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Chapter 1

Ordinary linear differential equations

1.1 Differential equations and systems of equations

A differential field K is a field equipped with a derivation, that is, a map ∂ : K → K
which has the following properties,

For all a, b ∈ K we have ∂(a+ b) = ∂a+ ∂b.

For all a, b ∈ K we have ∂(ab) = a∂b+ b∂a.

The subset C := {a ∈ K|∂a = 0} is a subfield of K and is called the field of constants.
We shall assume that C is algebraically closed and has characteristic zero. We shall also
assume that ∂ is non-trivial that is, there exist a ∈ K such that ∂a 6= 0.
Standard examples which will be used in later chapters are C(z), C((z)), C((z))an. They
are the field of rational functions, formal Laurent series at z = 0 and Laurent series which
converge in a punctured disk 0 < |z| < ρ for some ρ > 0. As derivation in these examples
we have ordinary differentiation with respect to z and the field of constants is C.
An ordinary differential equation over K is an equation of the form

∂ny + p1∂
n−1y + · · ·+ pn−1∂y + pny = 0, p1, . . . , pn ∈ K.

A system of n first order equations over K has the form

∂y = Ay

in the unknown column vector y = (y1, . . . , yn)t and where A is an n × n-matrix with
entries in K.
Note that if we replace y by Sy in the system, where S ∈ GL(n,K), we obtain a new
system for the new y,

∂y = (S−1AS + S−1∂S)y.

Two n × n-systems with coefficient matrices A,B are called equivalent over K if there
exists S ∈ GL(n,K) such that B = S−1AS + S−1∂S.
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CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS 3

It is well known that a differential equation can be rewritten as a system by putting
y1 = y, y2 = ∂y, . . . , yn = ∂n−1y. We then note that ∂y1 = y2, ∂y2 = y3, . . . , ∂yn−1 = yn
and finally, ∂yn = −p1yn − p2yn−1 − . . . ,−pny1. This can be rewritten as

∂


y1

y2
...
yn

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−pn −pn−1 −pn−2 · · · −p1



y1

y2
...
yn


There is also a converse statement.

Theorem 1.1.1 (Cyclic vector Lemma) Any system of linear first order differential
equations over K is equivalent over K to a system which comes from a differential equa-
tion.

Proof. Let ∂y = Ay be our n×n system. Consider the linear form y = r1y1 + · · ·+ rnyn
with r1, . . . , rn ∈ K. Using the differential system for the yi we see that ∂y = s1y1 + · · ·+
snyn, where the si are obtained via

(s1, . . . , sn) = ∂(r1, . . . , rn) + (r1, . . . , rn)A.

By repeated application of ∂ we find for each i elements ri1, . . . , rin ∈ K such that
∂iy = ri1y1 + · · ·+ rinyn. Denote the matrix (rij)i=0,...,n−1;j=1,...,n by R. If R is invertible,
then (rn1, . . . , rnn) is a K-linear combination of the (ri1, . . . , rin) for i = 0, 1, . . . , n − 1.
Hence ∂ny is a K-linear combination of the ∂iy (i = 0, . . . , n− 1). Moreover, when R is
invertible, our system is equivalent, via R, to a system coming from a differential equation.
So it suffices to show that there exist r1, . . . , rn such that the corresponding matrix R is
invertible. Since ∂ is non-trivial we can find x ∈ K such that ∂x 6= 0. Note that the
new derivation ∂ := (x/∂x)∂ has the property that ∂x = x, which we may now assume
without loss of generality. In case we work in in C(z) our operator would be ∂ = z d

dz
. Let

µ be the smallest index such that the matrix (rij)i=0,...,µ;j=1,...,n has K-linear dependent
rows for every choice of r1, . . . , rn. We must show that µ = n.
Suppose that µ < n. For every n-tuple r ∈ Kn we denote the derived n-tuples by
ri = (ri1, . . . , rin). Choose s ∈ Kn such that s0, . . . , sµ−1 are independent. Let t ∈ Kn

be arbitrary. By r0 ∧ · · · ∧ rµ we denote the vector consisting of the determinants of all
(µ+ 1)× (µ+ 1) submatrices of the matrix with rows r0, . . . , rµ. For any λ ∈ C we have
now

(s0 + λt0) ∧ · · · ∧ (sµ + λtµ) = 0.

Expand this with respect to powers of λ. Since we have infinitely many choices for λ the
coefficient of every power of λ must be zero. In particular the coefficient of λ. Hence

µ∑
i=0

s0 ∧ · · · ∧ ti ∧ · · · ∧ sµ = 0. (1.1)

F.Beukers: Hypergeometric Functions, preliminary notes
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Now put t = xmu with m ∈ Z and u ∈ Kn. Notice that ti = xm
∑i

j=0

(
m
j

)
mi−juj.

Substitute this in (1.1), divide by xm, and collect equal powers of m. Since m can be
chosen in infinitely many ways the coefficient of each power of m must be zero. In
particular the coefficient of mµ is zero. Hence

s0 ∧ · · · ∧ sµ−1 ∧ u0 = 0.

Since u0 can be chosen arbitrarily this implies s0 ∧ · · · ∧ sµ−1 = 0 which contradicts the
minimality of µ. 2

We must also say a few words about the solutions of differential equations. It must be
pointed out that in general the solutions lie in a bigger field than K. To this end we shall
consider differential field extensions L of K with the property that the field of constants
is the same as that of K. A fundamental lemma is the following one.

