hydrodynamic equations:

∂

∂t
nt(r, t) = −∇ · [nt(r, t)u(r, t)−D(n(r, t), T (r, t))∇nt(r, t) + jr

t (r, t)] (284)

∂

∂t
G(r, t) + ∇ · [u(r, t)G(r, t)] = −∇p(r, t) +∇ · {η(n(r, t), T (r, t))∇u(r, t)}

+∇{ζ(n(r, t), T (r, t)) +
d− 1

d
η(n(r, t), T (r, t))∇ · u(r, t)}+∇.σr(r, t)

(285)

Plus an equation for the energy density plus the continuity equation for the
bulk density.

In these expressions jr
t (r, t) and σr(r, t) respectively are the random

tagged particle current and the random stress tensor. Both of them are
usually represented by gaussian white noise, with zero mean and variances
dictated by the fluctuation dissipation theorem. Next, expand variables like

D, p, η around equilibrium D(n(r, t), T (r, t)) = D0 +
∂D

∂n
δn +

∂D

∂T
δT + . . .

etc. Fourier transforms of products become convolutions, e.g.

nt(r, t)u(r, t) =
1

V

∑

k

eik·r
∑

q

n̂t(q, t)û(k − q, t)

Consider the equations for the Fourier components and keep only the most
important non-linear terms. Restrict the equation for the velocity field to
the divergence free components. This leads to

∂

∂t
n̂t(k, t) = −D0k

2n̂t(k, t)− ik ·
1

V

∑

q

n̂t(k − q, t)û(q, t)− ik · jr
t (k, t)

(286)

∂

∂t
û⊥(k, t) = −ν0k

2û⊥(k, t)− ik · 1

V

∑

q

û(k − q, t)û(q, t) · (I − k̂k̂)

−ik · σr(k, t) · (I − k̂k̂) (287)
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The first equation may be iterated twice:

n̂t(k, t) = e−D0k2tn̂t(k, 0)−
∫ t

0

dτ e−D0k2(t−τ)

{
ik

V
·
[∑

q

n̂t(k − q, τ)û(q, τ) + jr
t (k, τ)

]}

= e−D0k2tn̂t(k, 0)−
∫ t

0

dτ e−D0k2(t−τ)

{
ik

V
·
[
jr

t (k, τ) +
∑

q

û(q, τ)

{
e−D0|k−q| 2τ n̂t(k − q, 0)−

∫ τ

0

dτ1 e
−D0|k−q| 2(τ−τ1)

{
i(k − q)

V
·
[∑

q1

n̂t(k − q − q1, τ1)û(q1, τ1) + jr
t (k − q, τ1)

]}}]}
(288)

Consider now < n̂t(−k, 0)n̂t(k, t) > averaged over gaussian distribution of
initial fields plus random currents. Dominant contribution comes from q1 =
−q, because < n(q1, 0)n(q2, 0) >∼ δ(q1 + q2) ⇒

∂

∂t
< n̂t(−k, 0)n̂t(k, t) >= −k2

∫ t

0

dτ (D0δ(τ) +
1

V

∑

q

e−D0|k−q| 2τ

k̂k̂: < û(−q, 0) · û(q, τ) >) < n̂t(−k, 0)n̂t(k, t− τ) > (289)

Here I used that the velocity correlation function is independent of the tracer
density plus time translation invariance of this function. In fact the latter
follows from the fluctuation dissipation relations between random currents
and the decay rates of the correlation functions. Now by using

< û(−q, 0)û(q, τ) > = (I − q̂q̂)< û(−q, 0) · û(q, 0) >

d
e−νq2τ

+q̂q̂
< û(−q, 0) · û(q, 0) >

2d

∑

σ=±1

e(σicq− 1
2
Γq2)τ

one reproduces the intuitive result for C(k, τ).

4.4 Mode-coupling for full hydrodynamics

(See e.g. Ernst, Hauge, Van Leeuwen, Ref.[18])

63



Instead of using fluctuating hydrodynamics I will base this on the projec-
tion operator formalism.

Basic idea: if n̂α(k, t) is, on average, a slowly decaying function of time,
the same must be true for products like n̂α(k, t)n̂β(k2, t) and n̂α(k, t)n̂β(k2, t)n̂γ(k3, t).
For eLt[n̂α(k, 0)n̂β(k, 0)] = [eLtn̂α(k, 0)][eLtn̂β(k, 0)]. Hence, a more complete
set of slow variables is spanned by the hydrodynamic densities n̂α(k, t) plus
all possible products of these. The form of the projection operator P upon
this extended hydrodynamic space becomes somewhat complicated by the
fact that products of densities are not orthogonal to each other, e.g.

1

V
< û(k) ·

∣∣n̂(−q + k)û(q) > =
1

V
<
∑

i

vie
ik·ri ·

∑

j

e−i(k−q)·r
j

∑

ℓ

e−iq·r
ℓvℓ >

=
1

V
<
∑

i

kBTd

m
ei(k−q)·r

i

∑

j

e−i(k−q)·r
j >

=
kBTd

V m
< n̂(k − q)

∣∣n̂(k − q) > (290)

For inner products of pairs of modes one has an approximate factorization
property.

< n̂α(k1)n̂β(k2)
∣∣n̂γ(k3)n̂δ(k4) >= δk1k3

δk2k4
< n̂α(k1)

∣∣n̂γ(k3) >< n̂β(k2)
∣∣n̂δ(k4) >

+ δk1k4
δk2k3

< n̂α(k1)
∣∣n̂γ(k4) >< n̂β(k2)

∣∣n̂δ(k3) >

+ δk1+k2k3+k4

[
< n̂α(−k1)n̂β(−k2)n̂γ(k3)n̂δ(k4) >

− δk1k3
δk2k4

< n̂α(k1)
∣∣n̂γ(k3) >< n̂β(k2)

∣∣n̂δ(k4) >

− δk1k4
δk2k3

< n̂α(k1)
∣∣n̂δ(k4) >< n̂β(k2)

∣∣n̂γ(k3) >
]
, (291)

where it was assumed that k1 6= −k2. The first two terms are of the order
V 2, the last one of order V . So it looks like the last one may be skipped
right away. This is too simple: for each pair k1,k2 there are only two pairs
k3,k4 for which the first two terms are non-zero but the number of k3,k4

pairs for which the last term vanishes, increases as V . Nevertheless, for large

t the range of relevant k-values decreases, typically as
1√
t
. Therefore the last

terms may still be ignored for large enough t.

