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We compute the prepotentials and the geometry of the moduli spaces for a Calabi-Yau 
manifold and its mirror. In this way we obtain all the sigma model corrections to the Yukawa 
couplings and moduli space metric for the original manifold. The moduli space is found to be 
subject to the action of a modular group which, among other operations, exchanges large and 
small values of the radius, though the action on the radius is not as simple as R ~ 1 /R.  It is a - ~  
shown that the quantum corrections to the coupling decompose into a sum over instanton 
contributions and moreover that this sum converges. In particular there are no "'sub-instanton'" 
corrections. This sum over instantons points to a deep connection between the modular group 
and the rational curves of the Calabi-Yau manifold. The burden of the present work is that a 
mirror pair of Calabi-Yau manifolds is an exactly soluble superconformai theory, at least as far 
as the massless sector is concerned. Mirror pairs are also more general than exactly soluble 
models that have hitherto been discussed since we solve the theory for all points of the moduli 
space. 

1. Introduction 

The discovery of mirror symmetry [1-3] among pairs of Calabi-Yau manifolds 
goes a long way towards resolving a long standing puzzle. A Calabi-Yau mani- 
fold .,~/possesses a certain number of parameters. These are parameters associ- 
ated with the structure of ¢~' as a complex manifold and parameters corresponding 
to the deformations of the K/ihler metric of f / .  These parameters, which are 
related to the cohomology of /~ ' ,  give rise to families and antifamilies of particles 
in the effective low-ener~ theory that results from compactification of the string. 
The parameters corresponding to deformations of the complex structure are 
related to the cohomology group H 21 of (2, 1)-forms while the parameters corre- 
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sponding to deformations of the K~ihler form correspond to the group H ~j of 
(1, 1)-forms. The Yukawa couplings of the low-energy theory correspond to certain 
cubic forms on the cohomology ring [4]. There are no couplings between the two 
different sorts of parameters, so the Yukawa couplings come in two types. The 
puzzle has been that the two types of couplings are very different both at a 
mathematical level and with regard to renormalization. The couplings correspond- 
ing to the complex structure parameters vary with the parameters and are not 
renormalized either in loops or by instantons. By contrast the couplings corre- 
sponding to the K~ihler class are topological numbers that are integers in an 
appropriate basis and which a r e  renormalized by instantons [5-7]. In this sense 
one might describe analysis based on a Calabi-Yau manifold as being "half exact". 
However, since both .d" and its mirror 71/', for which the roles of the two types of 
parameters are exchanged, correspond to the same superconformal theory, one 
can combine the calculations and obtain exact results. One can compute both types 
of Yukawa couplings by calculating the couplings for the complex structure 
parameters of ¢/e' and then computing the remaining couplings, complete with their 
sigma model corrections, by computing the couplings corresponding to the complex 
structure parameters of 7r. The suggestion that Calabi-Yau manifolds should 
arise in mirror pairs was made by Dixon and Gepner [8] and by Lerche et al. [9]. 
The latter paper also uncovered the chiral ring structure of the superconformal 
theories. It is the identification of the chiral ring of the superconformal theory with 
the cohomology ring of (2, 1)-forms [10] on the Calabi-Yau manifold that enables 
us to perform exact calculations by means of geometrical methods. 

Of course if the Yukawa couplings were all we could compute then the results 
would not be very significant since we need also to be able to compute the metric 
on the parameter space, which appears in the kinetic terms of the sigma model, in 
order to correctly normalize the fields. Fortunately an extension of the nonrenor- 
realization theorem that ensures that the superpotential does not receive sigma 
model corrections enables us to compute also the k:,r,~t,:c terms. The observation 
that the existence of mirror manifolds permits the calculation of both types of 
couplings has been made independently by Greene and Plesser [2], and also in the 
interesting article by Aspinwall eta! .  [3], who consider a mirror pair of manifolds 
with A" = +40 that has several parameters and show that, in an appropriately 
defined large complex structure limit, the Yukawa couplings for the complex 
structure parameters of the mirror manifold coincide with the topological cou- 
plings of the original manifold. One of the new elements of the present work is 
that we are able to solve, in the context of a particular example, for the Yukawa 
couplings and the metric on the parameter space for all values of the complex 
structure. 

This article is devoted to a discussion of these issues in the context of the 
solution of the conformal field theory of a particular example of a mirror pair of 
Calabi-Yau manifolds. We take for the manifold f l  the quintic threefold P4(5), 
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which has b~ = l, b2m- 101 and Euler number -200 .  The mirror ~"  of th~ 
manifold is known in virtue of a construction due to Greene and Plesser [2]. The 
mirror ~ f  has b~m = 101, be~-  1 and Euler number + 200. What we do here is 
calculate the prepotential for the complex structure parameter of ~ By mirror 
symmetry this yields the fully corrected prepotential for the original manifold ~r. 
Although we concentrate on a specific and simple case we befieve that many 
features of our results are of general validity. 
Since the present work is somewhat beset by detail we list here the salient results: 

(i) The metric and the Yukawa couplings are computed complete with all sigma 
model corrections for all points in the parameter space. There is a particular value 
of the parameter for which the appropriate conformai field theory is the Gepner 
model 3 5 and for this value we find agreement with the known coupling for this 
model. 

(ii) It is found that a modular group, F, acts on the parameter space. Among 
other operations F exchanges large and small values of the radius. This is of 
interest because it is relevant to the conjectured existence of a minimum funda- 
mental length in string theory. The existence of a modular group has been noted 
previously for the case of orbifolds [11], and some consequences of modular 
invariance and the possibility that Calabi-Yau manifolds would also be subject to 
a modular group has been examined in a number of papers [12]. The modular 
group F however is not the group SL(2, 7/), as had previously been anticipated in 
the literature, and the operation is not as simple as R - ,  1/R. 

(iii) The exact Yukawa coupling admits a decomposition into a sum over 
instantons. The sum converges to the exact value so there are no "sub-instanton" 
contributions to the coupling or prepotential. Moreover the decomposition of the 
coupling into a sum over instanton contributions seems to indicate a deep connec- 
tion between the automorphic functions of the modular group and the rational 
curves (instantons) of .#/. As an illustration of this we seem to be able to read off 
from our resu!ts the numbers of rational curves of each degree. This is quite likely 
of mathematical interest. 

(iv) We abstract from the particular pair of Calabi-Yau manifolds studied here 
an expression for the fully corrected Yukawa coupling, which we conjecture to be 
of general validity. The fundamental object from which the corrected coupling de- 
rives is not so much the "bare"  manifold but rather a "quantum manifold" con- 
sisting of the bare manifold together with its rational curves. In physics-speak this 
is just the statement that the quantum manifold is the bare manifold together with 
all world-sheet instantens. However this statement is rendered more precise and 
seems to be in line with recent developments in mathematics (for a review see [13]). 

The layout of this paper is as follows: in sect. 2 we review the construction of the 
mirror 7// and discuss the rudiments of the geometry of its space of complex 
structures. A feature that is important for the three-dimensional case is the 
existence of finite points in the parameter space corresponding to singular 
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Calabi-Yau manifolds. We describe here also the large complex structure limit 
of .g/. The detailed structure of the metric and Yukawa couplings derive from a 
discussion of the homology of ~ and a computation of the holomorphic three-form 
from which the prepotential is constructed. This is done in sect. 3 and the metric 
and couplings are derived from the prepotential in sect. 4. We turn in sect. 5 to 
a comparison of the metric and couplings with the "bare"  quantities appropriate 
to / f .  For the couplings we identify the quantum corrections with the contribu- 
tions of instantons. For the metric, in addition to the exponentially small terms, 
there is also a loop correction similar to the "four-loop term" found in another 
context by Grisaru et al. [14]. We also extend the standard nonrenormalization 
theorem to show that the four-loop term is the only loop term to affect the 
prepotential. In sect. 6 we present a speculative proposal for a mechanism to 
achieve a small breaking of supersymmetry at low energies. We have included this 
proposal here even though it is logically separate from the issue of mirror 
symmetry because the mechanism is based on a non-K~ihler resolution of a 
conifold, and the conifold that arises in the study of the mirror manifold of P4(5) is 
of precisely the type to which such a non-K~ihler resolution is appropriate. Finally 
two appendices deal with a more detailed description of the homology of 7//" and 
with further properties of the periods of the holomorphic three-form. 

2. The mirror of P4(5) 

Let M = P4(5) be the family of manifolds that can be represented as quintic 
hypersurfaces in P4. There are 101 parameters associated with the complex 
structure of these manifolds, which in this case can all be thought of as the 
coefficients of the quintic polynomial (see e.g. ref. [10], and references to the 
original literature cited therein). There is also one parameter associated with 
the choice of K~ihler class which in this case can be thought of as the radius of the 
P4. To construct the mirror manifold [2] we start with a one-parameter subfamily 
M~ of quintic hypersurfaces given by the polynomials 

5 5 

p = ~_, XSk -- 5#/ 1--I X k .  (2.1) 
k = l  k = l  

These hypersurfaces are invariant under the symmetry group* generated by 

g 0 -  ( 1 , 0 , 0 , 0 , 4 ) ,  

g ~ -  (0, 1 ,0 ,0 ,4 ) ,  

g2 = (0,0, 1 ,0 ,4 ) ,  

g3 = (0 ,0 ,0 ,  1 ,4) ,  (2.2) 

* We owe this choice of generators  to B.R. Greene.  
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where the ith entry is the power of the fifth root of unity multiplying the ith 
coordinate. For example, gl represents the 7/5 action 

( XI,X2,X3, X4,X5) .----> (Xl,OlX2,X3, X4,014Xs) 

where a = e 2 ~ ' i / 5 .  In virtue of the fact that the product of all the g 's  multiplies the 
homogeneous coordinates by a common phase, only three of these are indepen- 
dent so we can choose to work with g~, g2 and g3, say. Note also that the quintic 
polynomial (2.1) is in fact the most general quintic invariant under these identifica- 
tions. A family W of mirror manifolds is then obtained by taking the quotient of 
each Calabi-Yau manifold .~/~, in M~ by the group 2r3 generated by g~, g2 and g3- 

The procedure for dividing out by the 7/5% involves cutting out the curves and 
points of the manifold which are left invariant by the symmetries. After making the 
2e3 identifications, the curves and points are replaced by their smooth equivalents. 
The action of the 7/3 has the 10 fixed curves 

• 5 =  0 Ci j  k x5i -l- x 5 ~t_ X k , i, j ,  k distinct. 

Each of these curves is a P2(5) and is invariant under a Z 5 subgroup. These fixed 
curves meet in the 10 fixed points 

Pij" x5 + x5 --- O, i, j distinct 

(there are in fact only ten of these points owing to the identifications (2.2)), each 
being left invariant by a 7/5 × 7/5 subgroup. Each fixed curve contains 3 fixed 
points, and 3 fixed curves meet in each of the fixed points. We will take care of the 
curves and the points separately, so we need to know the Euler number of the 
curves less the points. This is simply 

x(P (5) ) - 15 - - 25. 

Also, we need to know how the 7/5% act on the curves. One leaves the curve 
invariant and the other two identify it with itself. Thus we calculate the Euler 
number of the mirror manifold to be 

- 200  - 10 x 5 - 10 x ( - 2 5 )  ( - 25 )  x 5 5 x 25 
X = + 10 × + 10 × ~ = +200.  

5 × 5  × 5  25 5 

A curious fact is that the Euler number of P4(5) minus the fifty points and ten 
curves is zero*. 