Lemma 1.1.2 (Wronski) Let f1, . . . , fm ∈ K. There exists a C-linear relation between
these function if and only if W (f1, . . . , fm) = 0, where

W (f1, . . . , fm) =

∣∣∣∣∣∣∣∣
f1 . . . fm
∂f1 . . . ∂fm

...
...

∂m−1f1 . . . ∂m−1fm

∣∣∣∣∣∣∣∣
is the Wronskian determinant of f1, . . . , fm.

Proof. If the fi are C-linear dependent, then the same holds for the columns ofW (f1, . . . , fm).
Hence this determinant vanishes.
Before we prove the converse statement we need some observations. First notice that

W (vu1, . . . , vum) = vmW (u1, . . . , um)

for any v, ui ∈ K. In particular, if we take v = 1/um (assuming um 6= 0) we find

W (u1, . . . , ur)/u
m
m = W (u1/um, . . . , um−1/um, 1) = (−1)m−1W (∂(u1/um), . . . , ∂(um−1/um)).

Now suppose that W (f1, . . . , fm) vanishes. By induction on m we show that f1, . . . , fm
are C-linear dependent. For m = 1 the statement is obvious. So assume m > 1. If fm = 0
we are done, so we can now assume that fm is not zero. By the remarks made above,
the vanishing of W (f1, . . . , fm) implies the vanishing of W (∂(f1/fm), . . . , ∂(fm−1/fm)).
Hence, by the induction hypothesis, there exist a1, . . . , am−1 such that a1∂(f1/fm) + · · ·+
am−1∂(fm−1/fm) = 0. After taking primitives and multiplication by fm on both sides we
obtain a linear dependence relation between f1, . . . , fm. 2

Lemma 1.1.3 Let L be a differential extension of K with C as field of constants. Then
the solution space in L of a linear equation of order n is a C-vector space of dimension
at most n.

F.Beukers: Hypergeometric Functions, preliminary notes
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Proof. It is clear that the solutions form a C-vector space. Consider n + 1 solutions
y1, . . . , yn+1 and let W be their Wronskian determinant. Note that the columns of this
determinant all satisfy the sameK-linear relation given by the differential equation. Hence
W ≡ 0. According to Wronski’s lemma this implies that y1, . . . , yn+1 are C-linear depen-
dent. 2

Combination of this Lemma with the Cyclic vector Lemma yields

Lemma 1.1.4 Let L be a differential extension of K with C as field of constants. Then
the solution space in Ln of an n × n-system of equation ∂y = Ay is a C-vector space of
dimension at most n.

It is allways possible to find differential extensions which have a maximal set of solutions.
Without proof we quote the following theorem.

Theorem 1.1.5 (Picard-Vessiot) To any n× n-system of linear differential equations
over K there exists a differential extension L of K with the following properties

1. The field of constants of L is C.

2. There is an n-dimensional C-vector space of solutions to the system in Ln.

Moreover, if L is minimal with respect to these properties then it is uniquely determined
up to differential isomorphism.

Let y1, . . . ,yn be an independent set of solutions to an n×n-system ∂y = Ay. The matrix
Y obtained by concatenation of all columns yi is called a fundamental solution matrix.
The Wronskian lemma together with the Cyclic vector Lemma imply that det(Y ) 6= 0.

Exercise 1.1.6 Let Y be the fundamental solution matrix of an n× n-system ∂y = Ay.
Prove that det(Y ) satisfies the first order differential equation ∂y = trace(A)y. Show also
that the columns of Y −1 satisfy the system of equations ∂y = −Aty, where At denotes the
transpose of A.

1.2 Local theory

In this section our differential field will be C((z)). We shall denote the derivation d
dz

by
D (sometimes) and the derivation z d

dz
by θ.

Exercise 1.2.1 Prove by induction on r the following operator identity. For any r ∈ N

zr
d

dz

r

= θ(θ − 1) · · · (θ − r + 1).

Prove for any m,
θ(zmf(z)) = zm(θ +m)f(z).

F.Beukers: Hypergeometric Functions, preliminary notes
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Consider the linear differential equation of order n,

dny

dzn
+ p1(z)

dn−1y

dzn−1
+ · · ·+ pn−1(z)

dy

dz
+ pn(z)y = 0, (1.2)

with pi ∈ C((z)). If z = 0 is not a pole of any pi it is called a regular point of (1.2),
otherwise it is called a singular point of (1.2). The point z = 0 is called a regular
singularity if pi has a pole of order at most i for i = 1, . . . , n.
Another way of characterising a regular singularity is by rewriting (1.2) with respect to
the derivation θ. Multiply (1.2) with zn and use zr d

dz

r
= θ(θ− 1)(θ− r + 1) to obtain an

equation of the form

θny + q1(z)θn−1y + · · ·+ qn−1(z)θy + qn(z)y = 0. (1.3)

The condition for z = 0 to be a regular singularity comes down to qi ∈ C[[z]] for all i.
Similarly we can consider a system of first order equations over C((z)), d

dz
y = Ay where

A has now entries in C((z)). Again we call the point z = 0 regular if all entries of A are
in C[[z]] and singular otherwise. We call z = 0 a regular singularity if the entries of A
have a pole of order at most one. Again, when we write the system with respect to the
operator θ, i.e. θy = zAy, the condition that z = 0 is a regular singularity comes down
to zA having entries in C[[z]].
One also verifies that a differential equation with a regular point can be rewritten as a
system with a regular point and that an equation with a regular singularity can be written
as a system with a regular singularity by starting from (1.3).
Finally we remark that for systems the concept regular and regular singularity are not

invariant under C((z))-equivalence of systems. For example, the system d
dz

y =

(
1 1
0 1

)
y

is regular at z = 0. But if we replace y by

(
1 0
0 1/z

)
u we get d

dz
u =

(
1 z
0 1 + 1/z

)
u

which is not regular at z = 0 according to our definition.