Let us restrict ourselves, for simplicity, to a space spanned by single
densities and products of two densities.
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For single modes, one component, we had (89),

P(s) =
1

V

∑

k

[∣∣n̂(k) >< ν̂(k)
∣∣+ β0

mn0

∣∣Ĝ(k) > · < Ĝ(k)
∣∣−
∣∣ε̂(k) >< β̂(k)

∣∣
]

≡ 1

V

∣∣Ψ(k) > ◦ < Φ(k)
∣∣ (292)

For single plus product modes this extends to:

P(f) =
1

V

∑

k

∣∣Ψ(k) > ◦ < Φ(k)
∣∣+ 1

2V 2

∑

k1k2

∣∣Ψ(k1)Ψ(k2) >
◦
◦ < Φ(k2)Φ(k1)

∣∣

− 1

2V 3

∑

kk1k2

{∣∣Ψ(k) > ◦ < Φ(k)
∣∣Ψ(k1)Ψ(k2) >

◦
◦ < Φ(k2)Φ(k1)

∣∣

+
∣∣Ψ(k1)Ψ(k2) >

◦
◦ < Φ(k2)Φ(k1)

∣∣Ψ(k) > ◦ < Φ(k)
∣∣
}

(293)

plus higher order terms.

Note that the action of P(f) on
∣∣Ψ(k) > respectively

∣∣Ψ(k1)Ψ(k2) >
reproduces these entities, up to corrections of the type

1

2V 3

∑

k1

∣∣Ψ(k) > ◦ < Φ(k)
∣∣Ψ(k1)Ψ(k − k1) >< Φ(k1)Φ(k − k1)

∣∣Ψ(k) >

which are small due to the restriction of k1 to small k-values. P(f) may be
split up in two ways as

P(f) = P(1)
r + P(2)

r , (294)

P(f) = P(1)
ℓ + P(2)

ℓ . (295)

P(n)
r,ℓ acting to the right respectively left, projects on the space of products of

n densities. P(1)
r consists of the first plus the third term of equation (293);

P(2)
r of the second plus the fourth one, P(1)

ℓ of the first plus the fourth one

and P(2)
ℓ of the second plus the third one.

Now return to equation (97) of the script:

∂P∆(t)

∂t
= −PLP∆(t)+

∫ t

0

dτ PLP⊥ e
−L̂τP⊥LP∆(t−τ)−PLP⊥e

−L̂tP⊥∆(0)

(296)
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As usual, we drop the last term and replace the initial time by −∞. Standard
mode-coupling theory is obtained by replacing in the integral expression in
(296) the first P by P1

ℓ and the second P by P1
r . This is not entirely justified.

I will discuss briefly later how to improve on this.

If we restrict to first approximation, PLP to P(s)LP(s) we are back to the
equations we solved before in the framework of Green-Kubo theory, except
that eL̂t now really will induce a rapid decay. So we recover the hydrodynamic
equations

∂Ψ(k, t)

∂t
= V [−ikΦ(k, t) ◦ Ω(k)− k2Φ(k, t) ◦ U(k)] (297)

with U(k) =
1

V

∫ ∞

0

< J(k)
∣∣eL̂tJ(k) > dt (298)

and Φ(k, t) = V < Ψ(k)
∣∣Ψ(k) >−1 ◦Ψ(k, t) (299)

For the long time tail analysis it is important to identify the eigenfunctions
of this equation, which are, first of all, d− 1 shear modes

Ψs
i (k) = ℓ̂i � Ĝ(k) =

∑

j

(ℓ̂i �mvj)e
−ik·rj (300)

with ℓ̂i a unit vector normal to k. These have eigenvalues −νk2 = −η
ρ
k2.

The corresponding Φi(k) are the same, up to a different normalization.
Then there are the sound modes:

Ψ±(k) =
∑

j

±(k̂ �mvj)e
−ik·rj +

1

c0
p̂(k) = ±(k̂ · Ĝ(k)) +

1

c0
p̂(k), (301)

with c0 the speed of sound and p̂(k) =

(
∂p

∂e

)

n

ε̂(k) +

(
∂p

∂n

)

e

n̂(k). From

(92), i.e.

P(s) =
β0

2n0V

∑

k

∣∣n̂(k) >< p̂(k)
∣∣+ 1

m

∣∣Ĝ(k) > · < G(k)
∣∣+n2

0

∣∣σ̂(k) >< T̂ (k)]

it follows that the corresponding left eigenvectors may be cast into the form

Φ±(k) =
mn0

2β0

[±(k̂ · Ĝ(k) +mc0n̂(k)]. (302)

66



These modes have eigenvalues ±ic0k − 1
2
Γk2.

Finally there are the heat modes

Ψh(k) = σ̂(k) =
1

nT
(ε̂(k)− hn̂(k)) (303)

with h =
e+ p

n
. The eigenvalues are −DTk

2. The adjoint follows from (92)

as: Φh(k) =
1

n0β0

T̂ (k).

Next include in (296) the contributions P(2)
r LP (1)

r and P(1)
ℓ LP

(2)
ℓ (plus

whatever else is needed from P − P(1)).