* P.S. Aspinwall informs us that this is a general feature of constructing a mirror manifold by starting 
with a manifold .~  and dividing by a symmetry group. The noncompact manifcld that remains after 
removing the fixed points and fixed curves has Euler number zero. 
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One naturally wonders if there are other ways of presenting this manifold. There 
are in fact two ways of constructing the manifold as a hypersurface in weighted 

Pa'S. If we set 

_, y~/5, y4/5y~ , ,4/5,,1/5 ~,4/5,,!/5 y4/5~ 
( X 1 , X 9  X a ' X 4 ' X 5 )  = ( Y l  3 ,. 5 / 5 ,  y 3  .r4 , . r 4  .rE , 5 J ,  

the transformation being well defined in virtue of the identifications (2.2) (indeed 
the transformation was chosen so as to incorporate the identifications in a natural 
way), then the defining equation becomes 

5 
__ 5 y  

P Yl 3 + yay5 + yay4 + Y4Y2 + Y5 - -  50 I I  Yk, 
4 4 

k = l  

and on reflection we see that the manifold is p4(41" 48' 51' 52' 64)(256). Similarly, one can 
also show* that the mirror manifold is also p4t51'6°'64"65"8°)(320) (thereby showing 

that the two weighted hypersurfaces are biholomorphic). In this case the coordi- 
nate transformation takes the form 

( X I , X 2 , X  3 X4,~g5) __ (WIWI4/5 , , , 4 / 5 , , , 1 / 5  t4,4/51,,1/5 ' ' " 2  'v5 ' W 3 '  "'4 " 2  ' W 4 / 5 ) '  

and the polynomial is 

5 

p = w w4 + wnw5 + w 5 + wnw  + w 4 - 1-I  
k = l  

These weighted projective spaces appear in the tables of ref. [16] and have Euler 
number +200 and bll = 101. We find it most convenient to work with the original 
form (2.1) of the polynomial p, though we have to bear in mind that this form 
refers to a covering space of 7/:. To get to 7/: itself we must make the identifica- 
tions (2.2). 

One of our aims is to describe the space of O's, that is the space W of complex 
structures of ~',~. The first thing to note is that 0 and aO correspond to the same 
complex structure since the replacement 0 ~ a 0  is equivalent to the coordinate 
transformation 

( X I  X 2 X 3 , X 4 , X 5 )  "~ ( o l - l x  )" , , 1 , X 2 , X 3 , X 4 , X 5  , (2.3) 

in other words, we learn that the true coordinate is 0 5. 

To describe the geometry of W, it is important to note that there are special 
values of 0 for which 7/:, is singular. This occurs when the quintic (2.1) fails to be 

* For  a m o r e  genera l  discussion o f  these  t echn iques  see  ref. [15]. 
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transverse. That is the case when the five equations 

27 

Op 
~ = 0 ,  k =  1 , . . . , 5  
a x  k 

(2.4) 

are simultaneously satisfied. These equations imply that 

5 

. . .  I-Ix , 
k = l  

whence 

(2.5) 

5 5 
5 H H x,<. 

k = l  k = l  

If ~b is finite then none of the x i may be zero for if one were zero then by eq. (2.5) 
all would be zero, which is not allowed. It follows that (2.4) can only be satisfied if 
~5 = 1. If we take ~, = 1 say, then returning to (2.5), we see that 

Xk = olnk ' E l l k  = O. 

These points are all identified under  the identifications (2.2) so that 7/" at ~ = 1 

has only one singular point which we may as well take to be the point (1, 1, 1, 1, 1). 
The singularity is a node, that is a point for which p and d p  both vanish but the 
matrix of second derivatives is nonsingular. For these values of ~,, the correspond- 

ing 7//" is a conifold [17]. This type of singular Calabi -Yau manifold has been 
described in some detail in refs. [17, 18]. For our present purpose it suffices to 
recall that a neighborhood of the node is locally a cone with base s Z x  S 3. For 

values of ~ near ~b = 1, say, the situation is as in fig. 1. There is an S 3 which 
shrinks to zero as ~b ~ 1. 

~ . - - ~ . l A 2  = S 3 

$2 

Fig. 1. The singular point of the conifold has a neighborhood that is a cone with base S 2 x  S 3. For 
- 1 small but nonzero the node is replaced by a sphere of radius O((g, - 1)1/2). 
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Fig. 2. A heuristic sketch, drawn as a tetrahedron, of the large complex structure limit of ~'~. Before 
identification under the 7/~, the space consists of 5 IPa's meeting in 10 F2's meeting in 10 P~'s meeting in 

5 points. 

The value qs = o0 corresponds to the singular quintic 

~,,XP~: X I X 2 X 3 X 4 X 5  -- 0 ,  

which, before identification under the 7/3, consists of 5 F3's meeting in 10 ~2'S 
meeting in l0 Pi's meeting in 5 points. A lower-dimensional heuristic sketch is 
given in fig. 2. We shall see later that 7f~ is the large complex structure limit of 

7E~, and is the mirror of the large-radius limit of ~g/. 

2.1. RUDIMENTS OF THE HOMOLOGY 

The structure of the moduli space of a Calabi-Yau manifold reflects the 
homology of the manifold. Recall that the complex structure of the manifold can 
be described by giving the periods of the holomorphic three-form over a canonical 
homology basis [17,19,20]. More precisely, we can proceed, for the case under 
consideration for which bzt(Tf) = 1 and b3 (Tf )=4 ,  as follows. We choose a 
symplectic basis (AI,A2, BI, B2 ) for H3(~'//', 7/) such that 

A "  n B b = 6 "  b , A" n A b = 0, B,, n B b = 0. (2.6) 

Let (ao, f i b )  be the cohomology basis dual to that above so that 

f A 'Ozb = r~a fB  b h ,  fl b = 8 "  , 
u 
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with other integrals vanishing. Then it follows that 

29 

f~,fll a A fib = t~ a b ' Ola A Olb = 0" f~7/[ Ja A ~ b  "- 0 .  

Important in the following is the holomorphic three-form O. Being a three-form, 
may be expanded in terms of the basis 

O = z a a .  - 

The coefficients (z a, ,~b ) are the periods of O, so called because they are given by 
the integrals of O over the homology basis, 

za=~2, ~b=fBg. (2.7) 

We have more periods than parameters. For the present case we have b 3 = 4 
periods but we know there is only 1 ( =  b2~) parameter for the complex structure. 
We therefore choose to regard the ~'b as being functions of the z a, ~'b = ~'b(Z~)- 
This leaves us with the z ~ as independent periods. We still have one parameter 
too many but this turns out to fit in quite well. The scale of O is not defined. In 
reali ty/2 is a section of a line bundle over the moduli space [21]. There is a gauge 
invariance associated with D due to the fact that O is undefined up to multiplica- 
tion by an arbitrary holomorphic function of the parameter 

a ( , )  (2.8) 

and we can regard the two z a as projective coordinates for ,O. The ,~  and ~2 are 
then homogeneous of degree one as functions of the z~, 

o ( z ) = a ( z ) , ( z ) = ( z ) , 

and it can be shown [17, 20] that the $'b are the gradients of a prepotential $ ' (z)  
that is homogeneous of degree two, 

0~  

$ 'a  = ~ z a  , 

= 

For the situation at hand for which the manifold can be represented by a single 
polynomial, there is a well-known representation for the holomorphic three-form 

[4, 10]. We make the specific gauge choice 

x 5 dx~ A d x  2 A dx 3 
/2 = 5~ (2.9) 

Op //OX 4 
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We shall have more to say about the gauge invariance in the following. For the 

present however, (2.9) is a convenient choice because the replacement ~ -o aft, can 

be undone by the coordinate transformation (2.3). Thus 

= a ( , ) .  

As a choice of basis we take A z to be the S 3 that shrinks to zero as g, -o 1. The 

cycle B z is then a three-cycle that intersects this S 3 in a point. The " t ip"  of B 2, the 
rest of which lies outside the neighborhood, is indicated by the shading in fig. 1. 

The other basis cycles _A I and B. do not intersect the S 3 and can be taken to lie 

outside the neighborhood. We are concerned about the monodromy of the basis 
about ~ = 1, say. Under  transport about g, = 1, the S 3, being unambiguously 

defined for each value of 6,  will return to the same cycle. The cycle B 2 on the 
other hand is really only defined as being the dual of the A 2, so nothing prevents 
B z from aquiring a multiple of A 2. Thus 

A 2 ~ A 2 , B 2 --~ B 2 + n A 2 , 

for some integer n. The remaining cycles A I and B I are remote from the node and 

so are unaffected by this process. The monodromy of the basis induces a mon- 
odromy for the periods (2.7), 

"~'2 

Z I 

Z 2 

1 

0 

0 

0 

0 0 

1 0 

0 1 

0 0 

n if2 

0 z ~ 
1 z 2 

(2.10) 

We shall see later that the periods, as functions of 0, satisfy a linear differential 

equation which has a singularity at g, = 1. The relation (2.10) can be understood to 
describe the monodromy of the solutions of the differential equation about the 

singular point. Such monodromy is familiar, expressing the fact that some of the 
solutions of a differential equation in the neighborhood of a singularity contain 
logarithms and hence are multivalued. 

2.2. T H E  M O D U L A R  G R O U P  

It is convenient to adopt a matrix notation and to define a period vector 

~2 ] - / - -  

Z ! 

Z 2 

(2.11) 
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We have just argued that under transport around @ = 1 the period vector under- 
goes a transformation H - - .  T H .  The matrix T is symplectic, since the transforma- 
tion must preserve the intersection numbers (2.6), and it is also integral, since the 
homology basis is integral. We have observed also that @ and a~b correspond to 
the same manifold. It follows that 

n(a~,) =AH(~,), 

with A an integral symplectic matrix such that A 5 = 1. We will obtain the precise 
form of A in sect. 3 but for the present it suffices to remark that it is not the 
identity, neither is T, since we will also find that the integer in (2.10) has the value 
unity. The two matrices A and T generate a modular group F that acts on the 
period vectors, and also on the universal covering space of W, which may be 
identified with the upper half-plane in such a way that F acts by hyperbolic 
isometrics. We shall denote the operations of replacing @ by a@ and of analytic 
continuation about O = 1 by o~" and g .  These operations are represented by the 
matrices A and T. However, care is required when composing the operations since 

the matrices compose "backwards". For example 

g(~'n) = g(An) =A(9-//) =ATII. 

Transport about @ = a* corresponds to the operation ~e'k3-~ ' -k  and hence to the 

matrix 

T, = .4 - k T A k  , (2.12) 

and the matrix T~ corresponding to transport about @ = o0 follows from the 
observation that a sum of loops around the fifth roots of unity and around infinity 

is contractible. Hence 

T ~ '  = T4T3T2T, T =  ( A T )  5 . (2.13) 

Thus there are no new generators corresponding to these operations. ~,5 is a 
modular invariant of F but we can pass to a modular parameter 3' = 3'(~b) such 
that the action of F on 3' is represented by 2 × 2 matrices acting on the upper half 

3'-plane. Since s¢ 5=  1 we represent it as 

A = _ 
cos (27r j /5)  sin (27r j /5)  I 

- sin (27r j /5)  cos (27r j /5)  ] ' 

where the minus sign is of no consequence in virtue of the projectivity of the 
representation, and j is an integer, 1 -<<j ~< 4. Since j k  is never the identity for 
any k :# 0, 3-  acts on the upper half-plane as a "deck transformation" of infinite 

order. Some composition of 3- with powers of ~ may therefore be represented by 
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i:i:]~ii~:i.]:ii!~i.: 

!:ii:i~iii~i:ii!ii~? 

ili]!i~iii]iiiiii~]~! ..... ........... 

+:~+:+:.:,:: 

Fig. 3. The fundamental regions for the group generated by ,~.e' and ,~- consist of a pair of triangles. 
The circles intersect the real axis where y = tan (rrr/10), r = - 4  . . . . .  4. If we take the shaded region to 
be the fundamental region, the points ~ = (0, l, ~, a) map to y = (i, tan (27r/5), ~, - tan  (2rr/5), respec- 

tively. 

a matrix of the form 

0 1 " 

The magnitude of the translation is fixed by the fact that a fundamental region for 
the normal subgroup of F generated by 3-  is a ten-sided polygon whose sides are 
permuted by ~ .  This amounts to considering the images under ~v', o~/2, o~3 and 
S~ 4 of the imaginary axis and then demanding compatibility with ~ .  Fundamental 
domains of F are illustrated in fig. 3. 