Theorem 1.2.2 (Cauchy) Suppose 0 is a regular point of (1.2). Then there exist n C-
linear independent Taylor series solutions f1, . . . , fn ∈ C[[z]]. Moreover, any Taylor series
solution of (1.2) is a C-linear combination of f1, . . . , fn. Moreover, if the coefficients of
(1.2) all have positive radius of convergence, the same holds for f1, . . . , fn.

This theorem is a consequence of the following statement

Theorem 1.2.3 (Cauchy) Consider the system of equations d
dz

y = Ay and suppose
that the entries of A are in C[[z]]. Then the system has a fundamental solution matrix Y
with entries in C[[z]] and Y (0) = Id. Here Id is the n × n identity matrix. Moreover, if
the entries of A have positive radius of convergence, the same holds for the entries of Y .

Clearly the columns of Y form an independent set of n vector solutions of the system.
Since the dimension of the solution space is at most n this means that the columns of Y
form a basis of solutions in C[[z]].
There is also a converse statement.

F.Beukers: Hypergeometric Functions, preliminary notes
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Theorem 1.2.4 Suppose that the n × n matrix A has entries in C((z)). Suppose there
is a fundamental solution matrix Y ∈ GL(n,C[[z]]) of d

dz
Y = AY and suppose that Y (0)

is invertible. Then z = 0 is a regular point of the system.

Proof. The proof consists of the observation that d
dz
Y · Y −1 has entries in C[[z]]. 2

For differential equations this theorem implies that if we have a basis of solutions of the
form fi = zi(1 + O(z)), i = 0, . . . , n − 1 then z = 0 is a regular point. The extra
condition on the shape of the fi is really necessary since the mere existence a basis of
holomorphic solutions does not always imply that z = 0 is regular. For example, the
equation d2y

dz2
− 1

z
dy
dz

= 0 has 1, z2 as basis of solutions, but z = 0 is not a regular point.
Note that in the case of systems the condition Y (0) invertible is essential. For example,

the system d
dz

y = 1
z2

(
z − 1 1
−1 1 + z

)
y has

(
1 1 + z

1− z 1

)
as fundamental solution

matrix.
If a differential equation or a system of equations with a singular point at z = 0 has a
basis of solutions with components in C[[z]] we call z = 0 an apparent singularity.
The proof of Cauchy’s theorems follows from the following lemma.

Lemma 1.2.5 Consider the system θy = Ay where A is an n×n-matrix with entries in
C[[z]]. So z = 0 is a regular singularity. Let ρ be an eigenvalue of A(0) such that none
of ρ + 1, ρ + 2, . . . is eigenvalue of A(0). Let (g0, . . . , gn)t be an eigenvector of A(0) with
eigenvalue ρ. Then the system has a solution of the form zρ(G1, . . . , Gn)t with Gi ∈ C[[z]]
and Gi(0) = gi for all i. Moreover, if the entries of A have positive radius of convergence,
the same holds for the Gi(z).

Proof. Write A =
∑

i≥0Aiz
i. We look for a solution y of the form y = zρ

∑
i≥0 yiz

i,
where the yi have constant entries and y0 6= 0. Substitution of y in the differential
equation yields the recursion

(k + ρ)yk − A0yk = A1yk−1 + · · ·+ Aky0

for k = 0, 1, 2, . . .. When k = 0 we see that the recursion implies that y0 is an eigenvector
of A0 with eigenvalue ρ. Choose y0 to be such an eigenvector. Since ρ + k is not an
eigenvalue of A0 for k = 1, 2, . . ., The matrix k+ ρ−A0 is invertible for all k ≥ 1 and our
recursion gives the yk.
Now suppose that the entries of A have positive radius of convergence. This means
that there exist C, σ ∈ R>1 such that ||Ai|| ≤ Cσi. Here ||B|| denotes the norm of an
n × n matrix B defined by the supremum of all |Bv| as v runs over all vectors in Cn

of length 1. It is not hard to show that there exist k0 ∈ Z≥0 and λ ∈ R>0 such that
||(k + ρ − A0)−1|| ≤ (k − λ)−1 whenever k > k0. For future use we also see to it that
k0 ≥ λ + 2C. Let M be the maximum of |yi| for i = 0, . . . , k0. Then, by using the
recursion and induction on k one can show that |yk| ≤M(2σ)k for all k ≥ 0. 2

F.Beukers: Hypergeometric Functions, preliminary notes
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If we have a system where z = 0 is a regular point, this means that A(0) of Lemma 1.2.5
is identically zero. Hence ρ = 0 and any non-trivial vector is an eigenvector. So we take
the standard basis in Cn and obtain Cauchy’s theorems.
In the following theorem we shall consider expressions of the form zA where A is a constant
n× n matrix. This is short hand for

zA = exp(A log z) =
∑
k≥0

1

k!
Ak(log z)k.