First iteration gives

δ(1)(P∆t) ≈ −
∫ ∞

0

dτ e−P(L+U)PτP(2)
r LP∆(t− τ), (304)

with U =

∫ ∞

0

dτ PLP⊥e
L̂tP⊥LP. (305)

By decomposing the action of P(2)
r into components of products of hydrody-

namic modes one may replace P(L+ U)P by the sum of two hydrodynamic
decay rates. One obtains

δ(1)(P∆t) =
∑

kq αβ

−1

2V 2

∫ ∞

0

dτ e−[να(q)+νβ(k−q)]τ
∣∣Ψα(q)Ψβ(k − q) > (306)

< Φα(q)Φβ(k − q)
∣∣
(

1− 1

V

∑

γ

∣∣Ψγ(k) >< Φγ(k)
∣∣
)
LP∆(t− τ)

(307)

Applying −P(1)
ℓ LP

(2)
ℓ to this, we see from (296) that the leading mode-

coupling contribution is

∂

∂t
(δP∆(t))(2) = −P(1)

ℓ Lδ(1)(P∆(t)),

=
1

2

∫ ∞

0

dτ
∑

kq αβγ

∣∣Ψγ(k) >< Φγ(k)
∣∣L
∣∣(1− 1

V

∑

δ

∣∣Ψδ(k) >< Φγ(k)
∣∣)

∣∣Ψα(q)Ψβ(k − q) > e−(να(q)+νβ(k−q))τ < Φα(q)Φβ(k − q)
∣∣ (308)(

1− 1

V

∑

δ′

∣∣Ψδ′(k) >< Φδ′(k)
∣∣
)
LΨγ(k) >< Φγ(k)

∣∣∆(k, t− τ) >
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Remarks:

1. Because the Ψγ(k) already are eigenfunctions of P(1)LP(1) +P(1)UP(1),
the leading mode-coupling corrections are diagonal between the Ψγ.

2. One may define the mode coupling corrections such that their full time
integrals vanish. Amounts to adding constants to Uαβ . In this way, the
transport coefficients appearing in the hydrodynamic frequencies are
full transport coefficients.

3. Long time tails come from combinations of two diffusive modes (να(q) ∼
q2) or two opposite sound modes (ν±(q) = ±icq − 1

2
Γk2). Both give

rise to tails of type

∫
dq e−αq2t ∼ t−d/2, for d > 2.

4. It is not hard to see which couplings of type< Φα(q)Φβ(k−q)
∣∣LΨj(k) >

give rise to t−d/2 contributions. For shear modes,

LΨi(k) =
d

dt

∑

j

e−ik�rj (ℓ̂i � vj) (309)

= −ik
∑

j

e−ik�rj (ℓ̂i � vj)(k̂ � vj) +
1

2

∑

jj′

(e−ik�rj − e−ik�ri)

(
ℓ̂j �

F jj′

m

)

To leading order only the first term contributes. The second one leads
to k̂ · ℓ̂ = 0.

The time derivative of a heat mode to leading order is odd in v, there-
fore couples to shear and heat mode or opposite sound modes. Finally
the time derivative of a sound mode couples to opposite sound modes,
pairs of shear modes, shear plus heat mode and pairs of heat modes.

5. Terms in (296) with

∫
dτ P (2)

r LP⊥e
−L̂τPLP (1)

r sum up to terms like

∇ �

∂η

∂n
(δn∇u⊥) etc. These may become important in cases where

“convective contributions” to the currents are absent.

68



5 Mode coupling and exact results in one di-

mension

As remarked above the mode coupling contributions to the current-current
time correlation functions lead to divergent Green-Kubo integrals in one and
two dimensions. As a result the time correlation functions between hydrody-
namic modes satisfy highly intricate nonlinear equations, which in principle
have to be solved self-consistently. However, it turns out that for the long
time and large distance behavior of these correlation functions in one dimen-
sion, this solution scheme may be circumvented by using an exact solution
obtained by Prähofer and Spohn for a one-dimensional growth model. For
doing so one still needs a mode coupling analysis, but only to show that the
dominant terms in the mode coupling expansions for heat mode and sound
mode correlation functions can be mapped one to one to the terms in a
mode coupling expansion for the model solved by Prähofer and Spohn. In
the present section I will describe this scheme in some detail, starting with
the fluctuating Burgers equation in one dimension. This equation describes
the time evolution of a density field without couplings to momentum and/or
energy density under the influence of some driving force. It is nonlinear and
therefore allows for a mode coupling expansion. By a simple integration it can
be transformed into a growth model, belonging to the Kardar-Parisi-Zhang
(KPZ) universality class. Therefore its long time and large distance behavior
is the same as that of the Polynuclear growth model, the model solved exactly
by Prähofer and Spohn, which belongs to this universality class. Next I will
argue how these results translate to one-dimensional hydrodynamics and lead
to exact expressions for the long time behavior of current-current correlation
functions and the asymptotic size dependence of transport coefficients.

5.1 Fluctuating Burgers equation

Consider driven diffusive systems, described by

∂c(r, t)

∂t
+∇ � j(r, t) = 0 [continuity equation]

with
j(r, t) = −D(c)∇c(r, t) + c(r, t)u(c(r, t)) + ̃L(r, t).
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Here ̃L(r, t) is a Langevin noise term. It is supposed to behave as gaussian
noise, with average < ̃L(r, t) >= 0 and variance

〈̃L(r, t)̃L(r′, t′)〉 = N(r − r′)δ(t− t′)1 (310)

The brackets indicate an average over all realizations of the stochastic time
evolution and the noise strenght N will be specified a little below. Expand
the convective current, with c(r, t) = c̄ + φ̃(r, t), as

c(r, t)u(c(r, t)) = c̄u(c̄) + vφ̃(r, t) +
w

2
φ̃2(r, t)

with

v =
∂

∂c
(cu(c))c=c̄ = u(c̄) + c̄

(
∂u

∂c

)

c=c̄

(311)

w =
∂2

∂c2
(cu(c)) =

∂v

∂c
(312)

both evaluated at c = c̄.

D may be approximated by D(c̄).