The explicit form of 3'(qJ) may be found by seeking a map that maps the entire 
~bS-plane into a pair of triangles. This is a standard procedure in the theory of 
aut,omorphic functions involving triangle functions [22]. If the fundamental region 
for 3' is taken to be the shaded region in fig. 3 then the relation is 

Z 1 - a - Z 2  

y = i  Zl + a 2 Z  2 

= _~.i t a n ( 2 r / 5 ) / l o g  ( ~ 5 )  i-n-+ 

ze  ~ 3 

E r ( , , + ~ ) r ( , + ~ )  [ 2 q r ( n + l  .~) q r ( n + ~ ) ]  ,,=o (n!)2tO 5" ) -  7r(n + 2  _ 3 

~c ~ 3 y, 
, ,=0 (n!)2~/tS'' 

(2.14) 

where the second equality is valid for I6l > 1, ~ denotes the digamma function, 
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and Z t and Z 2 a r e  defined in terms of Gauss' series, 

r2(})2F,(5,5, 5, , ZI = /-,(4) 2 2.4. 5) Fz( )2F,(5,5,5, 
r ( 6 )  ' 

We may now complete the specification of the matrices A and T. Recall that z¢ 
maps 0 to a 0  and ~ transports ff about ~ = 1. It is straightforward to compute 
the effect of these operations on y in virtue of (2.14) and the standard analytic 
continuation formulae for the hypergeometric function*. If we require that the 
action of A is to rotate fundamental regions by 2r  r / 5  about the fixed point y = i, 
then it turns out that j = 3 and we find 

A 

77" "/r 
cos~- sin~- 

7"/" 
- s i n ~ -  cos~- 

A T = (  10 - 2 t a n ( 2 7 r / 5 ) ) . l  

These relations define the representation. It is easy to check also that 

A3TA_3 = ( 1 0 )  
- 2 t a n ( 2 z r / 5 )  1 ' 

from which we see that the various monodromy matrices are conjugates of the 
matrix on the right. 

The upper half-plane may be mapped to the interior of the unit circle by the 
transformation 

~ = a 3 (  I + i y  ) Z2 

1 - iy Z ! 

the fundamental regions of F are then as illustrated in fig. 4. In this representation 
the action of ~¢ is simply that of multiplication by a. 

We defer further discussion of F to sect. 5, save to observe that F which might 
be termed the quantum modular group is not SL(2, Z), which had previously been 
suggested as the modular group, based on its action on the "bare"  moduli space of 

P4(5). 
In order to find the explicit form of the metric we need to evaluate explicitly the 

periods of ~2. it is to this that we now turn. 

* If we set 

r2(a) 
f (a ;  ~') = -~2a~2F.(a,a;2a:;), 

then the essential relation is 

:Tf(a;~.)=f(e;~)- i tanrra{f(a;~)-~'-2"f(1 - a;~')}. 
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~3~-~  

Fig. 4. Fundamental regions of I" in the unit disk. 

3. The periods 

We begin by specifying more carefully the A 2 and B 2 of our symplectic basis. A 2 
is the S 3 that degenerates to zero at the conifold point qJ = 1 and B 2 is a certain 
torus associated with the degeneration of the manifold as q / - ,  ~. 

A 2= {xl, lx 5 = 1 ,  x i r e a l ,  i = 1 , 2 , 3 ,  
X4 given by the branch of p ( x )  = 0 that is an $3 as q~ ~ 1 }. 

(3.1) 

Consider first the case that ~b - 1 is real, positive and small. Then by writing 

Xl 
Yl Y2 + Y4 

5 ~  ' 

Yl Y2 Y4 
x 2 = l +  -I 

¢i-6 s 5V3-6 ' 

Yl Y3 Y4 
x 3 = l +  1 - - ~ +  5 5 ~ '  

x 4 = l +  
Yi Y3 Y4 

lfi-6 5 5v ' 

and keeping lowest-order terms, we see that 

4 
E Y2 = 5(q/- l), 
k--I 

(3.2) 
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which is manifestly a n  5 3. The qualification in the definition of m 2 concerning the 
branch is necessary, owing to the fact that the surface p(x)= 0 for x~ real has 
disconnected components, as is easily seen by observing that the line 

( X l , - - X l , O  , - 1 , 1 )  

is remote from the point (1, 1, 1, 1, 1) and yet identically satisfies p(x) = O. 
On integrating the three- form/2  over A 2 we find 

z2(¢') = fA f l  

~ . 2  

5 3 / 2 ( 4 ' -  1) + . . . .  (3.3) 

The leading term may be obtained by integrating the zeroth-order locus (3.2), and 
the higher terms may be calculated systematically by means of an iteration scheme. 
Shortly we shall give an exact expression for z2(4') in terms of hypergeometric 
functions. 

For B 2 we take the cycle 

B2= {xklx5 = 1, Ixil = Ix2 [ -  I x 3 l - 3 ,  
X4 given by the solution to p ( x )  = 0 that tends to zero as 4' ---, ~}. (3.4) 

To understand the condition on the branch of the solution, set x4 = (4'XIX2X3)I/4~ 
and write the equation p = 0 in the form 

5 (1 
= 5(4'x x2x3 5 

)5/4 + - - ,  (3.5) 

from which it is clear that to leading order as 4' --> 0% there is a solution for ~: given 
by the first term on the right-hand side of eq. (3.5). Thus there is a branch for x 4 
with x4 = O ( 4 ' -  ! ) a s  4' ~ 0~ for fixed x I, x2, x3. On the other hand, by rearranging 

the equation p = 0 into the form 

s~4=5 - 
5 5 ( l+x t+x~+x3)  

( 4 'XlX2X3)5/4~ 

we see that there are four branches for x 4 that are O(4, !/4) as 4'--> oc for fixed 
(x~,x2, x3). At this stage it is far from clear that, as defined, B 2 meets A 2 in a 
single point. Showing that it does, requires a more detailed discussion of the 
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homology than we wish to give here, so we defer  the demonstrat ion of this fact to 
appendix A. We turn instead to a computation of the periods. 

We have 

def( .Q 

-- fB dx i  dx2  dx3 
- -  2XIX2X3  __ d / _ l X  4 . (3.6) 

A comment regarding the orientations of the cycles A 2 and B 2 is necessary here. 
The cycles do not possess an intrinsically defined orientation so a choice must be 
made. We have already implicitly fixed the orientation of A 2 by eq. (3.3). This in 
turn fixes the orientation of B 2 since we require that A 2 n B 2 = + 1. The choice 
made in the second of eqs. (3.6) is consistent with this. As ~, ---> ~ we see that the 
term involving ~, can be neglected and hence 

~'2 ~ ( 2 " n ' i / 5 )  3 , 

the factor of 5 -3 arising from the 7/3 identifications. For ~ large the integrand can 
be expanded in powers of (~:4/~). sr can itself be computed as a power series in 
0-~ in virtue of an iteration based on eq. (3.5). The result is of the form 

Ea,,f 
t! =0 

dx,  dx z dx 3 (1 + xl 5 + xz 5 + X5) 4n3 

( X I X 2 X 3 1 [  I 

We evaluate the integrals by residues. The only term in the quantity 

(1 + xl 5 + xz 5 + X5) 4n3 

.5 , .  5,. 5,, which appears with coefficient ( 4 n ) ! / ( n ! )  4. that contributes is the term x~ ~2 ~3 
Thus 

27ri ) ~ (4n)! 
~'2= ---5-- n=0Y'~ a,, (n'.)41/j5n 

The surprise is that when the a ,  are calculated and substituted into this expres- 
sion, we find 

( 27ri )3n~ ° (5n)!  
~'2 = ---if-- _- (n ! )5 (50)5  . , (3.7) 

and the series on the right converges for 101 >/1. 
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The function that appears on the right-hand side of eq. (3.7), 

~ro(0) deal E (5n)! 

n = O  

[0[ > 1, 0 ~ arg 0 < 2~-/5,  (3.8) 

satisfies a linear differential equation of generalized hypergeometric type and it is 
useful to take advantage of this fact in order to write down a complete set of 
periods. The restriction on arg 0 anticipates that analytic continuation of too(0) 
will lead to branch cuts. The fact that periods of the type we are discussing satisfy 
linear differential equations with regular singular points is a very general property 
[23]. For the case at hand it is straightforward to check that 

d 2 ( 4 z -  3) d 3 ( 7 2 z -  35) d 2 

dz 4 z ( 1 - z )  d z  3 5 z 2 ( 1 - z )  d z  2 

( 2 4 z -  5) d 24 ) 
5-~--1 - - z )  d-z 625z3- ( i - z )  m ° = 0 '  

(3.9) 

where z -  0-5. It is compelling to assume that all four periods satisfy this same 
equation, a fact that we shall assume for the present but verify shortly. Either 
directly from the equation or from the associated Riemann symbol 

0 o0 1 
i 0 ~ 0 

0 2 1 0 -5 5 
3 0 5 2 

0 4= 1 

(3.10) 

we observe that the equation is of generalized hypergeometric type. Recall that the 
generalized hypergeometric equation of fourth order is 

{ 0 ( 0  + c  I - 1 ) (0  + c  2 -  1)(0  + c  3 -  1) 

- z ( O  + a , ) ( O  + a2)(O + a3)(O + g4)}W = O, 

where 0 - z d / d z  and the associated Riemann symbol is 

0 oo 1 
0 a ! 0 

1 - c ! g2 1 z 

1 c2 a3 2 
c 3 a 4 ~_~Cj- ~.,a k 
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The solutions of the differential equation (3.9) can be written in terms of the 

generalized hypergeometric function [22,24] 

)F3(a,,a2,a3, a4; Ci,C2,C3 " ~ )  -- 

In fact we have 

r(c~)r(c2)r(c3) 

r( a,)r( a2)r( a3)F( a4) 

x }2 g (a ,+n)r (a2+n)r (a3+n)r (a4+n)  ~" 
n=O F ( C l  + n ) F ( c 2  + n ) r ( c 3  + n )  n !  

( ) F3 (,  2 3 4.1 1 1 " 1 / 0  5 ) ,tiTO ~r - -4  5 '  5 '  5 '  5 '  ' ' ' (3.11) 

as is easily verified with the aid of the multiplication formula for the r-function in 
the form 

r ( z ) r ( z  + 1 / 5 ) r (  z + 2 /5 )  r (  z + 3 / 5 ) r (  z + 4 / 5 )  = (27r)251/2-S~F(5z). 

(3.12) 

A standard maneuver for finding the other solutions to the differential equation 
in terms of the hypergeometric function amounts here to changing variables from 
1 / 0  5 to 0 5 and to extracting a factor of 0 ~, with k = 1, 2, 3, or 4, from the 
Riemann symbol. Thus a set of four linearly independent  solutions are 

0 ~: 1 
1 / 5 - k / 5  k/5 o 

0 k ~  2 / 5 - k / 5  k /5  1 
3 / 5 - k / 5  k /5  2 
4 / 5 - k / 5  k /5  1 

k k k k  
=0k4F3 5 '  5 '  5 '  5 ;  

0 5 

r k + l  k + 2  k + 3  k + 4 -  
; 0  5 

5 ' 5 ' 5 ' 5 
(3.13) 

where the overbrace signifies that the parameter  that is unity is to be omitted. This 
basis is useful for some purposes, however we find it more convenient to base our 
development on the functions m0(ak0).  At first sight one might be tempted to 
conclude from eq. (3.11) that m0(0) is a function of 0 5 but this is not the case 
owing to the fact that there are branch cuts implicit in the definition of ~rt)(0). In 
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--C 1 
Fig. 5. The contour of integration for eq. (3.14) showing the poles of F ( - s )  and of F(5s + 1). 

order to clarify this and to find explicit expressions for too(atO), we wish to 
analytically continue m0(~) to a neighborhood of the origin. This is accomplished 
by introducing an integral representation of Barne's type. If 0 < arg ~ < 2~-/5, we 
have 

1 fc r ( - s ) r ( s s  + 1) ei=~(5qs)_5, (3.14) 
~r°(~b) = 27ri- ds F4(s + 1) 

with the contour as in fig. 5. The integrand has poles on the positive real axis for 
s = 0, 1, 2 , . . .  due to the presence of the factor F ( - s ) .  If in addition I tbl > 1, the 
contour can be closed to the right and (3.11) is recovered as a sum over residues. If 
on the other hand I~bl < 1, the contour can be closed to the left enclosing the poles 
of F(5s + 1). Thus we find 

= E ,,,=, F(m)F4(1-m/5) I01 < 1. (3.15) 