In particular zA is an n×n matrix of multivalued functions around z = 0. Examples are,

z

(
1/2 0

0 −1/2

)
=

(
z1/2 0

0 z−1/2

)
, z

(
0 1

0 0

)
=

(
1 log z
0 1

)
.

Theorem 1.2.6 (Fuchs) Suppose that the n × n matrix A has entries in C[[z]]. Then
the system of equations θy = Ay has a fundamental matrix solution of the form S · zB,
where S is an n × n matrix with entries in C[[z]] and B is a constant upper triangular
matrix. Any eigenvalue ρ of B is the minimum of all eigenvalues of A(0) of the form
ρ, ρ + 1, ρ + 2, . . .. In particular, if the eigenvalues of A(0) are all distinct modulo 1, the
eigenvalues of B and A(0) coincide and S(0) is invertible.
Moreover, if the entries of A have positive radius of convergence, the same holds for the
entries of S.

Notice that the existence of the fundamental solution matrix S ·zB implies that the system
is equivalent over C((z)) to θy = By, which has zB as fundamental solution matrix.

Proof. We shall prove our theorem by induction on n. When n = 1, Lemma 1.2.5 gives
a solution of the form zρG(z), as desired.
Suppose now that n > 1. Let ρ be an eigenvalue of A(0) such that none of ρ+ 1, ρ+ 2, . . .
is an eigenvalue of A(0). Then there exists a solution of the form zρg where g has entries
in C[[z]] and at least one of the entries has a non-zero constant term. Without loss of
generality we can assume g1(0) 6= 0. Replace y by

g1(z) 0 · · · 0
g2(z) 1 . . . 0

...
...

gn(z) 0 · · · 1

y.

Our new equation will have zρ(1, 0, . . . , 0)t as solution hence it has the form

θy =


ρ l2 · · · ln
0 a22 · · · a2n
...

...
0 an2 · · · ann

y

F.Beukers: Hypergeometric Functions, preliminary notes
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With l2, . . . , ln ∈ C[[z]]. According to our induction hypothesis the (n − 1) × (n − 1)
system with coefficient matrix (aij)i,j=2,...,n is equivalent to a system with a constant
upper triangular coefficient matrix, say C We can use this to bring our n × n-system in
the form with coefficient matrix 

ρ l2 · · · ln
0
... C
0


Now replace y1 by y1 + m2y2 + · · · + mnyn. One verifies that we obtain a new system of
the same form as above, except that the li have changed into l̃2, . . . , l̃n where

(l̃2, . . . , l̃n) = (l2, . . . , ln)− θ(m2, . . . ,mn) + (m2, . . . ,mn)(ρ− C).

When ρ− r is not an eigenvalue of C we see that the equation

0 = (λ2, . . . , λn)zr − θ(m2, . . . ,mn) + (m2, . . . ,mn)(ρ− C)

has (λ2, . . . , λn)(r− ρ+C)−1zr as a solution. We can apply this principle to the terms of
the power series expansion of (l2, . . . , ln). When none of the numbers ρ, ρ− 1, ρ− 2, . . . is
an eigenvalue of C we can thus find m2, . . . ,mn ∈ C[[z]] such that the l̃i all become zero.
Our theorem is proved in this case.
Suppose now that C has an eigenvalue of the form ρ − k for some k ∈ Z≥0. By our
induction hypothesis there is only one such k. Using our remarks above we can now
choose m2, . . . ,mn ∈ C[[z]] such that l̃i = λiz

k with λi ∈ C for i = 2, . . . , n. Now
replace y1 by zky1. The top row of the coefficient matrix of the new equation now reads
(ρ−k, λ2, . . . , λn), while the other rows stay the same. Consequently the coefficient matrix
now contains only elements from C and it is upper triangular. This proves our theorem.

2

The converse of Theorem 1.2.6 need not hold, so a system with a fundamental matrix
solution of the form S · zB need not have a regular singularity at z = 0. Consider for

example the fundamental solution matrix Y =

(
1 1 + z

1− z 1

)
. However, for differential

equations we do have an equivalence statement.

Theorem 1.2.7 The differential equation (1.2) has a regular singularity at z = 0 if and
only there exists a basis of solutions of the form

(g1(z), . . . , gn(z))zB, g1(z), . . . , gn(z) ∈ C[[z]]

where B is an upper triangular constant matrix.

Proof. Rewrite equation (1.2) in the form (1.3) and apply Theorem 1.2.6 to the corre-
sponding system. Then the first row of the matrix SzB contains the desired solutions of
the differential equations.

F.Beukers: Hypergeometric Functions, preliminary notes
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Let us suppose we have a basis of solutions f1, . . . , fn of the form (f1, . . . , fn) = (g1, . . . , gn)zB

with gi ∈ Z[[z]]. By induction on n we show that the n-th order equation satisfied by
f1, . . . , fn has a regular singularity at z = 0. More particularly we show that the equation
has the form (1.3).
When n = 1 we have f1 = zbg1(z) for some exponent b and f1 satisfies θf−(b+θg1/g1)f =
0. Note that b + θg1/g1 ∈ C[[z]]. Let n > 1 and suppose our statement holds for any
n − 1-th order equation. Consider the n-th order equation with solutions f1, . . . , fn.
Then (f1, . . . , fn−1) = (g1, . . . , gn−1)zB̃ where B̃ is the square matrix obtained from B by
deleting the last row and column. Our induction hypothesis shows that there exists a
monic operator L ∈ C[[z]][θ] of order n− 1 such that L(fi) = 0 for i = 1, . . . , n− 1. Now
consider L(fn). Application of local monodromy shows that fn changes into a multiple of
itself plus a possible linear combination of f1, . . . , fn−1. Since the latter are annihilated
by L we conclude that L(fn) changes only by constant factors under local monodromy.
Hence it has the form zbF (z) for some F ∈ C[[z]]. Now note that the composite operator
(θ − b− θF/F ) ◦ L annihilates all f1, . . . , fn. Moreover, the composite operator is monic
in θ and has coefficients in C[[z]].