−→
(
∂

∂t
+ v �∇

)
φ̃(r, t) = +D∇2φ̃(r, t)− w

2
�∇φ̃2(r, t)−∇ � ̃L(r, t)

Next make Galilei transformation:

φ(r, t) = φ̃(r + vt, t) [notice sign!]

⇒ ∂φ(r, t)

∂t
= −w

2
�∇φ2(r, t) +D∇2φ(r, t)−∇ � jL(r, t) (313)

with jL(r, t) = ̃L(r + vt, t)

For Fourier components:

∂

∂t
φ̂(k, t) = −ik �w

2V

∑

q

φ̂(q, t)φ̂(k − q, t)−Dk2φ̂(k, t)− ik̂L(k, t) (314)

Can be transformed to

φ̂(k, t) = e−Dk2(t−t0)φ̂(k, t0)−
∫ t

t0

dτ e−Dk2(t−τ)ik � ̂L(k, τ)

−
∫ t

t0

dτ e−Dk2(t−τ) ik �w

2V

∑

q

φ̂(q, τ)φ̂(k − q, τ) (315)
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One can iterate this equation and make a diagrammatic expansion for the
time correlation function Ŝ(k, t − t0) = 1

V
< φ̂(−k, t0)φ̂(k, t) >. Each dia-

gram represents a term in the iteration series and consists of line pieces
q representing factors e−Dq2(τj−τj−1) and vertices k

q

k − q

representing factors ik·w
2V

∫ t

τj−1
dτj
∑
q. In addition factors φ̂(q, t0) will be

denoted by dots and factors
∫
dτ − iq · ̂L(q, τ) by asterisks.

In the first iteration of Eq. (314) one approximates the functions φ̂(q, τ)
and φ̂(k − q, τ) by the first two terms in this equation. In diagrammatic
representation this leads to

< φ̂(−k, t0)φ̂(k, t) >= • k •+• k ∗+• k
q

k − q
•
•

+• k
q

k − q
∗

•+•
k

q

k − q∗
•
+• k

q

k − q
∗
∗

+ · · · (316)

For the fluctuating current correlation function in Fourier representation
we now postulate the form

1

V
〈̂L(q, t)̂L(q′, t′)〉 = 2DŜ(q)δ(q + q′)δ(t− t′)1, (317)

with Ŝ(q) ≡ Ŝ(q, t = 0) This fixes the function N(r − r′) in Eq. (310) as
2D times the equal-time pair correlation function. With this choice, the
density-density time correlation function < φ̂(−k, t0)φ̂(k, t) > will turn out
to depend on the time difference t − t0 only, as it should be the case in a
stationary state:

Ŝ(k, t− t0) =
1

V
< φ̂(−k, t0)φ̂(k, t) >

=
1

V
< φ̂(−k, t0 + τ)φ̂(k, t+ τ) >

As a result of Eq. (317) and the assumption that the fluctuating current
behaves as Gaussian noise with vanishing average, only the first and third
of the diagrams shown in Eq. (316) may give nonvanishing contributions. A
second iteration yields:
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< φ̂(−k, t0)φ̂(k, t) >= • k • + • k
q

k − q
•
•

+ • k
q

q1

q − q1

k − q
•
•

•

+ • k
q

q1

q − q1

k − q •
∗

∗

+ • k
q

q1

q − q1

k − q
∗

•

∗ + • k
k − q

k − q − q1

q1

q

•

•
•

+ • k
k − q

k − q − q1

q1

q

•

∗
∗

+ • k
k − q

k − q − q1

q1

q

∗

•
∗

+ · · · (318)

In this equation a number of two-vertex diagrams have been left out that
give vanishing contributions: that is, all diagrams with an odd number of
fluctuating currents and also diagrams with two fluctuating currents at wave
numbers that cannot be each others opposites. A first simplification of this
equation can be reached by making the common approximation that 2n-point
equal time density correlation functions can be factorized into products of
pair correlation functions (and correlation functions of an odd number of
densities vanish). Specifically, for four-point correlation functions this implies

< φ(k1)φ(k2)φ(k3)φ(k4) >=< φ(k1)φ(k2) >< φ(k3)φ(k4) > δ(k1 + k2)δ(k3 + k4) +

+ < φ(k1)φ(k3) >< φ(k2)φ(k4) > δ(k1 + k3)δ(k2 + k4) +

+ < φ(k1)φ(k4) >< φ(k2)φ(k3) > δ(k1 + k4)δ(k2 + k3). (319)

For Eq. (318) this implies that q1 must be equal to k (third, 5th, 6th and 8th
diagram), to k−q (third and 4th diagram) or to −q (6th and 7th diagram).
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Next, a further simplification can be reached by using the identity

e−2Dk2tŜ(k) +
1

V

∫ t

0

dτ1

∫ t

0

dτ2e
−Dk2(τ1+τ2) < ̂L(k, τ1)̂L(−k, τ2) >= Ŝ(k)1,

(320)
which follows directly from Eq. (317). Apply this to the third plus the fifth
diagram, and to the 6th and the 8th diagram, both with q1 = k, to the third
and 4th diagram, with q1 = k − q and to the 6th and 7th diagram, with
q1 = −q, in all cases for the time argument τ2−t0, with τ2 the time argument
of the second vertex. The sum of all these terms may be represented by a

vertex k
q

k − q, corresponding to ik ·w Ŝ(0)
∫ τ1
0
dτ2, where

Ŝ(q) + Ŝ(k − q) has been approximated by 2Ŝ(0).