We shall show presently that ~r0(~) contains logarithms when ~,5 = 1, so we 
must specify cuts associated with these terms. It is convenient to take ~ro(~,) to be 
analytic in the neighborhood of the origin, so we take the cuts to run radially 
outward from the points qt = a k, k = 0 , . . . , 4 .  It is clear from the form of the 

differential operator  that the functions 

def 
' i~ j(  {~t ) --" 1[~0( I~JlD " ) ,  j = O , . . . , 4  (3.16) 

all satisfy the differential equation. It is clear also from the series (3.15) that a.-'.y 
four of these functions are linearly independent,  the five nrs(~,) being subject to 



40 

the single relation 

P. Candelas et al. / Calabi-Yau manifolds 

4 

E ~ r j ( ~ ) = 0 .  (3.17) 
j=0  

We wish next to examine further the monodromy of this basis about the point 
= 1. We have argued that the basis ( i f  a, zb)  transforms according to the rule 

(2.10) under transport about the point ~ = 1. It follows that the ~rj have the 

transformation rule 

- - i f -  m j ( ~b ) ~ --if-- ~r j ( ~," ) + c j z 2 ( ~b ) , (3 .18)  

where the cj are a set of numerical coefficients. This transformation rule is 
equivalent to the assertion that the ~rj have the structure 

2rri)3 cj 
- - ~  mj (d / )  = 2.rr----fz2(d/)log(O - 1) + f j ( 0 ) ,  (3.19) 

with Z2(I~/) and f j (O)  analytic for I ~ -  11 < 1. The period Z2(~/) corresponds to 
one of the indices which is unity in (3.10). The differential equation, as is easily 
verified, admits two solutions that are given by power series about ~ = 1. These 
are z2(~) and another series corresponding to the index 2. The other solutions 
contain logarithms owing to the fact that the index 1 is repeated. One might have 
anticipated a more complicated structure than (3.19), with the term multiplying the 
logarithm being a more general linear combination of the two solutions that have 
power series expansions. This however would not be consistent with (2.10). 
Checking that the transformation rule is indeed as in (3.19) amounts to checking 
the coefficient of (~ - 1)2 log(~b - 1) in wj(ff). This will be subsumed in the 
following computation of the coefficients cj. 

Suppose z2(O) has the expansion 

47/-2 
z2(~lJ) = 53•2 {(~b- I) + b(~b- 1) 2 + ...} (3.20) 

about ~b = 1. Then from eq. (3.19) ~ve have 

2~'i) 3 
(T d 2 2 7 r i ( 1  ) 

-~17J ' j ( i ] i ) - -  53/2Cj O -  1 + 2b log(~b-  1) + . . .  , (3.21) 

where the terms indicated by the ellipsis have finite limits as ~b ~ 1. Thus we can 
calculate cj and b by differentiating the series (3.!5) and computing its leading 
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behaviour as ~ ~ 1. It is convenient to set 

m = 5 N + k ,  k = 0 , . . . : 4 ,  N =  0, 1 ,2 , . . .  

for the variable of summation in eq. (3.15). Then in virtue of Stirling's formula 

( ' >) r ( z )  = 2CYff e - z  l + l- z + O (  z - 2  , 

we find that as ~ ~ 1 

41 

However 

ml(  x - ie ) = too( a(  x - ie ) ) 

-- too( x + i e ) ,  

the last equality following from (3.8) which is valid for 0 ~< arg $ < 2~-/5. Thus eq. 
(3.22) holds for ~b's just above the cut that extends from 1 to ~ (see fig. 6), and 
hence by analytic continuation for all ~. 

We now know z 2 and if2 in terms of the basis nrj, and we wish to find similar 
expressions for z ~ and ff~. It turns out, rather surprisingly, that we do not have to 
explicitly describe A 1 and B~ if we proceed somewhat indirectly. We choose a 
specific basis of linearly independent  ~rj and form a vector 

d e f  

(.2) 
T ,070 - 

1 ~  4 

d2.  5,/24 :( 05N) 
d~ b2 4"n'2 k=0 5N " 

By comparing this expression with eq. (3.21), we find b -  1 / 2  and 

cj = (1,1,  - 4 , 6 ,  - 4 )  for j = (0, 1 , 2 , 3 , 4 ) .  

The next step is to express z2($)  in terms of the basis mj($). The result is 

z 2 ( , )  = -  - ~  ( w , ( ~ , ) - W o ( , ) ) .  (3.22) 

To see this suppose x is real and x > 1. If e is an infinitesimal, then from eq. 
(3.19) 

( 2 r r i )  3 
- ~  (~r l (x  + i e )  - ~ r l ( x - i e ) ) =  - z E ( x ) .  
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Fig. 6. The cut $-plane. The fundamental region is indicated by the heavier shading. The series for the 
wj(~) given by eqs. (3.16) and (3.15) converge for I $ I < 1. 

What we are seeking is a relation of the form 

with as in eq. (2.11) and with m a numerical matrix which in virtue of eqs. (3.22) 
and (3.7) is of the form 

m= 

ab cd 

The periods z1 and g1 are not as yet uniquely defined, since given any choice 
there is the freedom to make a second choice differing from the first by an 
Sp(2; Z) = SL(2; Z) transformation 

(3.24) 

e can use this freedom to set f = 0 in m. We know also that the periods t’ and 
.Fr are free of logarithms at $ = 1, which is the condition that the sums, weighted 
by the coefficients ci, of the corresponding rows of m must vanish. Consider now 
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how the basis m changes under O --, aO, 

43 

with 

a -- 

m(aqJ)  = a m ( O ) ,  

- 1  - 1  - 1  - 1  
1 0 0 0 
0 1 0 0 
0 0 1 0 

It is this simple form for a that motivated the choice of basis m. In terms of the 
symplectic basis we have 

Fl(aO) = A H ( q t ) ,  A =mam-' .  

The matrix A must be integral and symplectic. This turns out to be a stringent 

condition with a solution for m that  is unique up to the Sp(2; 7/) transformations 
(3.24), 

and we find 

3 i 21 8 ) 
-- .~ 5 -3- 

m =  0 0 - 1  0 , (3.25) 
- 1  0 8 3 

0 1 - 1  0 

A = 

- 9  - 3  5 3 
0 1 0 - 1  

- 2 0  - 5  11 5 
- 15 5 8 - 4  

TABLE 1 
The matrices associated with the transformation @ --, t~@ and monodromy about ~b = 1 and 

= ~. The matrices associated with monodromy about tO = a k are a-k ta  k and A - ~ T A  k 

~r H 

monodromy 

about @ = 1 
t = 

monodromy 
t~ = 

about @ = 

- 1  - 1  - 1  - 1 ~  
1 0 0 

0 1 0 
0 0 1 

1 4 4 

0 0 1 
0 - 1  2 
0 4 - 4  

- 3 4  
10 
0 

- 1 5  

- 5 5  
16 
0 

- 25 

- 3 1 0  
90 

1 

- 155  

- 1  

211 

A = 

T =  

T~ = 

- 9  - 3  5 3 
0 1 0 - 1  

- 2 0  - 5  11 5 
- 15 5 8 - 4  

1 0 0 0 
0 1 0 1 
0 0 1 0 
0 0 0 1 

51 90 - 2 5  0 
0 1 0 0 

100 175 - 4 9  0 
- 7 5  - 125 35 ! 
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Given m we can return now to the monodromy of the bases about ~ -- 1, 

w ~ t ~ r ,  H ~ T H ,  

where the matrices t and T may be found from (3.18) and (3.25). Given the 
transformations T and A, it is a simple matter to compute the monodromy of the 
bases about the other singularities in virtue of eqs. (2.12) and (2.13). We record 
these results in table 1. Referring to the table we see that the integer n in our 
previous expression for the monodromy matrix (2.10) is in fact unity. 

4. The prepotential, metric and Yukawa coupling 

Given the periods (~a, Zb) it is now straightforward to construct the prepotential 
and the metric. The prepotential can be defined by 

Recall that the holomorphic three-form ~ has the variational property 

092 
f~¢~^ o# = 0 ,  

and that this property requires the ~'a to be the derivatives of the prepotential, 

O~ 
~ = Oz ~ , a = 1,2. 

As a consistency check we can verify that this relation is satisfied. To this end note 
that, in virtue of the fact that the prepotential is homogeneous of degree two as a 
function of the z ~, (zl) 

~ (  z ' ,  z2) = ( z Z ) Z ~  - ~ , 1  . 

A short calculation now reveals that 

os¢ 

Oza ='Yo - z W [  z 2] 

where Eab is the permutation symbol and 

dv du 
W [ u , v ]  = u - ~  - V dd / 
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Thus for consistency the identity W[ z c, g'c] = 0 must be satisfied. We have checked 
that it is indeed satisfied by the somewhat brutish method of expanding the 
periods as power series in ~ by means of eqs. (3.15) and (3.25) and checking that 
W[ z c, g'c] vanishes order by order. Actually, the vanishing of W[ z ~, g'~] is a very 
natural condition as can be appreciated by noting that 

f~a (¢ )  ^ a (~ , ' )=  zC(~,)~c(¢, ,) - z~(¢ , )~(¢) .  (4.1) 

By differentiating this expression with respect to if' and setting i f ' =  if, we find 
that 

0 ~  
W[z~,~'A = f a ^  ,~,t, ' 

and hence must vanish. 
The K~ihler potential K is given by the relations 

e - r  = i(£,aff a - zany)  

= -rt*zrt 

= - i m t t r ~ r ,  (4.2) 

with (0 010){013 
Z =  0 0 0 1 1 - 1  0 3 

- 1  0 0 0 ' t r = - ~  3 - 3  0 
0 - 1  0 0 1 - 3  - 1  

1 

3 
1 " 

0 

The metric on the moduli space follows from (4.2). A three-dimensional plot of 
g ,$  against ~k is presented in fig. 7. The cusp at ~, = 1 (there is of course only one 
cusp owing to the identification ~, = a ~ )  corresponds to the value of ~b for which 
7/" is a conifold. The metric is mildly singular at the conifold. It can be shown that 
g ,$  is asymptotically proportional to logl~b-11,  so the conifold is at a finite 
distance from the smooth manifolds in agreement with general results [17]. hi 
order to compare the metric g~,$ with the corresponding metric for the moduli 
space of P4(5), it is of interest to compute the asymptotic form of the metric as 
~b -o o0. In appendix B series expansions, valid for I~1 > 1, are derived for the mj, 

3 oo ( 5 n ) !  

~rj(O) = E l°gr(5O) E bjr,, 101 > 1 
r=0 n=0 (n! )5(5~)  5" ' " 

In order to compute the leading terms of the metric we retain only the terms with 
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Fig. 7. A plot of the metric g ,$  against ~ for 0 in the fundamental region 0 ~ arg ~b < 2rr/5.  The 
cusps correspond to the conifold at to = 1. As (0---, ~ the metric tends asymptotically to a metric of 

constant negative curvature. 

n = 0 and define vectors of coefficients s imilar  to m,  

so that  

Most of the terms 

brief (2 ,)3T b i r[) 

b4,-o 

3 

w ( O )  ~, ~ b , . l o g r ( 5 0 ) -  

def  
o-~ = _ . ~ . ~  ~ . , , , - , r , ,  s 

Janish, the only nonzero  products  being 

4 ~  3 4 ~  3 

or3° = tr°3 = 75 ' tr2~ = °h2 25 
128 

crop = ~ ,~r t~ ' (3 ) ,  
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0.5 

O.a 

0 

oi 
0 .  

I I I 

0.5 1 1.5 2 

I 
-I 

Fig. 8, A plot of  the metric g,~$ against 14,1 for arg 4, = k~r/20,  k = (0,1, 2, 3, 4). Note the cusp at 
4, = 1 where the metric has a logarithmic singularity.. 