2

Corollary 1.2.8 Suppose that the coefficients of (1.2) converge in a region R = {z|0 <
|z| < σ}. Suppose that in every sector of R with 0 as vertex we have a basis of solutions
f1, . . . , fn of (1.2) and λ ∈ R such that zλfi(z) tends to 0 as z → 0. Then z = 0 is a
regular singularity of (1.2)

The condition that in every sector the solutions are polynomially bounded by 1/|z| is
called the condition of moderate growth.

Proof. Choose a sector S in R with a basis of solutions f1, . . . , fn. Let γ be a simple
closed path which goes around zero once. Now continue f1, . . . , fn analytically along γ
until we return to our sector S. The continuations f̃1, . . . , f̃n are still solutions of (1.2).
Hence there exists a constant matrix M such that (f̃1, . . . , f̃n) = (f1, . . . , fn)M in S. We
call M the monodromy matrix. corresponding to the fi and γ. Choose a constant matrix
B such that e2π

√
−1B = M . Then the n-tuple of functions (f1, . . . , fn)z−B has trivial

monodromy around z = 0, and hence these functions can be continued to the punctured
disc D. The moderate growth condition now implies that the entries of (f1, . . . , fn)z−B

are in fact meromorphic functions. We can now apply our previous theorem. 2

Let A be as in Theorem 1.2.6. The eigenvalues of A(0) are called the local exponents at z =
0 of the system. If we have a differential equation where z = 0 is a regular singularity, we
first write it in the form (1.3) and then as a system. One verifies that the local exponents of
the system are the solutions of the equation xn+q1(0)xn−1+· · ·+qn−1(0)x+qn(0) = 0. We
call this equation the indicial equation and its solutions the local exponents of the equation
at z = 0. Note that if we choose a different local parameter t via t = c1z+c2z

2+· · · , c1 6= 0
and rewrite our equation or system with respect to t, then the local exponents at t = 0
are the same as the original exponents. This is worked out in the following exercise.

F.Beukers: Hypergeometric Functions, preliminary notes
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Exercise 1.2.9 Let θz = z d
dz

and θt = t d
dt

. Show that there exists a powerseries g(t) in
t with constant coefficient 1, such that θz = g(t)θt. Now show by induction on n that for
every n there exist powerseries g1, . . . , gn−1 in t with vanishing constant term such that
θnz = g(t)nθnt +g1(t)θn−1

t + · · ·+gn−1(t)θt. Rewrite equation (1.3) in terms of θt and denote
the coefficients by q̃i(t). Show that q̃i(0) = qi(0) for i = 1, . . . , n.

Remark 1.2.10 Notice that if we replace y by zµw, the differential equation for w reads

(θ + µ)nw + q1(z)(θ + µ)n−1w + · · ·+ qn−1(z)(θ + µ)w + qn(z)w = 0.

In particular, the local exponents have all decreased by µ.

Exercise 1.2.11 Show that the local exponents at a regular point read 0, 1, . . . , n− 1.

Exercise 1.2.12 Consider the linear differential equation

(z3 + 11z2 − z)y′′ + (3z2 + 22z − 1)y′ + (z + 3)y = 0.

Show that the local exponents at z = 0 are 0, 0 and determine the recursion relation for
the holomorphic solution near z = 0. Determine also the first few terms of the expansions
of a basis of solutions near z = 0.

1.3 Fuchsian equations

In this section our differential field will be C(z), the field of rational functions in z and
we shall consider our differential equations and n× n-systems over this field.
Consider the linear differential equation

y(n) + p1(z)y(n−1) + · · ·+ pn−1(z)y′ + pn(z)y = 0, pi(z) ∈ C(z) (1.4)

To study this differential equation near any point P ∈ P1 we choose a local parameter
t ∈ C(z) at this point (usually t = z − P if P ∈ C and t = 1/z if P = ∞), and rewrite
the equation with respect to the new variable t. We call the point P a regular point or a
regular singularity if this is so for the equation in t at t = 0. It is not difficult to verify
that a point P ∈ C is regular if and only if the pi have no pole at P . It is a regular
singularity if and only if limz→P (z − P )ipi(z) exists for i = 1, . . . , n. The point ∞ is
regular or a regular singularity if and only if limz→∞ z

ipi(z) exists for i = 1, . . . , n.

Definition 1.3.1 A differential equation over C(z) or a system of first order equations
over C(z) is called Fuchsian if all points on P1 are regular or a regular singularity.