Applying the same reductions to the full diagrammatic expansion of
Ŝ(k, t) one obtains

Ŝ(k, t) = • • + • • +

+ • • + · · ·

≡ ••
(321)

Here the self-energy operator represented by is given by the
sum of all irreducible diagrams, that is, all diagrams, beginning and ending
with a vertex that cannot be divided into two disconnected pieces by cutting
one line. The wave numbers have been left out, since it is obvious now how
these have to be chosen. A next reduction step is a skeleton renormaliza-

tion. In this step the self-energy operator is reexpressed in terms of so-called
skeleton diagrams consisting of vertices and bold lines, which have such a
structure that no diagrams contibuting to the self-energy can be extracted
from them by cutting two lines. The simplest mode coupling approximation
for the self-energy, the so-called one-loop approximation is
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= (322)

Under this approximation the density-density time correlation function
satisfies the equation

∂Ŝ(k, t)

∂t
= −Dk2δ(t)− (w · k)2

2Ŝ(0)V

∫ t−t0

0

dτ
∑

q

Ŝ(q, τ)Ŝ(k − q, τ)Ŝ(k, t− τ),

(323)
where again all equal-time correlation functions have been approximated by

Ŝ(0). Notice that in the limit V →∞,
1

V

∑

q

approaches
1

(2π)d

∫
dq.

The Green-Kubo formalism relates the time derivative of Ŝ(k, t) to a
current-current time correlation function (see e.g.[18]) through

∂

∂t
Ŝ(k, t) = −k2

∫ ∞

0

dτ M̂(k, τ)Ŝ(k, t− τ) (324)

with

lim
k→0

M̂(k, τ) =
k̂k̂

V
:

〈(
J(0)− < J(0) > −∂J(c̄)

∂c̄
(N(0)− < N >)

)

·
(
J(t)− < J > −∂J(c̄)

∂c̄
(N(t)− < N >)

)〉
. (325)

The subtracted terms are important if the average is taken over a grand
ensemble, in which the number of particles is not fixed.

On the other hand one-loop mode coupling identifies the memory kernel,
according to Eq. (323) as

M(k, t) = −Dk2δ(t)− (w · k̂)2

2Ŝ(0)V

∑

q

Ŝ(q, t)Ŝ(k − q, t). (326)
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For dimension d > 2, Ŝ(k, t) may be approximated to leading order by
Ŝ(0)e−Dk2t. In this case one obtains from (326)

M̂(k̂, t) =
(w � k̂)2Ŝ(0)

2(8πDt)d/2

For d = 1, 2 the mode coupling terms dominate the diffusion equation. To
analyze this for d = 1, first introduce dimensionless variables: τ = αt; κ =

βk; Σ(κ, τ) =
Ŝ(κ

β
, τ

α
)

Ŝ(0)
with α =

w4S2(0)

128D3
β =

16D2

w2Ŝ(0)
⇒

∂Σ(κ, τ)

∂τ
= −1

2
κ2

[
Σ(κ, t)+

2

π

∫ τ

0

dσ

∫ ∞

−∞

dλΣ(λ, σ)Σ(κ−λ, σ))Σ(κ, τ −σ)

]

(327)
In the limit κ→ 0 τ →∞ one may look for a solution of the form Σ(κ, τ) =
h(κτ 2/3) because the mode-coupling term scales as κ3τ 2Σ2 in comparison to
∂Σ/∂τ . The diffusive term scales as κ2τ , which is ∼ τ−1/3 under scaling of
h. So it becomes small for large τ indeed. Inserting the scaling form into
(327) one may rewrite this as

dh(x)

dx
= − 9

4π
x

∫ 1

0

ds s−1/2

∫ ∞

−∞

dy h(y)h(sx− y)h(x(1− s3/2)2/3),

by substituting x = κτ 2/3, y = λσ2/3 and s = (σ/τ)2/3. From this scaling it
follows that

∂2

∂k2
log Ŝ(k, t)k→0 =

∂2

∂k2
log[h(kt2/3)] =

t4/3h′′(0)

h(0)
, (328)

where h′(0) = 0 has been used. On the other hand,

Ŝ(k, t) =
1

V
<
∑

jℓ

eik·rj(t)e−ik·rℓ(0) > (329)

=
1

V
<
∑

jℓ

(1 + ik · (rj(t)− rℓ(0))− 1

2
kk : (rj(t)− rℓ(0))(rj(t)− rℓ(0)) + · · · >

=
1

V
<
∑

jℓ

(1 + ik · (rj(t)− rℓ(0))

−1

2
kk : (rj(t)−R(t)− (rℓ(0))−R(0)) +R(t)−R(0))

(rj(t)−R(t)− (rℓ(0))−R(0)) +R(t)−R(0)) > + · · ·
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⇒ ∂2

∂k2
log Ŝ(k, t) = − <

[
(R(t)−R(0)) · k̂

]2
+ 2

[
(rj −R) · k̂

]2
>

The t4/3 long time behavior found in Eq. (328) is entirely due to the first
term on the right hand side, since the second term is time independent.
So the mean square displacement of the center of mass increases as t4/3 in
the comoving frame. Its second time derivative is the current-current time
correlation function in the comoving frame, behaving as t−2/3.

5.2 Asymmetric Simple Exclusion Process

This analysis may be tested on the Asymmetric Simple Exclusion Process
[ASEP]. This model consists of a lattice, mostly considered in one dimen-
sion, each site of which may either be empty or occupied by a single particle.
The particles may jump to unoccupied neighboring sites with jump rates de-
fined, for d=1 as follows:

1− p p

Jump rate to unoccupied site = pΓ to right
= (1− p)Γ to left

This is called asymmetric for p 6= 1/2. The stationary distribution of
particle configurations gives equal weight to all allowed configurations (then
both the gain and the loss rate for a configuration equals Γnclusters ). On
macroscopic time and length scales this model is well-described by the fluc-
tuating Burgers equation. The average current in the stationary state equals

c(1− c)(2p− 1)Γ

The contributions to this from jumps to the right and to the left are c(1− c)Γp
and (1− c)cΓ(1− p) respectively. From this one obtains

v = (2p− 1)Γ(1− 2c) (330)

w = −(2p− 1)

2
Γ (331)

Simulations on this model confirm the t4/3-behavior of the mean-square dis-
placement of the center of mass[19].
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5.3 The Kardar-Parisi-Zhang equations[20]

As an introduction let us consider again the ASEP. It may be considered as
a 1d interface model by identifying a particle with a surface element � and
an empty space as a surface element �

(E.g. ←→ )

The dynamics correspond to a growth process where units of mass are

removed

[
−→ ⇐⇒ −→

]
,

or added

[
−→ ⇐⇒ −→

]
at corners.