-2 

5" 

2" 

" { ...... 1 I ........ .5 2 

. . . .  , _ , 

2.5 3 

Fig. 9. A plot of the Ricci scalar against logml4,1 for a r g 4 ' = k r : / 2 0 ,  k = ( 0 , 1 , 2 , 3 , 4 ) .  The plot 
illustrates that the curvature scalar tends to the value - .~ as 4, -'-' ~ but does so logarithmical'y. 
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where s r is the Riemann st-function. Thus 

e - ~ ~  --g- {~° 5-l°g 31501 + - ~ ' ( 3 ) } ,  

and so we find the leading terms of the metric to be 

g~,~- 410121og21501 1 -  251og31501 + . . . .  (4.3) 

The leading term corresponds to a metric of uniform negative curvature. In fact, 

on setting 
5 

t ~ - ~ l og (50 ) ,  
27ri 

we find that 

ds 2 
3 Idtl 2 

2 ( t2) 2 '  

where we have written t 2 for Im t, so the large complex structure limit of the 
geometry coincides, as we shall see in the following section, with the large-radius 
limit of the moduli space for P4(5). The subleading term in eq. (4.3) corresponds to 
a loop correction to the metric which we shall discuss further in sect. 5. Note 
finally that the singular manifold corresponding to 0 = ~ is infinitely distant from 
the smooth manifolds. 

4.1. THE YUKAWA COUPLING 

In order to make contact with the Yukawa coupling we introduce a set of 
"wronskians", 

w~-~~ ~o-~o ~ ~°. 

Then, from eq. (4.1), we find a relation between the Yukawa coupling and W 3, 

= W  3 . (4.4) 

Now the form of W 3 follows straightforwardly from the differential equation (3.9) 
that governs the periods. Let us rewrite the equation in the form 

( ( d ) 4  3 ( d )  k } 
+ E ck(~,) ~ u = 0 .  

k=0 

From this relation it is immediate that 

3 
w4+ E Gw~=0. 

k = 0 
(4.5) 
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Note now that 

Wo= W, = w =o. 

The vanishing of W 0 is trivial. W 2 is the derivative of W~ and we have verified that 
W~ vanishes. Note also the elementary identity 

w , -  2 w ;  + 

Putting these results together we find 

and hence 

1 w3' +  C3W3 = O, 

( 2~ri ) 3 511/2 
K~,~,~=W3= - - ~  1_~ ,  5 , (4.6) 

the constant being determined by the computation of the specific form of W 3 as 
---> 0. We could also have arrived at this same result by using the methods of 

ref. [10]. 
Some comments are in order here concerning the gauge dependence of the 

Yukawa couplings (for a full account in the spirit of the present work see refs. 
[20,21]). It was noted previously that the holomorphic three-form is in reality 
undefined up to multiplication by a holomorphic function of ~, 

o--,fo, 

and we refer to such a replacement as a gauge transformation. A gauge transfor- 
mation induces a transformation of the period vector, 1I -~ fF l ,  and from eq. (4.4) 
it follows that the coupling is gauge dependent, 

2 KeO0 --')f Keeo, 

so is the K~ihler potential which transforms according to the rule 

e-K ~ Ill 2 e - r .  

The gauge choice is arbitrary and a physical quantity such as a decay rate cannot 
depend on the gauge. It must therefore be the case that the coupling enters into 
physical quantities only through the invariant combination 

Yinvde=fg -3 /2  e K I~1, 

the factor of g-3/2 being included to remove the coordinate dependence of IKI 
(since the effect of a gauge transformation on the K~ihler potential is K ~  
K -  log f -  log f the metric is gauge invariant). 
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Roughly speaking the mechanism that causes K to be replaced by the invariant 
coupling is the following. The low-energy lagrangian contains terms of the form 

g e -h',~DA" + ½gta&t 2 + ( xA'A'~b + conjugate) .  

With a suitable choice of covariant derivative D, this is invariant under  

f l f i '  -~  /¢ ...~ 2/¢,  e -K ---} - e  , 

if also 

x ~ f - I x ,  

and 4) is invariant. We can normalize the kinetic terms by defining 

=gi/ ,_ e - K / 2 x e i ~ / 2  ~ = gl/2~b ' 

where/7 = arg K. Then the low-energy terms become 

~D,f + ½1a~l-' + g-3 /2  e r IKI ( , ~ , ~  + conjugate) .  

We summarize the limiting forms of the metric, curvature and invariant Yukawa 
couplings in table 2. The reader  will recognize the value obtained for the invariant 
coupling at ~ = 0 [7] as being the value corresponding to the Gepne r  model 35 [25]. 
This agreement is an important check on the mirror hypothesis. The  ~ = ~ row of 
table 2 gives the "bare"  value of y~.~ as being 2/V~-. In ref. [7] this value is 
incorrectly stated to be 1 / ~ - .  

Finally we note that for a one-dimensional manifold that is special K~ihler, the 
Ricci scalar is related to the invariant coupling by 

R + 4 = 9 ,,2 (4 7) 
• , , ,  j I l r l V  ~ 

TABLE 2 
T h e  a sympto t i c / l imi t ing  forms of  the  metric,  the  scalar  curva ture  and  the  invar iant  Yukawa  

coupl ing  for ~ = 0, 1, ~. In the  midd le  row a is a posi t ive cons tan t  and  r = I~ - 1 I. 

dr g~,¢ R g-3/2 erlKi 

4 , r l ~  ~ [-5 I T15 /2 (3  T5/2(~  
0 25 rS(~)rS(~) 2 ( ~ )  (-~) - 4  5) " ' "  

I 3 4 " rs( ~)rs(  ~ ) r'5( ~)r~(. ~ ) r " / ' ( ~ )  _r5/21, 5, ~-~ 

1 1 
1 - a  2 log r 

2a2r2[ - iog r]3 2ar[ - log r]3/2 
3 4 2 

4l~bl 2 log 2 I~1 3 
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Fig. 10. A plot of  the Ricci scalar R against 6 for 6 in the fundamental  region. The curvature tends to 
infinity at 6 = 1. As 6 --' ~: the curvature tends asymptotically to the constant  value - ~. In virtue of  eq. 

(4.7) this figure has essentially the same form as a plot of the invariant Yukawa coupling. 

and we present a three-dimensional plot of the Ricci scalar in fig. 10. A plot of Yin,, 

has the same form. The "bare"  value of Yinv is 2/~-. The quantum corrections 
cause Yinv to differ from this constant value and the correction becomes infinite at 

the conifold. 

5. P4(5), the mirror map and quantum corrections 

Recall [20] that prior to receiving quantum corrections, the prepotentiai is given 

in terms of b t~ + 1 homogeneous coordinates w j by the expression 

= 

1 i f A B c W A W B w  C 

0 3! w 
A = 1 , . . . , b l l ,  

where the 

KABC = f ~ A  A e B A e C 
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are the intersection numbers of a basis for H 2(./l, 7/). For the present case b~= 
and denoting the generator of H2(P4(5), 7/) by e we have 

= 1 ,  

f// ' . A e  A e =  5. (5.1) 

Thus, using coordinates (w ~, w 2) rather than (w °, w~), we write 

5 (w ' )  , 
9 - =  6 w 2 =- (w2)2t3 (5.2) 

d efwi 
the latter form being written in terms of an affine coordinate t / w  2. It is 
simplest to set w 2= 1, after differentiation, then the K~ihler potential is given by 

K = - l o g  i ~ - - =  
aw j 
m __ W j 

O~ j 

= - l o g (  20 (5.3) 

From this we find that the metric and Ricci tensor on the parameter space are 
given by 

3 
' 3 t t "  gt i  4"t2 - 2 { ,  ) R t  i 2_g _ 

We summarize these results in table 3, which should be compared with the ~b = oo 
row of table 2. 

We have seen that the large complex structure limit of the invariant Yukawa 
coupling and the geometry of 7/ /agree with the bare values of the corresponding 
quantities for te'. We wish to examine the quantum corrections to the bare 
quantities by comparing corresponding quantities on 7 / / a n d  J¢'. 

A detailed comparison requires the explicit form of the mirror map t ~ ~b(t) 
between the two parameter spaces. In order to do this it turns out that we need to 
understand the quadratic terms in the prepotential and these in turn involve the 

TABLE 3 
The metric, the scalar curvature and the invariant Yukawa coupling as functions of t 

all t 

gt i  

3 

4t~ 

g-3/2 eh'[K ] 

2 



P. Candelas et aL / Calabi-Yau manifolds 53 

loop corrections, so we shall first discuss the loop corrections. Perhaps surprisingly 
we shall see that there is a single loop correction to the bare prepotential. 

5.1. THE LOOP TERM 

We have of course a nonrenormalization theorem [5], to the effect that there are 
no sigma model loop corrections to the superpotential or equivalently, to the 
couplings O39-/OwaOwbOw ¢. The prepotential is homogeneous of degree two, so it is 
determined by its third derivative up to a quadratic term of the form 

A ~  = ½wT.2"W , 

with .2" a symmetric constant matrix. We can decompose .2" into its real and 
imaginary parts, 

.2" = ~ + i,~,'. 

The real and imaginary parts affect the prepotential differently. From eq. (5.3), 
which may be written in the form 

e - r =  2w*(Im l:)w, 

with I: the matrix of second derivatives of 9-, we see that the real part of _2" 
contributes neither to the Yukawa couplings nor to the metric of the moduli space. 
Such a term is of no consequence and could be discarded. Alternatively, we can 
absorb it into the bare part, 9-o, of the prepotential by extending the range of the 
indices on the intersection numbers K,48c to include the value zero, so that 

1 KABcWAWBw C 1 KabcWaWbw c 
l ~ . a . b  

3-° = 3 ! W 0 -1- -~ ~g"a b W 14' - -  3 ! w ° 

a , b = O ,  1 , . . . , b l l .  

The imaginary part of .2" does affect the metric and since the contribution of y to 
the prepotential, 

d e f  .,- 
"~--Ioop = i w ' • w ,  

contains powers of the radius (recall that for the case of P4(5), t = w ~/W 2 and the 
imaginary part of t is the square of the radius), it is precisely the loop correction 
to . ~ .  

We shall now argue that W]ooo contains a four-loop correction and that this is 
the only loop correction to the prepotential*. In fact ~]oop is closely related to the 

* The discussion presented here grew out of animated conversations with A. Strominger. 
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four-loop term found by Grisaru et al. [14] in their investigation of the/]-function 
for type-(2,2) supers vmmetric it-models. The loop corrections arise because there 
are loop corrections to the sigma model. When the heavy modes are integrated out 
of the sigma model, part of the loop term survives into the low-energy theory. 
When we refer to a four-loop term, we mean a four-loop contribution to the sigma 
model. This corresponds to a third-order correction to the prepotential. 

The particular case of P4(5) corresponds to b~a = 1 but it is simpler and more 
general to leave b~ arbitrary for the present. The large-radius limit is the limit 
w ° ~ 0 for fixed w "4 (this is the limit t ~ ~ for P4(5)) and the loop counting is that 
1 / w  ° corresponds to one loop and each additional power of w ° corresponds to an 
additional loop. Thus the term iwT~/w contains, in principle, two-loop, three-loop 
and four-loop terms. These terms must be constructed from local polynomials in 
the curvature of ~v. These terms have to be universal, that is independent of any 
structure, such as complex structure or the dimension of the space, that is 
particular to ~#/. Furthermore, the loop contributions must vanish for hyper-Kiihler 
manifolds. These conditions, which are clearly very restrictive, were investigated in 
relation to the counterterms that can arise for the g-functions for type-(2,2) 
supersymmetric tr-models [26]. It is known that there are no curvature polynomials 
with the requisite properties that could correspond to two or three loops and that 
there is a single such quantity at four loops, 

de.~fl~ k l  D tnn D i j  .,)1~ k l  D m n  D i j 
S - , , i j  " ' k l  " r a n  - - ' ~ ' ' i j ' ' k  ! ' ' r a n  , 

where R#k ~ is the curvature tensor of .//. A further remarkable property of S for 
Calabi-Yau manifolds in six dimensions is that S is proportional to the Euler 
integrand. It can be shown that 

Sgi/2 d6x = 12(2,n-)3c3, 

where c 3 is the third Chern class. 

Consider now the possible structure of the components ~ b -  The component 
Y0o can be of the form 

fftoo=a f d6xg l /2s  = 12(2,rr)3ax, 

with a a numerical coefficient. The other components of y all vanish. The terms 
YABWAW B and ~,'oAw°w A are respectively one- and two-loop terms for which, as 
already mentioned, suitable curvature polynomials do not exist. 

