
1 Euler integral, differential forms

1.1 Integral monodromy and geometry

Recall from the previous section that the hypergeometric equation for 2F1(1/2, 1/2, 1|z)
has a monodromy group which is conjugate to Γ(2), the subgroup of SL(2,Z) consisting
of matrices equal to the identity matrix modulo 2. Another explanation of the integrality
of this monodromy comes from geometric considerations that we will explain here. Recall
that from the Euler integral representation of hypergeometric functions we have

F (z) := 2F1(1/2, 1/2, 1|z) =
1

π

∫ 1

0

dx√
x(1− x)(1− zx)

.

If we assume that z is real and 0 < z < 1 the sign of the integrand is chosen positive.
Consider the second integral

G(z) :=
1

π

∫ 1/z

1

dx√
x(x− 1)(zx− 1)

,

whose integrand is chosen in iR>0 say, if 0 < z < 1.
Let us first show that G(z) is another solution of the hypergeometric equation. We
consider analytic continuation of F (z) along the closed path |z − 1| = |z0 − 1|, traversed
anti-clockwise and starting at z = z0 ∈ (0, 1). The point 1/z then decribes a circle in
clockwise direction, starting at 1/z0 and passing between 0 and 1. As soon as 1/z reaches
the interval (0, 1) we have to deform the integration path between (0, 1) in order to ensure
analytic continuation. In the end we find an integral along the following path
PICTURE

The final path consists of three parts. The part from 0 to 1, then from 1 to 1/z0 and
finally from 1/z0 to 1 with an integrand having opposite sign. So F (z), after analytic
continuation, has changed into εF (z) + 2ε′G(z), where ε, ε′ ∈ {±1} come from the sign
of the integrand. Let L be the differential operator of the hypergeometric equation, i.e.
L(F ) = 0. After continuation we obtain 0 = ε(F ) + ε′L(G) = ε′(G). Thus we see that
G(z) is another solution of the hypergeometric equation L(y) = 0. When continuing
the path between 1 and 1/z0, the point 1 stays fixed and 1/z0 describes a closed loop
around 1, but not around 0. This means that G(z) changes into ε′′G(z) for some ε′′{±1},
depending on the sign of the integrand. We know that the eigenvalues of the monodromy
around z = 1 are 1, 1. So ε = ε′′ = 1. If one wants, ε′ can be determined but we do not
do this here. The monodromy substitution of the path around z = 1 is now given by

F (z)→ F (z)± 2G(z), G(z)→ G(z).
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Now we consider analytic continuation of F (z), G(z) along the closed path |z| = |z0|,
traversed anti-clockwise and starting at z = z0 ∈ (0, 1). It is clear that F (z) will not
change. However the integration path between 0 and 1/z0 will change from the simple
interval [1, 1/z0] to
PICTURE

The integration path can be split in three parts, namely the part running from 1 to 0,
the part from 0 to 1 where the sign of the integrand is opposite and the part from 1 to
1/z0. So G(z) continues analytically to 2ε′F (z) + εG(z), where again ε, ε′ ∈ {±1} depend
on the sign of the integrand. Because the eigenvalues of the monodromy around z = 0
are 1, 1 we conclude ε = 1 and the monodromy substitution is given by

F (z)→ F (z), G(z)→ G(z)± 2F (z).

We finally get the two generating matrices for the monodromy,(
1 ±2
0 1

)
,

(
1 0
±2 1

)
.

The integral we just considered is an example of a so-called period of a differential form
on the elliptic curve Ez given by y2 = x(1 − x)(1 − zx). To explain this we first note
that y(x) =

√
x(1− x)(1− zx) with z 6= 0, 1 is a one-valued analytic function of x in the

complex x-plane with the line segments between 0, 1 and between 1/z,∞ deleted. The
integral over (0, 1) can be replaced by an integration over the closed contour Γ around
the line segment [0, 1].
PICTURE

Notice that

2

∫ 1

0

dx

y
=

∫
Γ

dx

y
.

In the space of points (x, y) ∈ C2 that satisfy y2 = x(1−x)(1−zx) the curve paramerized
by (x, y(x)) with x ∈ Γ is a closed contour.
The expression dx

y
is a differential form on Ez. To describe these we need to consider

the local parameters on Ez. We always assume z 6= 0, 1. Choose a point x0, y0 on Ez.
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If x0 6= 0, 1, 1/z we can write y(x) as a power series y = y0 + c1t + · · · in t = x − x0

with y(x0) = y0 and we say that t is a local parameter at (x0, y0). If x0 = 0, say, this
is not possible because y =

√
x + O(x) when x is near 0. But then we can write x as

powerseries in y2, namely x = y2 +O(y4). We then take t = y as local parameter at (0, 0).
Similarly t = y is a local parameter at (1, 0) and (1/z, 0). Finally, t = x/y can be taken
as local parameter at the point at∞. Substitute y = x/t in the equation for Ez to obtain
x2/t2 = x(1− x)(1− zx). This implies 1/x = t2(1− 1/x)(z − 1/x) and hence 1/x cab be
written as a power series in t2, i.e. 1/x = zt2 + c4t