The height variable is obtained from the density of the ASEP by a discrete
integration over x, so one has h(x) ≈

∫ x

0
dx′ [2ρ(x′)− 1].

The 1d KPZ-equation equally follows from the 1d fluctuating Burgers
equation by integration over x. It has the form

∂h(x, t)

∂t
= D

∂2h(x, t)

∂x2
− w

(
∂h(x, t)

∂x

)2

+ ηL(x, t) (332)

A first remark is that in a situation of steady growth (or evaporation/solution)
one should add a constant term v0 equal to the average growth speed, on the
right hand side. Mathematically this makes no difference. One may describe
the process in a comoving frame through h̃(x, t) = h(x, t)−v0t. This satisfies
(332) again.

A second remark is that (332) generalizes in d dimensions (especially
d = 2 is physically relevant) to

∂h(r, t)

∂t
= +D∇2h(r, t)− w

2

∣∣∇h(r, t)
∣∣2 + ηL(r, t). (333)

Notice that for d > 1 this is not equivalent to the Burgers equation.

A third remark is about the physical interpretation of the various terms.
The noise term ηL describes random fluctuations in the deposition and evapo-
ration process. The term −D∇2h describes the effects of diffusion of adatoms
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and vacancies along the surface. Finally the non-linear term w
2
| ∇h |2 de-

scribes the effect of the surface slope on the average evaporation or growth
rate. There are two causes for this:

1. On rough surfaces both evaporation and deposition proceeds more eas-
ily, because fewer bonds have to be broken respectively more can be
saturated.

fairly easy evaporation

fairly easy deposition

easy evaporation
easy deposition

2. Particles (or holes) left on a flat surface diffuse easily until they reach
some step edge (so the dynamics tends to enhance their smoothness).
Notice that for the ASEP horizontal surfaces are rough and sloped
ones are smooth. This implies that the constant w is negative. For the
model properties this makes no difference: on transforming from h to
−h the relative signs of w and the other constants are changed.

5.4 The polynuclear growth model. Exact results

Prähofer and Spohn[23] managed to solve exactly a specific one-dimensional
growth model within the KPZ universality class; the polynuclear growth
model. This model consists of line pieces stacked on top of each other.
Growth nuclei are created at a constant rate at completely random positions.
After creation a nucleus grows with constant speed v in both directions, thus
creating a new line piece just above an existing one. When two growth
fronts collide they stop moving. For this model density-density and current-
current time correlations can be solved exactly and expressed in terms of
scaling functions, which have been tabulated with great precision by the
authors. Since the long time behavior within a universality class is the same
for all members, provided parameters are identified correctly, the long time
behavior of time correlation functions for the fluctuating Burgers equation
can be expressed in terms of the Prähofer-Spohn scaling functions[25]. The
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most striking results are first of all a prediction for the decay of the current-
current time correlation function as

1

L
< J̃(t)J̃(0) >=

2.1056√
3ΓE(1/3)

(
Ŝ(0)w2

4t

)2/3

, (334)

with J̃(t) = Ĵ(0, t)− < Ĵ(0, t) > −∂Ĵ(c̄)
∂c̄

(N(0, t)− < N >) and ΓE denoting
Euler’s gamma function. Secondly, for the wave number dependent diffusion
coefficient, characterizing the decay rate of a sine-wave of wavelength k in a
periodic system, as D(k)k2 one finds

D(k) =

∫ ∞

0

dtM(k, t) =
8

19.444

√
2Ŝ(0)w2

| k | . (335)

One can obtain more detailed results from the Prähofer-Spohn scaling func-
tions, which are discussed in Ref.[23].

5.5 Hydrodynamics in one dimension

Hamiltonian systems in one dimension have three global conservation laws,
for mass (or number), momentum and energy. Therefore one has three hy-
drodynamic equations, which on adding fluctuating terms are of the form

∂ρ(x, t)

∂t
= − ∂

∂x
[ρ(x, t)u(x, t)]

ρ

(
∂

∂t
+ u(x, t)

∂

∂x

)
u(x, t) = −∂p(x, t)

∂x
+

∂

∂x

{
κ(n(x, t), T (x, t))

∂u(x, t)

∂x

}
+
∂σr(x, t)

∂x
.

ρ(x, t)T (x, t)

(
∂

∂t
+ u(x, t)

∂

∂x

)
s(x, t) = κ(n(x, t), T (x, t))

(
∂u(x, t)

∂x

)2

+

+σr(x, t)
∂u(x, t)

∂x
+

∂

∂x

(
λ(x, t)

∂T (x, t)

∂x

)
− ∂qr(x, t)

∂x
. (336)

In these expressions ρ(x, t) is the mass density. The pressure p(x, t) may
be expressed as

p(x, t) =

(
∂p

∂n

)

e

n(x, t) +

(
∂p

∂e

)

n

e(x, t),
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with e(x, t) the local energy density and the entropy per unit mass; s(x, t)
is defined in similar way. Furthermore, κ is the bulk viscosity, σr(x, t) is
the random stress tensor and qr(x, t) the random heat current. For both of
these random currents it is usually assumed they are distributed as gaussian
white noise, with zero mean and variances dictated by fluctuation dissipation
theorems. As starting point of a mode coupling expansion one has to linearize
these equations, like we did with the fluctuating Burgers equation. Taking
a spatial Fourier transform one obtains the equations discussed already in
section [1],

∂n̂(k, t)

∂t
= −ikn0û(k, t), (337)