We therefore know the form of .~]oop up to a numerical coefficient independent 
of .J~'. One way to fix the coefficient would be to actually evaluate a four-loop 
graph. It is simpler however to compare with the corrected prepotential for [P4(5) 



P. Candelas et ai. / Calabi-Yau manifdds 

which we do in eq. (5.10) below. In this way we find that 

55 

i~'(3) 
.~"l~p = 2(2~.)3 X. (5.4} 

For the case of P4(5) it is this contribution to the prepotential which produces 
the subleading term in the metric in eq. (4.3) and is responsible for the fact that, 
for large $, the Ricci scalar of the moduli space differs from its limiting value by 
inverse powers of log $ as is evident from fig. 9. 

5.2. T H E  M I R R O R  MAP 

We find the relation between the coordinates $ and t by relating the period 
vector H to the corresponding vector H for P4(5). The idea is that we expect the 
prepotential ~' calculated in sect. 4 to be the fully corrected form of the bare 
prepotential .9- o given by (5.2). The complication is that the form of the prepoten- 
tial depends on the choice of symplectic basis. So we must first find the relation 
between the symplectic bases for ~ and M'. We do this by relating H and H for 
large radius and large complex structure. 

The leading behaviour of H is derived from the leading behaviour of the 
prepotential ~-, which we take to be 

def 5 (WI) 3 
"-~ert "-- "-~"-0 + °~'--loop-- 6 w 2 + ½ a ( w l ) 2 + b w i w 2  + ½ c ( w 2 ) 2 "  

The first term is as in eq. (5.2) and we have allowed for quadratic terms in line 
with our discussion above. From 9-pert we obtain the leading behaviour of the 
period vector, 

_/ def 
pert -" 

'99-pert 
OW i 

O~'-pert 
aw 2 

W i 

W 2 

= W  2 

5 2 - -v t  + a t + b  

5 3 ~t + b t  + c  (5.5) 

We have the elementary fact that Hp~, is cubic in t. On the other hand we have, 

a s  I f / ~  ~ ,  

(°) (!) / /  , ,  t3  0 t2 2 5 i  
~22 0 + + t  00 + _ 2 5 / 6 / + - ~ - 5 - ~ ' ( 3 )  , 

- 5 / 6  - 2 5 / 1 2  

(5.6) 
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where 27ri)3, 
~'2 ~, - - i f -  

with asymptotic equality meaning equality up to terms that are de(0-51og3(50)). 
We have also taken 

t ~, 
5 

2 "n'i log(5~b ) 

as before and we again mean equality up to terms that involve ~-5 multiplied by 
logarithms. Because of the relation between t and ~ the neglected terms are 
C ( t  k eE~rit), and with a slight abuse of language we shall refer to such terms as 
being exponentially small in the large-radius (Im t -~  ~) limit. We allow for a 
symplectic transformation N and set 

//pert ~ N H .  (5.7) 

Since both (5.5) and (5.6) are cubics we can solve for N, 

N = 

- l + 2 a '  b' - a '  0~ 
2b' c' - b '  - 1  J 2 0 - 1  0 ' 
0 1 0 0 

where 

25i 
a =  ~! + a '  b =25 b' , ~ +  , c = - ~ s r ( 3 ) + c ' .  

77" 

If we take a', b', c' e 7/then N e Sp(4; 7/) for all a', b', c'. The fact that //pert and H 
are related by a symplectic matrix is a consequence of mirror symmetry. The fact 
that they may be related by an integral symplectic matrix is the observation already 
made by Aspinwall and Liitken [27] that the mirror symmetry identifies the two 
lattices 

A = H 3 ( T f , ~ ) ,  
3 

V -- ~ )  H 2 i ( l f ,  7 / ) .  
i=o  

We shall here take a', b', c' to vanish, other choices corresponding merely to  a 
further Sp(4, Z) transformation. So the final form for N is 

- 1  0 0 0)  
N =  0 0 0 1 

2 0 - 1  0 " 
0 - 1  0 0 
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With sufficient prescience we could of course have chosen a basis fo r /1  so that N 
would have turned out to be the identity. 

With N in hand we may write down the quantum version o f / / ,  with the gauge 
choice W 2 --  ~ 2 ,  

H = N i l ,  w2 = ~ 2 .  

The gauge-invariant form of this relation is 

W 2 

n =  m r .  (5.8) 

Our aim here is to compare the quantum prepotential ~- that derives f rom/- /wi th  
that derived from 9- 0. We set 

/-/__ ~ '2  

WI 

W 2 

and referring back to eqs. (3.23) and (3.25), recalling that the latter expression for 
H is in the gauge ~'2 = (2rri/5)a~r0, we find the following expression for t: 

w I 2( 1D" 1 - -  " ~ 0 )  + ID'2  - -  1D'4 
t - "  "-" 

w 2 5m'o 

( l ~ ( 5 m ) ,  + 5 m ) - ~ ( 1  + m ) ] }  5 1og(55) 
27ri m0(* )  , =1 ( m ! ) 5 ( 5 ' )  5'" [gr(1 

m 

(5.9) 

This equation gives the mirror map. We have introduced the coordinate t partly to 
make contact with previous work but primarily because 2krci t  is the value of the 
action evaluated on a rational curve of degree k (that is on an instanton of degree 
k). The coordinate t transforms in a complicated way under the generators d and 
g of modular transformations, although under (gag) -~  we have the simple rule 

( 3-s¢ ) -I"  t -  , t  + l .  

We also have 

( 5 3 ~  t 2 2 5 2 5 i  ) ~"=  ½wag-a = (wE) 2 - ~ t  - -  + ~ t -  27r---~sr(3) +exponentially small , 

(5.1o) 
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where the last expression follows on inverting eq. (5.9) to give ~ - - ~ ( t ) .  Note the 
structure of ,~-. First there are terms that are cubic, quadratic and linear in t that 
have real coefficients. These correspond to the bare prepotential ~--0- Then there 
is the term independent of t, which we identify as the loop term and which fixes 
the coefficient in eq. (5.4). Lastly there are exponentially small terms which may be 
thought of as instanton corrections. 

5.3. T H E  S U M  O V E R  I N S T A N T O N S  

We wish to examine these exponentially small terms. The idea is to examine the 
difference between ff and ~-0- However, as mentioned above, one must also allow 
for the effect of the symplectic transformation N. It is simpler to consider first the 
instanton contribution to the Yukawa coupling, which is of interest in its own right, 
the corresponding contributions to ~ can then be obtained by integration. We 
have 

Kttt= -~2 K~,,~, - ~  , (5.11) 

where K , ~  is given by eq. (4.6) and the prefactor expresses the gauge freedom. If 
we choose w 2= 1 and recall that K ~  was derived in the gauge ~'2 = (27ri/5)3z~r0, 
we find 

Ktt t "-  5 -]- 2 8 7 5  e 2=/t + 4876875 e 4 ' r i l  + . . .  , w 2 = 1 .  (5.12) 

To understand the structure of this sum consider the contribution of a rational 
curve ~ of degree k to the coupling. A rational curve of degree k is a P~ 
embedded by equations of degree k. Equivalently it is characterized by the fact 
that 

where e is the generator of H 2(P4(5), 7/). The contribution of _~ to the coupling is 
[7] 

exp(2rrit fzf ) ( fsf = k 3  e 2~rikt 

It is necessary to consider also multiple covers of the rational curves. For example, 
at degree 2 there are embeddings P~ ~ P4(5) given by 

(i): (u, U) + (//2, U 2,//U, 0, 0) ,  
(ii): (u , v )~ (u2 ,  v2,0,O,O). 

These are given as embeddings P~ ~ P4, but for suitable quintics the curves lie in 
the quintic hypersurface. The image in case (i) is a rational curve of degree 2 while 
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case (ii) is a double cover of the line (u , v ,O ,O,O)  which is a rational curve of 

degree 1. Note that the two cases are intrinsically different, we cannot by means of 
a coordinate transformation transform case (ii) to case (i). More generally, an 

m-fold multiple cover of a rational curve of degree k is an embedding Pt ~ P4(5) 

such that the homogeneous coordinates of the P4 are polynomials of degree k in 

quantities (U, V) that are themselves polynomials of degree m in the homogeneous 

coordinates of the P~. One difference between the multiple covers and the single 

covers is that it appears that the single covers have no parameters (it is proved in 

ref. [28] that the single covers have no parameters for k < 7) while m-fold covers 

with m > 1 do have parameters. Since the quantities U and I / a r e  polynomials of 

degree m in the coordinates (u, v) of the Pl they each contain m + 1 parameters. 
Taking into account the three degrees of freedom in a reparametrization 

( u ,  v )  -o ( au + by ,  cu + d r ) ,  ad  - bc = 1, 

of the P l and the freedom to multiply U and I / b y  a common scale, we find 

2(m + 1) - 3 -  1 = 2 ( m -  1) 
parameters. 

We shall assume that an m-fold cover contributes an amount k 3 e 2~im~' to the 

coupling. Since 

• j = m k ,  
l 

this amounts to the assumption that m-fold covers have an associated prefactor 
1 / m  3 (otherwise the contribution would be ( i n k )  3 e2rrimkt). We believe that this 

prefactor derives from the zero modes associated with the parameters that the 
m-fold covers enjoy, but we have not performed the computation. The reason for 

assuming this specific form for the prefactor will become apparent as we proceed. 
With this understanding we find that the contribution to the coupling of a rational 

curve S a of degree k together with all its multiple covers is 

k 3 e 27rikt 
k 3 ~ e 2~rikmt __ 

1 -- e 2~rikt " 
I t l  = 1 

Let n k be the number of rational curves of degree k, then we have the following 

expression for the coupling as a sum over instantons: 

ilk k3  e 2~rikt 
= E e2"ri' + (23/ /2 + h i )  e4ri t  + "  (5.13) 

Kt t  t 5 + 27rikt = 5 + n I . . .  
k-'-=l 1 - e  

It is gratifying that we find that n~ = 2875 which is indeed the number of lines 

[29]* (rational curves of degree one) and n 2 = 609250 which is known to be the 

*This number is misleadingly given as 375 in ref. [6]. This is due to the fact that the calculation is 
performed for a special class of quintics and no account taken of multiplicity. If the counting is 
done for a generic quintic then the result is 2875. 
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TABLE 4 
The numbers of rational curves of degree k for 1 ~< k ~< 10 

k nk 

1 2875 
2 609250 
3 3172 06375 
4 24 2467530000 
5 22930 58888 87625 
6 248 24974 21180 22000 
7 2 95091 05057 08456 59250 
8 3756 3216093747 66035 50000 
9 50 38405 10416 98524 36451 06250 

I0 70428 81649 78454 68611 34882 49750 

number of conics [28] (rational curves of degree two). Clemens has shown [30] that 
n~ ~: 0 for infinitely many k and has conjectured that n k ~: 0 for all k, but it seems 
that the direct calculation of these numbers becomes difficult beyond k = 2 (see 
also ref. [28]). It is however straightforward to develop the series (5.12) to more 
terms and to find the n~ by comparison with (5.13). We present the first few n k in 
table 4. These numbers provide compelling evidence that our assumption about 
the form of the prefactor is in fact correct. The evidence is not so much that we 
obtain in this way the correct values for n~ and n 2, but rather that the coefficients 
in eq. (5.12) have remarkable divisibility properties. For example asserting that the 
second coefficient 4,876,875 is of the form 23n2 + n I requires that the result of 
subtracting n~ from the coefficient yields an integer that is divisible by 2 3. 

Similarly, the result of subtracting n~ from the third coefficient must yield an 
integer divisible by 3 3. These conditions become increasingly intricate for large k. 
It is therefore remarkable that the n k calculated in this way turn out to be 
integers. 

The values for the nk shown in the table are particular to P4(5), however we can 
abstract from eq. (5.13) a form for the mirror map which we conjecture to be of 
general validity, 

e2rri.2,'[w] 

= . ~ 3  (5 .14)  7~v ~e'w + .2'~t¢~] 1 - e 2~'i-2'[w1 

where we regard the complex structure of 7 f  as being parametrized by the 
complex K~ihler form w = B + / J  of ~#, and 
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Eq. (5.14) embodies the moral of the present work. There is a "bare  manifold" .ng 
and a "quantum manifold" 7// and the quantum manifold is the bare manifold 
together with its rational curves. 