4 + · · · . Then 1/y = t(zt2 + O(t4)).
The point corresponding t = 0 is called the point at ∞. The curve Ez, together with the
point at infinity, is a compact complex Riemann surface. A bit like the Riemann sphere
which is a compactification of C with a point at infinity.
The differential form ω = dx

y
may acquire a pole if y = 0. Let us rewrite the form in terms

of the local parameter t = y. We get ωz = 1
y
d(y2 +O(y4)) = (2 +O(y2))dy. We say that

ωz has no pole at (0, 0) and for the same reason it has on poles at (1, 0) and (1/z, 0). We
rewrite ωz around ∞ with its local paramater and get ωz = (2/z + O(t))dt. Again we
have no pole at t = 0. So ωz is a holomorphic differential form on all points of Ez.
The rational function field of Ez is the field defined by C(z)(x)[y]/(y2−x(1−x)(1− zx)).
Notation C(Ez). Any element can be written in the form A(x)+B(x)y with A,B ∈ C(x).
A rational differential form on Ez is a form Ω = F (x, y)dx where F ∈ C(Ez). To study it
locally at a point P on Ez we rewrite the form as a series expansion in the local parameter
at P . In general we get an expansion of the form

Ω =
(c−k
tk

+ · · ·+ c−1

t
+ c0 + c1t+ · · ·

)
dt (1)

with ci ∈ C. If no negative powers occur we say that the form is holomorphic at P .
The coefficient c−1 is called the residue of Ω. An important property of the residue of a
differential form is that it is independent of the choice of local parameter at P .
A differential form on Ez is said to be of the first kind if it holomorphic at every point
on Ez. It is said to be a form of the second kind if its residues are zero at every point.
So they include the forms of the first kind. All remaining forms are of the third kind. An
important class of forms of the second kind is given by the exact differentials d(G(x, y))
with G ∈ C(Ez).

Definition 1.2 The vector space of differential forms of the second kind on Ez modulo the
exact differentials is called the algebraic De Rham cohomology on Ez. Notation: H1

DR(Ez).
The index 1 refers to the fact that we work with differential one-forms.

Theorem 1.3 The De Rham cohomology of Ez has dimension 2 and is generated by dx
y

and xdx
y

.

A proof of this theorem will be given in a more general setting in Theorem 1.5.
A consequence of this theorem is the following. Start with the holomorphic form ωz.
Take the partial derivative with respect to z. A small calculation gives ∂z(ωz) = x/2

1−zx ωz
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which is a form of the second kind. Similarly ∂2
z (ωz) is a form of the second kind. Since

H1
DR(Ez) has dimension 2 there exist rational functions p, q, r ∈ C(z) such that p∂2

z (ωz) +
q∂z(ωz) + rωz is an exact form. Now integrate over the closed contour. The integral of
an exact form over a closed contour is zero. So we obtain

p(z)∂2
z

∫
Γ

dx

y
+ q(z)∂z

∫
Γ

dx

y
+ r(z)

∫
Γ

dx

y
= 0.

In other words, we obtained a second order differential equation for 2F1(1/2, 1/2, 1|z),
which turns out to be the hypergeometric equation.

1.4 Cohomological approach

Recall the Euler integral

F (a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt (c > b > 0).

The restriction c > b > 0 is included to ensure convergence of the integral at 0 and 1. We
can drop this condition if we take the Pochhammer contour γ given by

0 1

X

Y

as integration path. Notice that the integrand acquires the same value after analytic
continuation along γ. We get, after some computation,

2F1(a, b, c|z) = −e
πic

4π2
Γ(c)Γ(1− b)Γ(1 + b− c)

∫
γ

tb−1(1− t)c−b−1(1− tz)−adt.

When a, b, c ∈ Q we can interpret the integrand as a differential form on an algebraic
curve. Let N be the common denominator of a, b, c. Define A = N(1 − b), B = N(1 +
b − c), C = Na and assume A,B < C > 0. Consider the algebraic curve Cz : yN =
xA(1− x)B(1− zx)C . Our Euler integral can be rewritten as a constant times∫

γ

dx

y
,

where the Pochhammer contour γ is a now a closed curve on Cz. Let us assume gcd(A,N) =
gcd(B,N) = 1, gcd(C,N) = 1, gcd(A+B+C,N) = 1. This comes down to a, b, c−a, c−b
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having exact denominator N , which is somewhat stronger than just a, b, c− a, c− b 6∈ Z,
the familiar irreducibility condition. Under this stronger condition one can show that the
space of differential forms of Cz of the second kind is spanned by forms xp(1 − x)q(1 −
zx)rdx/yk with 0 < k < N, gcd(k,N) = 1 and p, q, r ∈ Z. It turns out that the dimension
of H1

DR(Cz) equals 2φ(N), where φ is Euler’s φ-function. However, this space can be split
up into 2-dimensional spaces via the action of the automorphism ψ : Cz → Cz given by
ψ : (x, y) 7→ (x, ζNy) where ζN = e2πi/N . This automorphism acts via its pullback on dif-
ferential forms via ψ∗ : R(x)dx/yk → ζ−kN R(x)dx/yk. Thus we see that H1

DR(Cz) splits up
into eigenspaces under the action of ψ∗. The eigenspace corresponding to ζ−kN corresponds
to forms with given k. Denote this by H1

DR(Cz)
(k). It will follow from Theorem 1.5 that

the dimension of H1
DR(Cz)

(k) is 2. In the same way as in our elliptic curve example it now
follows that the periods of these forms satisfy a second order linear differential equation
with coefficients in C(z).
In order to compute the dimension of H1

DR(Cz)
(k) we adopt a more general point of view.