ρ0
∂û(k, t)

∂t
= −ikp̂(k, t) + ik [ikκ0û(k, t) + σ̂r(k, t)] , (338)

T0
∂ŝ(k, t)

∂t
= −λ0

ρ0

k2T̂ (k, t)− ik

ρ0

qr(k, t). (339)

Here the subscript 0 denotes equilibrium values. These equations can be
diagonalized. One then finds three eigenmodes, called hydrodynamic modes.
These are two sound modes11 a1(k, t) and a−1(k, t) and a heat mode aH(k, t),
given respectively, to leading order in k by

aσ(k, t) =

(
β

2ρ0

)1/2 (
c−1
0 p(k, t) + σg(k, t)

)
, (340)

aH(k, t) =

(
β

n0T0Cp

)1/2

(e(k, t)− h0n(k, t)). (341)

Here, σ=±1, T0 is the equilibrium temperature, β = (kBT0)
−1; Cp=T (∂s/∂T )p

is the specific heat per unit mass at constant pressure p; c0=(∂p/∂ρ)
1/2
s is

the adiabatic sound velocity in the limit of zero wave number and h0 is the
equilibrium enthalpy per particle. The allowed values of k are of the form
k = 2πn

L
. To leading order in k the hydrodynamic modes are normalized

under the inner product (f, g) = 1
L
< f ∗g >, with <> a grand canonical

equilibrium average.

The time correlation functions of the hydrodynamic modes satisfy linear

11I use σ = ±1 for right respectively left moving sound modes, rather than positive
respectively negative frequency, as is conventional.
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equations involving memory kernels, of similar form as Eq. (324), viz.

∂Ŝσ(k, t)

∂ t
= −iσc0kŜσ(k, t)− k2

∫ t

0

dτM̂σ(k, τ)Ŝσ(k, t− τ), (342)

∂ŜH(k, t)

∂ t
= −k2

∫ t

0

dτM̂H(k, τ)ŜH(k, t− τ). (343)

Here Ŝσ(k, t) = (aσ(k, 0), aσ(k, t)) etc. Like for the fluctuating Burgers equa-
tion the memory kernels may be expressed through a diagrammatic mode
coupling expansion as a sum of irreducible skeleton diagrams[26]. These
consist of propagators, representing density density correlation functions
Ŝζ(ℓ, tα), and vertices representing the coupling of one propagator Ŝζ(ℓ, tα)

to two propagators Ŝµ(q, tα′) and Ŝν(ℓ−q, tα′′), with coupling strength ℓW µν
ζ .

For the long time dynamics only a few of these 27 couplings are important;
only couplings to two sound modes of the same sign or to two heat modes
may give rise to long-lived perturbations, all other combinations of pairs
of modes rapidly die out through oscillations. From EHvL[18] the relevant
non-vanishing coupling strengths to leading order in k can be obtained as12

W σ′σ′

σ =
σ

(2ρβ)1/2c0

(
∂c0n

∂n

)

s

(344)

WHH
σ =

−σ(γ − 1)n

(2ρβ)1/2Cp

(
∂Cp

∂n

)

p

(345)

W σσ
H =

σk
1/2
B c0

(nCp)1/2
. (346)

Notice that W σ′σ′

σ does not depend on the value of σ′.

Now a central observation is the following: due to the first term on the
right-hand side of Eq. (342) the sound-sound correlation functions will have
their weights centered around the positions x(t) = x(0)±c0t, in other words,
these functions will assume the forms Ŝσ(k, t) = exp(−iσc0kt)Σ̂σ(k, t), with
Σ̂σ(k, t) to a first approximation real non-oscillating functions. As a con-
sequence the mode coupling contributions to M̂σ are dominated by those
diagrams in which all vertices are of the type V σσ

σ . All other contributions
for at least some time will oscillate out of phase with the angular frequency

12For obtaining Eq. (345) from the EHvL expression some thermodynamics is required.
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σc0k of the sound mode under consideration. The remaining contributions,
especially so if described in a coordinate frame comoving at the speed of
sound have exactly the same structure as the terms in the mode coupling ex-
pansion for the fluctuating Burgers equation[27]; all propagators correspond
to the same type of correlation function and all vertex pairs carry the same
weight factor W , in the case of the Burgers equation given by WB = w2

2
Ŝ(0).

Therefore, to leading order in time this memory kernel may be expressed in
terms of the Prähofer-Spohn scaling functions, like the memory kernel for
the fluctuating Burgers equation.

Let us consider the wave number dependent sound damping constant
Γ(k) = 2M̃σ(k, 0) and the sound currents, defined as

Ĵσ(k, t) =
(

β
2ρ

)1/2

σĴl(k, t)+ 1
c0
ĴH(k, t)−σ

(
∂p
∂n

)
e
, where Ĵl(k, t) and ĴH(k, t)

are the longitudinal current and the heat current[18], denoted by EHvL as Jl

and Jλ respectively. Eq. (5.28) of Ref.[23] can now be used to obtain the lead-
ing small-k behavior of Γ(k) and long time behavior of < Ĵσ(0, 0)Ĵσ(0, t) >
as

Γ(k) =
16

19.444

√
Ws

| k | (347)

1

L
< Ĵσ(0, t)Ĵσ(0, 0)) >=

2.1056

2
√

3ΓE(1/3)

(
Ws

t

)2/3

. (348)

The leading higher order corrections are obtained by replacing in the di-
agrammatic expansion of the memory kernel just one pair of vertices of type
V σσ

σ by vertices of type V −σ−σ
σ or V HH

σ . Note this can only be done by having
the new vertices connected by the same pair of propagators. One easily shows
that all these terms add contributions proportional to | k |−1/3 to Γ(k) and
contributions proportional to t−7/9 to the current-current correlation func-
tion. Since there are infinitely many such contributions, there seems to be no
straightforward way of determining the coefficients exactly. However, esti-
mates based on the simplest contributing diagrams can be made[24]. Further
corrections obtain from terms with 4, 6, · · · vertices of type V −σ−σ

σ or V HH
σ .