5.4. THE N U M B E R  OF RATIONAL CURVES OF L A R G E  D E G R E E  

It is immediately apparent from table 4 that the nk grow very rapidly with k. It 
is of interest to observe that the distribution of the n k for large k is governed by 
the conifold at ~ = 1. Consider again the series (5.12) which gives the Yukawa 
coupling as a power series in e 2t i t .  The radius of convergence of the series is 

determined by the singularity of the Yukawa coupling and the coupling is singular 
only when q~5 = 1, so we conclude that the series (5.12) converges for 

lm t > Im t ( 1 ) .  

From this it follows that n ,  cannot grow faster than e -2~ ik t t l~  for large k. 
However, we can do better and find the asymptotic form of nk from the singularity 

of the coupling. 
First we need to know the behaviour of t (~)  as ~b ~ 1. From eq. (5.9) we find 

t ( ~ )  - t ( 1 )  ~ 
53/2 i t2(1) 

4rr 2 too(1) 
~ ( ¢ -  1)log(~k- 1). 

Together with eq. (5.11) this enables us to find the leading behaviour of the 

singularity of the coupling as 6 ~ 1, 

(27r) 3 ~h](1) 1 

Kt t t~  53/2 t3(1) ( q J - 1 ) [ - l o g ( ~ b - 1 ) ]  3.  (5.15) 

On the other hand the severity of the singularity at ~ ---, 1 must be dictated by the 

asymptotic behaviour of the n k for large k. If we set 

n k ~ B k  p-3 logo. k e 2:rkt2(l~ 

then we have  

0t~ 

K t t  t ~ B ~ k ° log °. k e-2"n'ktt2tdtJ-t2(l)) 

~ B fo  d k k  ° logo. k e -k* , 
def 

x = 2 ~ ' ( t 2 ( ¢ ) -  t2(1)) ,  

~ B  
r(1 +p) 

x,+p ( - i o g x ) o . .  (5.16) 
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Fig. 11. A plot of the series of ratios {r~°)}, for 2 ~< k ~< 25, together with its first three Richardson 
transforms. The third transform converges rapidly to unity. 

By comparing (5.16) with (5.15) we see that p = 0, or = - 2 and we find also a value 

for B. Thus we have 

TI k 

~ ( 2 + r m o ( 1 ) ) 2  e 2~kt2tl) 

t2(1) k 3 log 2 k ' 

t2(1) = 1.208128077077918638192.. .  , ~ o ( 1 )  = 1.070725868430155800571.. .  , 

(5 .17)  

the next-order terms being smaller by inverse powers of log k. Note that, as 
anticipated, the asymptotic form just refers to quantities evaluated at ~ = 1. 

As a check we have plotted the values of  

i tO) n k -~: = - - ,  (5.18) 
b' k 

where v k is the expression on the right-hand side of (5.17) in fig. 11 for k in the 
range 2 ~< k ~< 25. The series {r~. °)} converges very slowly owing to the fact that the 
subleading terms in the asymptotic expansion fall off as inverse powers of log k. To 
speed the convergence we apply a variant of a Richardson transformation [31] to 
the series, the aim being to eliminate the effect of the subleading terms. We set 

r~ m) = 
r(m-k+! l) log (k  + 1) - rtk ' ' -  i) log k 

l o g ( ( k  + 1 ) / k )  

and we record the values of the series {r]. '')} in fig. 11 for 1 ~< m ~< 3. We see that 
the third transform converges rapidly to unity. 
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5.5. SOME FURTHER REMARKS ON THE MODULAR GROUP 

We saw previously that the modular group F acts most simply on a modular 
parameter y. A puzzling fact is that 3' does not appear to be the quantity that is of 
most direct physical interest. For example, the coordinate that arises naturally in 
the instanton sum is the coordinate t which is related to the complex K~ihler form 
by the relation B + / J  = te. The coordinate t is, as we have seen, proportional to 
the value of the instanton action and has a direct significance since Im t = R 2, 
where R, in this context, is the radius of the Calabi -Yau manifold. The puzzle is 
that t and y do not appear to be related in a simple way, though of course both 
are functions of tO. It is perhaps worth recalling here the relations 

2 tan(2~r /5)  

i i ~  1 ¸I 

q,+ 

~ r(.+,)r(,,+'-)r(,,+3)r(,,+. [ ~ ] 
' ~ ~ ) 4'/'(n + t) - ~ q,( ,  + r /5)  

,,=o (n!)4~ 5'' r=i 
I "; / ~  4 5 E r(,,+~)r(,,+~)r(,,+~) (,,+~) 

,,=,) (n!)% ~" 

5 / 
- - 2 =  2 ~ i  Iog~k+ 

' ]/ ,,=0 (nV)2~ 5 ' ' -  ~ 21F(n + 1 ) -  r=2 ]~  ~ ( n  + r / 5 )  

5 E r ( .  + ~)r( , ,  + ~) 
n=0 (n!)2 t  bS" 

5 / 
t =  2rri log 

Fig. 12. The images of the lines arg~ = const, in the t-plane. The shaded region is the image of the 
fundamental region and the other four regions are the images of the shaded region under the action of 
~ ,  .~,2 ~¢3 and ,~¢4. Although it is not clear at this scale, the tangents to the boundaries coincide at the 
branch points, so the deficit angles are zero as are the angles at the tips of the images. The image of the 

i 2 1. -4i sin3(2rr/5) and the four cusps touch the real axis at t = 0, 3, .~, p o i n t ~ O = 0 i s t = - ~ + 5  



to sho~ ~ that t h e ~  functions definitely come from the same stable but are in fact 

different. 
l 'he translbrmation laws lbr t under the action of r fol|ows from the first of 

equations (5.9k We obserx~ed previously that t --, t - I under the action of JZ~¢. 
The transtbrmatkm of t under the action of g ,  say, is considerably more 
complicated. |n fig. !2 we ha,.c plotted the images of the lines arg ff = consz. The 
shaded regkm is the image of the lhndamental region and the other four regions 
are the images of the fundamental region under r.~:, .~*~, ::~''~ and .~,4. Since the tips 
of the h t t e r  tour regions come down to touch the real axis we see that large R, 
that is large l m t .  is mapped m small R under the action of .~'~:. The precise 
relatkm however is not as simple as R ~ l / R .  

6. A mechanism for supe~ymmetry breaking 

The purpose of this section is to present a speculative mechanism which breaks 
super~mmetB, for the low-chert ,  theoB,. The proposal is logically independent of 
the mirror symmetB ~ that is the focus of the present article; however we include it 
here ~ c a u s e  it arises naturally as part of the discussion of the conifold at ~ = 1. 

In refs. [17, 18] it has been observed that the nodes of a conifold can be resolved 
in different ways. One is by s m ~ t h i n g  whereby the node is replaced by an S ~ as in 
fig. 1. Another way is to replace the node by an S 2 as indicated by fig. 13. 

The construction that achieves this is entirely local in nature. However, in 
replacing the node by an S ~" we interfere with the cohomolo~'  group H-" and it 

S 3 

' "  +: ' :5 : : : : : : ' : "  

M 

Fig. 13. Local neighborhoods of a node in a conifold, its small resolution in .~. and its deformation in 
.~. The conifold is singular while both .~  and ..4' are smooth. 
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need no longer be the case that there remain any positive (I, 1 ) - f o ~ .  If t ~  is so 
then the resulting manifold ~ '  is a Moishezon manifold but it is not ~ e r .  
case at hand is of just this type and this follows from the fact that the conifold has 
just one node. Let W be the resolving S-" = P~ then the essential point is that ~ is 
a boundary (we are indebted to T. Hfibsch for explaining this ~ i n t  to ~ ) .  We 
see this by considering the sequence of operations depicted in fig. 13. In passing 

v 

from .~  to .~r a puncture is made in B 2 and the punctur= is b |~vn up into W. T h ~  
B 2 now has a boundary 8 B  2 = ~ .  L e t  a l so  J = ig~,~ dx ~' A dx ~ ~ t ~  putative 
K~hler form, then we have 

L J = L ! :  

The first integral is the area of W which is strictly positive. Thus d J  cannot vanish 
identically and hence .4# cannot be Kiihler. 

It was observed in reL [32] that such a compactification of string theory has 
certain attractive features. The holonomy group of M~" is presumably ~ 6 )  so 
embedding the spin connection in the gauge group breaks E s x E s to E s x O(I0) 
and we can have broken supersymmetry while retaining vanishing cosmo|ogi~  
constant. This proposal is cast in the geometrical language of Kaluza-[]e in  theory. 
because it is geometrical in nature and we do not yet know how to formulate these 
ideas in terms of conformal field theory. It does however show a way of resolving 
what was regarded as a difficult problem in the days of Kaluza-Klein theory which 
was how to introduce a length scale, different from the compactification scale, 
which could correspond to low-energy supersymmetry breaking. Here we have a 
second length scale arising as the radius of the resolving P t. In some appropriate 
sense supersymmetry is only slightly broken if this parameter is small, though we 
have no argument as to why the scale of the resolving Pt should be vastly different 
from the compactification scale. 

It is a pleasure to acknowledge instructive discussions with Paul AspinwalI, WiIIy 
Fischler, Brian Greene, Vadim Kaplunovsky. Sheldon Katz, Andy LBtkem 
Fernando Quevedo, Graham Ross and Andy Strominger. We are indebted also to 
Vadim Kaplunovsky and Karen Uhlenbeck for making computer resources avail- 
able. 

Appendix A 

A SECOND LOOK AT THE H O M O L O G Y  OF ~ 

The function of this appendix is to make a more detailed study of the homolo~¢ 
of 7/p and to close the gap left in sect. 3 by showing that the cycles A 2 and B z do 
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indeed intersect in a point. We also make some further observations concerning 
the monodromy of the cycles and find cycles Q/corresponding  to the periods nrj. 

We begin by defining three-chains Vj, j - - 0  . . . .  ,4, 

Vi(tO) = { x k l x 5  -- 1, x i , x 2 , x  3 real and positive, the branch of 
x 4 chosen such that arg x 4 ~ ~" + 2 7 r j / 5  as ~ ~ 0}. 

The five Vj are chains rather than cycles, however a little thought shows that in 
virtue of the identities (2.2) they have a common boundary, that is aVj is 
independent of j. So the difference of any two Vj is a cycle. We find x4 by solving 

the quintic which we write in the form 

5 _  5 t o x ~ x , x ~ x  4 + A = 0 X4 ,. . , 
dcf 5 

A = 1 + x ~ + x  2 + x ~ .  

Setting also 

we have 

XIX2X 3 
x 4 = g t / s r l ,  t~ = A4/5 , 

r/5 - 5tOur/+ 1 = 0. (A.1) 

This equation has of course five roots for given ( x ~ , x 2 ,  x3) .  For tO sufficiently 
small these can be found by rewriting (A.1) in the form 

r/ /= -ozJ(1 - 5tOur/j) i/5 , (A.2) 

and iterating the equation. It is easy to show that u is bounded, in fact, u varies in 
the range 

0 <~ U <~ 4 - 4 / 5  , (A.3) 

so for to sufficiently small the root r/i is unambiguously defined by the iteration. It 
is clear that for small tO the Vj have no points in common apart from their 
boundaries. 

We wish next to enquire how the Vj vary with to. In order to accomplish this we 
first consider the behaviour of the roots of eq. (A.1). It is evident that (A.1) cannot 
have a purely imaginary solution for r/ if tO is real since then the first two terms 
would be purely imaginary and the third term real. Next we observe that (A.1) has 
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a double root if in addition 1/satisfies the equation 

1/4 __ ~// / .  