Choose ρ, σ, τ ∈ R (or C if you like) such that ρ σ, τ, ρ + σ + τ 6∈ Z. Let z ∈ C, z 6= 0, 1.
Write y = xρ(1 − x)σ(1 − zx)τ and consider differential forms of the shape R(x)dx

y
with

R(x) ∈ C(x) having no poles outside 0, 1, 1/z,∞. Such a form is called exact if it can be
written as d(S(x)/y) with S(x) ∈ C(x) having no poles outside 0, 1, 1/z,∞. The space of
such forms modulo exact ones is called the twisted De Rham cohomology with parameters
ρ, σ, τ . Notation: H1

twist(ρ, σ, τ).

Theorem 1.5 With the notation as above, the space H1
twist(ρ, σ, τ) has dimension two

and is generated by the forms dx/y and xdx/y.

Proof Notice that for any S(x) ∈ C(x) we have

d

(
S(x)

y

)
=

(
S ′(x) + S(x)

(
−ρ
x

+
σ

1− x
+

zτ

1− zx

))
dx

y
. (2)

We show that any R(x)dx/y is modulo exact forms equivalent to (A+Bx)dx/y for some
A,B ∈ C.
Suppose that R(x) has a pole of order k in x = 0 with principal part r/xk + O(1/xk−1).
Here O(1/xk−1) denotes a Laurent expansion in x = 0 with pole order ≤ k − 1. Notice
that

d

(
(1− x)(1− zx)

xk−1y

)
= (−(k − 1 + ρ) + Ax+Bx2)

dx

xky

for certain A,B ∈ C. Hence

R(x)
dx

y
+

r

k − 1 + ρ
d

(
1

xk−1y

)
= R̃(x)

dx

y
,

where R̃(x) has pole order ≤ k − 1 in x = 0, while the poles at the other finite points do
not increase in order. Note that k − 1 + ρ 6= 0 because ρ 6∈ Z. By induction on k we can
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reduce to the case when R(x) has no poles in x = 0. Similarly we can reduce the poles
at 1, 1/z and conclude that we can restrict to R(x) ∈ C[x].
Suppose that R(x) is a polynomial of degree k with k ≥ 2. Write R(x) = rxk +O(xk−1).
A straightforward computation shows that

d

(
x(1− x)(1− zx)xk−2

y

)
= (z(k + 1− ρ− σ − τ)xk + Axk−1 +Bxk−2)

dx

y
,

for certain A,B ∈ C. Hence

R(x)
dx

y
− r

z(k + 1− ρ− σ − τ)
d

(
x(1− x)(1− zx)xk−2

y

)
= R̃(x)

dx

y
,

where R̃(x) is a polynomial of degree ≤ k−1. Hence R(x) can be reduced to a polynomial
of the form A+Bx.
It remains to show that a form (A + Bx)dx/y cannot be exact unless A = B = 0.
Suppose there exists a rational function S(x) such that d(S(x)/y) = (A+Bx)dx/y. From
the calculations above it follows that if S(x) has a pole in 0, 1, 1/z then so does d(S(x)/y).
Hence S(x) must be a polynomial. From equation (2) it follows that S(x) must have zeros
at 0, 1, 1/z. But then the calculation at x = ∞ above shows that if S is non-trivial of
degree ≥ 3, the form d(S(x)/y) has a pole of order at least 2 at x =∞. Thus S is trivial
and A = B = 0.

2

1.6 Exercises

1. Let ω = dx/
√
x(1− x)(1− zx). Determine polynomials p2(z), p1(z), p0(z) such that

p2(z)∂2
zω + p1(z)∂zω + p0(z)ω is exact.

2. A twisted form R(x)dx/y with y = xρ(1 − x)σ(1 − zx)τ is called holomorphic at 0
if it has an expansion x−ρ(ckx

k + ck+1x
k+1 + · · · ) such that ck 6= 0 and k− ρ > −1.

Similarly at x = 1, 1/z,∞. For example at x = 1 we replace x by 1 + t to determine
the local expansion at t = 0 (or in terms of x − 1 if you like). At ∞ we replace x
by 1/t.

What are the conditions on ρ, σ, τ such that both dx/y and xdx/y are holomor-
phic everywhere? How do these conditions read in terms of the hypergeometric
parameters a, b, c where ρ = 1− b, σ = b+ 1− c, τ = a.
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