Each of these appears to be of the form Ck−µ for Γ(k) and Dt−ν for the cur-
rent correlation function, with C and D constants and µ and ν of the form
µ = 1/3 −∑∞

j=2mj(2/3)j and ν = 2/3 +
∑∞

j=2 2nj(2/3)j respectively, with
mj and nj natural numbers. Again, for each exponent there is an infinity of
contributing terms.
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The leading long time behavior of ŜH(k, t) is determined in similar way
by the sum of all contributions to M̂H(k, t) where the first and last vertex
are of type V σσ

H and all other vertices are of type V σσ
σ , all with the same value

of σ. These terms do contain an oscillating factor exp(−iσc0kt), but these
oscillations are much slower than the oscillations in any of the other terms.
Since we have to include the contributions to M̂H of either sign of σ, we
cannot express ŜH directly in terms of the Prähofer-Spohn scaling functions,
but we can do so immediately for the memory kernel. A simple analysis
yields to leading order

M̂H(k, t) = 2
WH

Ws
cos(σc0kt)M̂σ(k, t), (349)

with WH = |W σσ
H | . For the k-dependent heat conduction coefficient and the

heat current time correlation function this leads to the expressions

λ(k) = nCpDT (k) = 2nCp

(
WH

Ws

)
W 2/3

s

2.1056

4
√

3(c0 | k |)1/3
, (350)

1

L
< ĴH(0, t)ĴH(0, 0) >= 2nCp

(
WH

Ws

)
2.1056

ΓE(1/3)

(
W 2

s

t

)2/3

. (351)

Higher order corrections may be obtained in similar way as for the sound
modes.

The analysis presented here clearly shows that for long times the dynamics
of 1d hydrodynamic systems to leading order belongs to the KPZ universality
class and can be described exactly by means of the Prähofer-Spohn scaling
functions. However, the correction terms decay only slightly faster with time
and in most cases will not be negligible.

6 Appendix A

Starting point for the formulation of the ”hydrodynamic projection operator”
as (89) are the following observations: from the Grand-canonical distribution

ρ(Γ) =
1

Ξ
eνN−βH
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one obtains the identities

lim
k→0
〈n̂(k) | â(k)〉 = 〈N − 〈N〉 | â(0)〉 ,

=

(
∂â(0)

∂ν

)

β

. (352)

lim
k→0
〈ǫ̂(k) | â(k)〉 = 〈H − 〈H〉 | â(0)〉 ,

= −
(
∂â(0)

∂β

)

ν

. (353)

(354)

Next introduce χ̃ as the restriction of the matrix χ to the two-dimensional
subspace (for each k) spanned by the matrix elements between n̂(k) and
ǫ̂(k). From 353 one finds in the limit k→ 0,

lim
k→0

χ̃(k) = lim
k→0



〈n̂(k) | n̂(k)〉 〈n̂(k) | ǫ̂(k)〉

〈ǫ̂(k) | n̂(k)〉 〈ǫ̂(k) | ǫ̂(k)〉


 = V




(
∂n
∂ν

)
β

(
∂e
∂ν

)
β

−
(

∂n
∂β

)
ν
−
(

∂e
∂β

)
ν


 .

(355)
The inverse of this is

1

V



(

∂ν
∂n

)
e
−
(

∂β
∂n

)
e

(
∂ν
∂e

)
n
−
(

∂β
∂e

)
n


 , (356)

which, acting to the left on (δn, δe) produces, to linear order, the fluctuations
(δν,−δβ)/V . This is generalized to define the k-dependent fluctuations ν̂(k)

and β̂(k) through
∣∣∣∣∣∣

ν̂(k)

−β̂(k)

〉
= V

∣∣∣∣∣∣

n̂(k)

ǫ̂(k)

〉
◦ χ̃−1(k). (357)

Inserting this equation (or its adjoint) into (87) one obtains (89). To rewrite
this further one may introduce the k-dependent pressure p̂(k) through

p̂(k) = P
[
k̂k̂:P̂(k)

]
, (358)

= P
[−1

ik
LĜ(k) · k̂

]
. (359)
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The form of this can be made more explicit through

p̂(k) =
−1

ikV

[〈
n̂(k) | LĜ(k) · k̂

〉
ν̂(k)−

〈
ǫ̂(k) | LĜ(k) · k̂

〉
β̂(k)

]
,

=
−1

ikV

[〈
Ln̂(k) | Ĝ(k) · k̂

〉
ν̂(k)−

〈
Lǫ̂(k) | Ĝ(k) · k̂

〉
β̂(k)

]
,

= n0kBT0[ν̂(k)− h0(k)β̂(k)]. (360)

An alternative is

p̂(k) =
−1

ikV

[〈
ν̂(k) | k̂k̂:P̂(k)

〉
n̂(k)−

〈
β̂(k) | k̂k̂:P̂(k)

〉
ǫ̂(k)

]
,(361)

which, in the limit k→ 0 reduces to

p̂(k) =

(
∂p

∂n

)

e

n̂(k) +

(
∂p

∂e

)

n

ǫ̂(k). (362)

Here the notation h0(k) was introduced for the k-dependent enthalpy

density. This equation may be used to express ν̂(k) as

ν̂(k) =
1

n0kBT0
[p̂(k) + h0(k)β̂(k)], (363)

with

h0(k) =
1

n0kBT0
〈ǫ̂(k) | p̂(k)〉 . (364)

Notice that one indeed has limk→0 h0(k) = p0 + ǫ0. Introducing finally the
k-dependent entropy per particle

σ̂(k) =
1

n0kBT0
[ǫ̂(k)− h0(k)n̂(k)], (365)

plus the notation
T̂ (k) = −kBT

2
0 β̂(k), (366)

one finds that substitution of (363) into (89) leads to (92).
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