The form of Fuchsian systems is particularly simple. Let our n× n-system be given by

d

dz
y = Ay

F.Beukers: Hypergeometric Functions, preliminary notes
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where the entries of A are in C(z). Let S = {p1, . . . , pr} be the set of finite singular points.
If we have a Fuchsian system of equations then there exist constant matrices A1, . . . , Ar
such that

A(z) =
A1

z − p1

+ · · ·+ Ar
z − pr

.

The point ∞ is regular if and only if
∑r

i=1Ai = 0.
Let P ∈ P1 be any point which is regular or a regular singularity. Let t be a local
parameter around this point and rewrite the equation (1.4) with respect to the variable
t. The corresponding indicial equation will be called the indicial equation of (1.4) at P .
The roots of the indicial equation at P are called the local exponents of (1.4) at P .
This procedure can be cumbersome and as a shortcut we use the following lemma to
compute indicial equations.

Lemma 1.3.2 Let P ∈ C be a regular point or regular singularity of (1.4). Let ai =
limz→P (z − P )ipi(z) for i = 1, . . . , n. The indicial equation at P is given by

X(X − 1) · · · (X − n+ 1) + a1X(X − 1) · · · (X − n+ 2) + · · ·+ an−1X + an = 0.

When ∞ is regular or a regular singularity, let ai = limz→∞ z
ipi(z) for i = 1, . . . , n. The

indicial equation at ∞ is given by

X(X + 1) · · · (X + n− 1)− a1X(X + 1) · · · (X + n− 2) + · · ·
+(−1)n−1an−1X + (−1)nan = 0.

Proof. Exercise

Theorem 1.3.3 (Fuchs’ relation) Suppose (1.4) is a Fuchsian equation. Let ρ1(P ), . . . , ρn(P )
the set of local exponents at any P ∈ P1. Then,∑

P∈P1

(ρ1(P ) + · · ·+ ρn(P )−
(
n

2

)
) = −2

(
n

2

)
Since the local exponents at a regular point are always 0, 1, . . . , n − 1 the terms in the
summation are zero when P is a regular point. So, in fact, the summation in this theorem
is a finite sum.

Proof. From the explicit shape of the indicial equations, given in the Lemma above, we
infer that for P ∈ C,

ρ1(P ) + · · ·+ ρn(P ) =

(
n

2

)
− resP (p1(z)dz)

and

ρ1(∞) + · · ·+ ρn(∞) = −
(
n

2

)
− res∞(p1(z)dz).

Substract
(
n
2

)
on both sides and add over all P ∈ P1. Using the fact that

∑
P∈P1 resP (p1(z)dz) =

0 yields our theorem. 2

F.Beukers: Hypergeometric Functions, preliminary notes



CHAPTER 1. ORDINARY LINEAR DIFFERENTIAL EQUATIONS 13

Exercise 1.3.4 Let a, b, c ∈ C. Determine all singularities and their local exponents of
the so-called hypergeometric differential equation

z(z − 1)F ′′ + ((a+ b+ 1)z − c)F ′ + abF = 0.

For non-integral c write the recurrence relation for the coefficients of the power series
expansions of the solutions around z = 0.

From Cauchy’s theorem of the previous section follows automatically

Theorem 1.3.5 (Cauchy) Suppose P ∈ C is a regular point of the system of equations
d
dz

y = Ay. Then there exist n C-linear independent vector solutions y1, . . . ,yn with
Taylor series entries in z − P with positive radius of convergence. Moreover, any Taylor
series solution of the system is a C-linear combination of y1, . . . ,yn.

Corollary 1.3.6 Any analytic solution of d
dz

y = Ay near a regular point can be continued
analytically along any path in C not meeting any singularity.

Let S be the set of singularities of d
dz

y = Ay and let z0 ∈ P1 \ S. Let vy1, . . . ,yn
be an independent set of analytic solutions around z0. They are the columns of the
fundamental solution matrix Y . Let γ ∈ π1(P1 \ S, z0). After analytic continuation of
Y along γ we obtain a new fundamental solution matrix Ỹ . Hence there exists a square
matrix M(γ) ∈ GL(n,C) such that Ỹ = Y ·M . The map ρ : π1(P1 \ S) → GL(n,C)
given by ρ : γ 7→M(γ) is a group homomorphism and its image is called the monodromy
group of the system.

1.4 Riemann-Hilbert correspondence

Suppose we are given an n×n Fuchsian system of first order equations, d
dz

y = Ay, where A
has entries in C(z). Let S ⊂ P1 be the set of singular points and write S = {s1, s2, . . . , sm}.
Without loss of generality we can assume that ∞ 6∈ S. Fix a base point z0 6∈ S and let
γi be a simple closed beginning and ending in z0 and which contains only the point si as
singularity in its interior. Choose a fundamental solution matrix of the system near z0.
Corresponding to this choice we can associate to each loop γi the monodromy matrix Mi.
The monodromy representation is determined by these matrices. If we order the si such
that γ1 · · · γm = 1 in π1(P1 \ S, z0) we have moreover that M1 · · ·Mm = Id.
We have the following question.

Question 1.4.1 (Riemann-Hilbert problem) Suppose S = {s1, . . . , sm} is a finite
subset of P1. Again we assign a simple loop γi to each si and order them in such a way
that γ1 · · · γm = 1 in π1(P1 \ S, z0). To each si ∈ S we assign a matrix Mi ∈ GL(n,C)
such that M1 · · ·Mm = Id. Does there exist a Fuchsian system with singularities only in
S whose monodromy representation ρ is (up to conjugation) given by ρ : γi 7→ Mi for
i = 1, . . . , n ?