It follows that (A.1) has a double root if and only if 

(~u)5  = 4 -4 , (A.4) 

and that a double root satisfies 

1/5 I = ( A . 5 )  

One immediately sees that (A.1) cannot have a triple root or two double roots for 
any value of 4'. As a consequence of (A.3) and (A.4) 7/will have a double root for 
some value of (x j ,x2 ,  x 3) if and only if ~5 is real and 14,1 1> 1. It follows that we 
can unambiguously extend the definition of the Vj to the dJ-plane cut as in fig. 3. 
Consider now the behaviour of the roots as ~, runs from 0 to ~ through real values. 
For ~ = 0 the five roots are, as we have already seen, 1/j = - a  j. Since there are no 
purely imaginary roots for any real ~, it follows that three of the roots have 
negative real part and two have positive real part. Moreover, since there cannot be 
a double root that is real and negative, in virtue of (A.5), the three roots with 
negative real part will always consist of a real root and a conjugate pair of complex 

roots. 
On the other hand the two roots with positive real part will consist of a 

conjugate pair for 

4 - 4 / 5  

U 

and will be distinct and real for 

4 - 4 / 5  
~ > ~ ,  

U 

with a double root precisely when 

4 - 4 / 5  

ll 

The situation for large ~ was discussed in sect. 3. One of the roots approaches 0, 
while the other four recede to infinity along trajectories that are asymptotic to the 
four semi-axes. The two roots with positive real part therefore approach 0 and ~:, 
respectively, while the three roots with negative real part all become infinite. A 
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rio 

\ 
rll 

t r/s 

Fig. A.1. The trajectories of the roots of eq. (A. I )  as to increases through real values. The roots r/2 and 
rt3 become real and move as shown if tO has an infinitesimal positive imaginary part. 

plot of the trajectories is presented in fig. A.1. These considerations will shortly 
allow us to compute A 2 tq B 2. 

We now look at the chains Vj())  for tO > 1 which we define as the limit of Vj(to) 

with Im to positive. It follows from the foregoing that V o, V~, V 4 and V 2 t) V 3 are 
disjoint and that V 2 intersects V 3. Let X be the subset of V 2 u V 3 for which 

4 - 4 / 5  

to 
< u .  (A.6)  

X consists of two three-chains, corresponding to the two positive solutions of (A. 1) 
that have positive real part, with their boundaries identified because there is a 

double root precisely when equality holds in (A.6). A little reflection should 
convince the reader that the two three-chains are topologically three-balls and that 
the boundaries of these three-balls are identified with opposite orientation so that 
X is an S 3. In fact X is the cycle A 2 of sect. 3. 

We are now in a position to compute A 2 c3 B 2. The definition (3.1) of A z 
restricts all coordinates to be real and positive. The definition (3.4) of B 2 requires 

that Ix il = Ix zl = Ix31 = 6 ,  s o  in fact 

X 1 " - X  2 : X  3 - -  ¢~. 

Because ,~ in the definition of B e is chosen to exclude multiple values of x 4 and in 

fact forces strict inequality in (A.6), there are exactly two points which satisfy all 
these restrictions, corresponding to the two positive real roots for r/. However, as 

we have already seen, exactly one of these is on the branch for which x4 ~ 0 as 
to ~ ~. Consequently, the intersection of A 2 and B 2 consists of a single point. 
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7 

Fig. A.2. Two choices for the cycle ~,~. One composed of straight lines, the other smooth. 

The last point we shall address in this part of the discussion is the monodromy 
of the cycles 

def 
% = 

with respect to a loop circling the point ~, = 1. From the discussion above, it 
follows that as we go around such a loop, the chains V~ remain unchanged except 
for j - 2, 3, and that the chains V 2 and V 3 exchange the balls corresponding to eq. 
(A.6). This can be expressed as adding X to V 2 and substracting X from V 3 (there 
is an orientation of X implicit in this choice). The monodromy of the cycles can 
now be readily computed. We leave this as an exercise for the diligent reader. 

CYCLES CORRESPONDING TO THE PERIODS ~j 

As a final topic in this appendix we wish to find cycles Qj corresponding to the 
periods ~rj. The Qj together with the relation (3.23) serve to define the cycles A ~ 
and B~, which have hitherto been defined only implicitly. Of course we know that 
the period corresponding to BE(~) is proportional to ~r0(~,), so cycles correspond- 
ing to the ~rj are proportional to BE(~J~), with the continuation performed along 
paths that go from ~, to aJ~ without crossing the cuts. We shall here give an 
alternative definition of the Qj and relate these cycles to the Vj discussed above. 

Let Yi, i = 1, 2, 3, be the one-cycles consisting of the union of the two half-lines 
arg xi -- 2~ ' /5  and arg x~ = 0. The reason for choosing the cycle as we have is that 
u is bounded on the cycle. For other cycles, such as taking the x i to be real, this is 
no longer true so that the term ~u in eq. (A.2) is not necessarily small for small #. 
We define the cycle Qk by taking (Xi, XE, X3) E Yl X ~/2 X •3 and x4 to be given by 
the (k + 3)rd branch of the quintic. 

Solving eq. (A.2) by iteration we find 

~(k O) = --O~ k , 

- d ' ( z  + 

7/(2)-- - - ~ k ( 1  + ~k,~u - - ( tgk~tu)2)  , etc. 
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The important  point is that  

(A.7)  

Let qk(6)  be the period evaluated on Qk, 

dxldx2dx3 
q~( ~ ) = ×~._×,3 a ~ / ' ( n ~  + 3 - ~ x , x , x ~  a - ~ / ~  " 

(A.8)  

In virtue of eq. (A.7) we see that 

q~ ( ~ ) = q , , ( ~  ~ ), 

so it is sufficient to study qo. The factor (7/4 - ~bXlX2X3A-4/5)-I 
as a power series in ~b, 

can be expanded 

(n~-~Ox,x,_x,a -~/-~) - I  ~ ( Sa3OXlX2X3 ) 
--'0/3 E Cn+! j 4 / 5  

n = II 

Substituting this expression into eq. (A.8) we have 

with 

: ! 3m ( q,,(~) ~ ~ c,,,/,,,~ 5~)'" 
m = ! 

d x  I d x  2 d x 3 ( X l X 2 X 3 )  'n-i _-/ 
j 4 m / 5  

"YI X "Y2 X "Y3 

(A.9)  

The integrals I m can be evaluated in closed form. First observe that 

m -  I dxlxl 
f~,~ A 4/5 

. m -  I .~ dx  I a i 
= (1 --O/re) i l l  /I~4/5 

so we have 

I,,, = ( 1 - a ' " )  fo ~ dx  dx~ dx3(x x,x 3 A4,,,/5 (A.10)  

On introducing new variables y; = x~/2 and then going over to polar coordinates, 

we find that the integral factorizes into three integrals that are easily evaluated in 
terms of B-functions. The result is 

I,? =(-1)'"+l(2"n'i) 3 - -~  F(m/5) 
!?1 

a- F(4m/5)F3(l_m/5),  (A. I  1) 
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where in writing this last relation we have used the fact that 
Substituting eq. (A.11) into eq. (A.9) we find 

71 

~ 1 / 2  __ _ _ a 3 .  

' i ) 3  ~ F ( , , 1 /5 )  
! m + ! 2 m  

q, , (qJ)  = --~ ~,,,E=, 1 - 1 )  c,,,~ r ( 4 , , , / s ) r 3 (  l - m / 5 )  (5~,)". 

When the coefficients c,,, are calculated we find 

yielding 

c,, = ( - 1 )  ' ' ' + '  
r(4m/5) 

r ( m )  r (  1 - m / 5 )  ' 

q " ( ~ ' )  = - T -  

a 2,, ,r ( m / 5 ) ( 5 ~ )  'n 

,, =1 F ( m ) F 4 ( l - m / 5 )  

We recognize that, in virtue of eq. (3.15), the right-hand side of this relation is 
proportional to m 0. In fact 

(27ri) 
3 

q 0 ( ~ ) =  -- T nr0(~b) .  

Finally, we observe from eq. (A.10) that the Q-cycles arc related to the V-chains 
by 

3 

Q i = ( 1  - ~o,/) g j+3  , 

with o~, as previously, the operation that replaces ~ by a~b. Thus we have 

Qj = Vj_2 - 3V/_, + 3Vj - Vj+,. 

Appendix B 

FURTHER PROPERTIES OF THE PERIODS 

We record here some further results pertaining to the periods nri(~b). Recall that 
nrj(~b) = mo(cd0), so for 10l < 1 we have, from eq. (3.15), 

i l l  

,~ 2'"r( ,n /5 )  ( 5 , ~ , )  
,~j(~,) = - ~  F_., r ( m ) r ~ ( 1 - r e ~ s )  ' I~,l < 1. ( B . I )  

m = 1 

Our main purpose here is to obtain explicit expressions for the nrj(t0) valid 
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throughout the fundamental region. It is simplest to begin by discussing the basis 
(3.13). It is perhaps notationally simpler to regard the hypergeometric function 
that appears on the right-hand side of eq. (3.13) as a 5F4 which has a 5 = c 4 = 1. We 
choose the basis 

k k k k k + l  k + 2  k + 3  k + 4  
~k(O)  = r s ( k / 5 )  (5~b)ksF4 1 . . . . . .  q~5 

J r ( k )  5 ' 5 ' 5 ' 5 '  ' 5 ' 5 ' 5 ' 5 ' 

_ ]5n+k r s (  n + k / 5 ) ( ~ , ,  
= E , I~ol < 1, 

,,=0 F(5n + k)  

the last equality following in virtue of the multiplication formula (3.12). To 
analytically continue these functions we write them as integrals, 

ds FS(s + k /5) (5d/ )  5s+k f 
dr k ( qt ) 

- J c ( e  2=is-  1) F(5s + k)  
0 ~< arg ~O ~< 2 r r /5 .  

For I~1 > 1 the contour can be closed to the left. Note that there are no poles 
when s =  - N ,  N =  0 , 1 , . . . ,  for then 5s + k = k - 5 N  and the factor 1/F(5s + k) 
renders the integrand finite. There are however fourth-order poles when 
s = - N - k / 5 .  These are not of fifth order, again because of the F(5s + k) in the 
denominator. Extracting the residues involves the expansion of ~b 5s about 
s = - N -  k /5 .  This produces the log ~b, log 2 ~b and log 3 ~b terms. The ~ry are given 
in terms of the fir k by the relation 

1 4 

"~O'j(I]/) "-- 8077.4 k~=lozJk(a k -  1)4z~k(~t) .  

The upshot is that the ~rj have series expansions of the form 

3 ~ (Sn)!  
"t~'j(~b) = E I o g r ( 5 ~ )  Y'~ bjr,, I~1 > 1 

,---0 ,=0 (n ! )5 (56 )  5 " '  ' 

with the coefficients bjr n given by somewhat lengthy expressions. Defining 

5 

k=l 
¢ ( z )  = ~ , ( 1  + z )  - ~ , ( 1  + 5 z ) ,  
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we have 

bjoni  - -  
1 

6(2zri)3 {6 (2r t i )3 (S io  - 1) + 6(2~ri)212~-i + 5qJ(m)]Sj ,  

+ 3 (2~ i )  [2(2"rri) 2 + 5(2,rri)tO(m) - 5 ~ ' ( m )  + 2 5 ~ 2 ( m ) ] S i 2  

+ 5 [ ~ " ( m )  + 5 ( 2 ~ i ) 2 ~ ( m )  - 1 5 ~ ( m ) ~ ' ( m )  + 25~3(m)]Si3) ,  

b j l m  - -  5 (2(2,n.i)2S~ ' (2"n'i)[2-tri + 2(2.a.i)3 + lOq~(m)] Sj2 

+ 3[(27ri)2 + 15qb2(m) - 3@'(m)]Sj3) ,  

bj2nl  
25 

2(2rri)3 {2~'iSj 2 + 5~(m)S j3  } , 

b j 3 m  --  
125 

6(217-/) 3Sj3" 

Finally we record the series expansion of z 2 about ~ = 1, 

4 7 7 2  

' , I - 1 1 < 1 ,  Z~(I//) : 53/2 E am(1 -- ~b5) 'n+ '  I//5 
m = 0 

where the coefficients satisfy the recurrence relation 

0 = 625m2(m 2 -  1)a m -- 1 2 5 m ( m -  1 ) ( 2 0 m 2 - 4 0 m  + 23)a,,,_ i 

+ 125(m - 1)(30m 3 -  150m 2 + 261m -- 157)a,._ 2 

- ( 2 5 0 0 m  4 -  22500m 3 + 76625m 2 -  116875m + 67226)am_ 3 

+ 625(m 3) 4 
- a m - 4 

with the initial values 

1 3 
a o - -  - -  . ~ ,  a l  = 5 o -  
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