F.Beukers: Hypergeometric Functions, preliminary notes
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The answer is as follows,

Theorem 1.4.2 (Plemelj, 1906) Let notations be as in the above problem. Then there
exists an n× n Fuchsian system d

dz
y = Ay whose monodromy representation is given by

the matrices Mi. Moreover, the system can be chosen in such a way that the singular
set is given by S ∪ {a}, where a is an arbitrary point in P1 \ S and forms an apparent
singularity of the system.

So we see that the answer to our question is almost affirmative. It may be necessary to
have an extra singularity in the Fuchsian system. It was recently shown by Bolibruch
that there are examples of representations of the fundamental group π1(P1 \S) where any
corresponding Fuchsian system requires an extra singularity. It is also known that we do
not need an extra singularity if the representation is irreducible or if one of the matrices
Mi is semi-simple.
To prove Plemelj’s theorem we shall use the following theorem.

Theorem 1.4.3 (Birkhoff, Grothendieck) Any holomorphic vector bundle on P1 of
rank n is of the form O(m1)⊕ · · · ⊕O(mn) where the mi are integers and where O(m) is
the line bundle on P1 corresponding to the divisor m∞.

More particularly we shall need the following Corollary which says that any rank n holo-
morphic vector bundle over P1 has n meromorphic sections which form a basis of the fiber
above every point in C.

Corollary 1.4.4 We cover P1 with C and an open disc U around ∞. For any holo-
morphic vector bundle E over P1 there exist integers m1, . . . ,mn and a local trivialisation
f : C×Cn → E with the property that for any local trivialisation hU : U×Cn → E the map
h−1
U ◦ f of U∗×Cn to itself has the form Z · diag(zm1 , . . . , zmn), where Z : U → GL(n,C)

is holomorphic.

Proof of Plemelj’s theorem. Without loss of generality we can assume that a = ∞.
Choose z0 in such a way that it does not lie on any line connecting two points of S. For
each i we now draw the line connecting z0 and si and denote the part going from si to∞
by li. So the lines li forms a set of rays to∞. We number the indices such that l1, l2, l3, . . .
have a counterclockwise ordering. Denote the open set C \ (∪ki=1li) by U0. Now choose
ε > 0. To each i we associate the open set Di ⊂ C given by all points z ∈ C whose
distance to li is less than ε. By choosing ε sufficiently small we can see to it that the Di

are disjoint. Choose R such that |si| < R for all i and denote by U∞ the set z : |z| > R
together with the point at infinity. So the open sets U0, U∞, D1, . . . , Dk form an open
cover of P1. Using this cover we construct a vector bundle of rank r.
For each i we choose a matrix Gi such that e2π

√
−1Gi = Mi. Note there is some ambiguity

in the choice of Gi. We define the holomorphic map fi : Di ∩ U0 → GL(n,C) by some
choice of (z − si)

Gi . Note that U0 ∩ U∞ consists of m open sectors around the point
∞. We call these sectors T1, . . . , Tm and order them so that Ti lies between li and li+1

F.Beukers: Hypergeometric Functions, preliminary notes
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(indices considered modulo m + 1). We define the map h : U0 ∩ U∞ → GL(n,C) by
h(z) = M1 · · ·Mi if z ∈ Ti. We define the holomorphic map gi : Di ∩ U∞ → GL(n,C) by
the function which coincides with M1 · · ·Mifi on Ti. Note that by analytic continuation
this implies that gi coincides with M1 · · ·Mi−1fi on Ti−1. As a consequence we have for
each i that gi = hfi on U0 ∩ U∞ ∩Di.
Construct a vector bundle as follows. Glue U0×Cn to Di×Cn via the equivalence relation

(z, v) ∼ (zi, vi) ⇐⇒ z = zi ∈ U0 ∩Di and vi = f−1
i v.

Glue U∞ × Cn to Di × Cn via the equivalence relation

(z, v) ∼ (zi, vi) ⇐⇒ z = zi ∈ U∞ ∩Di and vi = g−1
i v.

Finally glue U0 × Cn to U∞ × Cn via the relation

(z0, v0) ∼ (z∞, v∞) ⇐⇒ z = zi ∈ U0 ∩ U∞ and v∞ = hv0.

Because of the relation gi = hfi for all i this can be done in a compatible way. We thus
obtain a holomorphic vector bundle E over P1. According to the Corollary of the Birkhoff-
Grothendieck theorem there is a meromorphic local trivialisation f : C× Cn → E. This
implies that there exist holomorphic functions t0 : U0 → GL(n,C) and ti : Di → GL(n,C)
and t∞ : U∞ → GL(n,C) with the property that t−1

0 ti = f−1
i for i = 1, . . . ,m and

t−1
0 t∞z

G∞ = h, where G∞ = diag(m1, . . . ,mn).
Now observe that t0 is a fundamental solution matrix of the system of equations d

dz
y = Ay

where A = dt0
dz
t−1
0 . Note that A has holomorphic entries on U0. The continuation of t0 to

Di is given by tifi. Hence the continuation of A to Di has the form

(
d

dz
(ti(z − si)Gi)(z − si)−Git−1

i =
dti
dz
t−1
i +

tiGit
−1
i

z − si
.

Similarly the continuation of A to U∞ has the form

(
d

dz
(t∞z

G∞h−1)hz−G∞t−1
∞ = (

dt∞
dz

)t−1
∞ +

t∞G∞t
−1
∞

z
.

Note that limz→∞A = 0. Hence our system is Fuchsian. Since t0 = ti(z − si)Gi in every
Di, the functions t0 have the correct local monodromy behaviour at every point si. We
have thus found our desired Fuchsian system of equations. 2

1.5 Fuchsian equations of order two

It is an interesting exercise to write down all Fuchsian differential equations with a given
number of singular points. Let us start with first order Fuchsian equations

F.Beukers: Hypergeometric Functions, preliminary notes
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Exercise 1.5.1 Show that any Fuchsian equation of order one can be written in the form

dy

dz
+

(
A1

z − a1

+ . . .+
Ak

z − ak

)
y = 0

for suitable ai, Ai ∈ C. Solve this equation.

Let us now turn to higher order Fuchsian equations

Exercise 1.5.2 Show that any Fuchsian equation having only ∞ as singular point is of
the form dny

dzn
= 0.

More generally, Fuchsian equations having only one singularity are not very interesting
since, by a fractional linear transformation, the singularity can be moved to ∞.

Exercise 1.5.3 Show that any Fuchsian equation having only 0 and∞ as singular points
is of the form

zny(n) + a1z
n−1y(n−1) + · · ·+ an−1zy

′ + any = 0

for suitable a1, . . . , an ∈ C. Verify that the indicial equation has the form

X(X − 1) · · · (X − n+ 1) + a1X · · · (X − n+ 2) + · · ·+ an−1X + an = 0.

Equations such as these are known as Euler equations. Suppose that the local exponents
at z = 0 are all distinct. Then write down a basis of solutions.

More generally, any Fuchsian equation with two singularities can be transformed into an
Euler equation.
The underlying reason why Fuchsian equations with one or two singularities are not very
exciting is that the fundamental groups of P1 \ ∞ and P1 \ {0,∞} are trivial and Z
respectively, i.e. they are both abelian groups. Interesting equations can be expected
when there are three or more singular points.

Exercise 1.5.4 Suppose we have a second order Fuchsian equation with singularities
0, 1,∞ and suppose the local exponents at these points are given by the following scheme,

0 1 ∞
0 0 a

1− c c− a− b b

The second exponent at 1 is chosen to satisfy Fuchs’s relation for exponents. Show that
the corresponding second order equation is uniquely determined and reads,

z(z − 1)F ′′ + ((a+ b+ 1)z − c)F ′ + abF = 0.

This is the hypergeometric equation with parameters a, b, c.

F.Beukers: Hypergeometric Functions, preliminary notes
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Suppose we have a second order equation with three singularities, say A,B,C. To eqach
singularity we have local exponents which we put in the following (Riemann) scheme,

A B C
α β γ
α′ β′ γ′

Via a Möbius transformation we can map A,B,C to any three distinct points of P1. Let
us take the mapping A,B,C → 0, 1,∞. So we have to deal with the Fuchsian equation
having Riemann scheme

0 1 ∞
α β γ
α′ β′ γ′

If we multiply the solutions of the latter equation by zµ we obtain a set of functions that
satisfy the Fuchsian equation with Riemann scheme

0 1 ∞
α + µ β γ − µ
α′ + µ β′ γ′ − µ

A fortiori, after multiplication of the solutions with z−α
′
(1− z)−β

′
we obtain a Fuchsian

equation with a scheme of the form

0 1 ∞
α′′ β′′ γ′′

0 0 1− α′′ − β′′ − γ′′

Hence any second order Fuchsian equation with three singularities can be transformed
into a hypergeometric equation. Any hypergeometric equation is uniquely determined
by its local exponents and, a fortiori, any second order Fuchsian equation is uniquely
determined by the location of its singularities and their local exponents.
Here are some remarks on the solutions of the hypergeometric equation. When c is not
integral a basis of solutions is given by

F (a, b, c|z) :=
∑ (a)n(b)n

(c)nn!
zn. (1.5)

and
z1−cF (a+ 1− c, b+ 1− c, 2− c|z)

The Pochhammer symbol (x)n is defined by (x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1).
The function F (a, b, c|z) is known as Gauss’ hypergeometric function.

Exercise 1.5.5 Show directly that the power series (1.5) satisfies the differential equation

z(θ + a)(θ + b)F = θ(θ + c− 1)F, θ = z
d

dz

F.Beukers: Hypergeometric Functions, preliminary notes
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Using the above theory it is very simple to prove some quadratic relations between hy-
pergeometric functions, such as

F (a, b, a+ b+ 1/2|4t− 4t2) = F (2a, 2b, a+ b+ 1/2|t)

and
F (a, b, a+ b+ 1/2|t2/(4t− 4)) = (1− t)aF (2a, a+ b, 2a+ 2b|t).

they were discovered by E.Kummer. Let us prove for example the quadratic relation

F (a, b, a+ b+ 1/2|t2/(4t− 4)) = (1− t)aF (2a, a+ b, 2a+ 2b|t).

Substitute z = t2/(4t−4) in the hypergeometric equation with parameters a, b, a+b+1/2.
We obtain a new Fuchsian equation. The map t→ z = t2/(4t− 4) ramifies above 0, 1 in
t = 0, 2 respectively. Above z = 1 we have the point t = 2, above z = 0 the point t = 0
and above z =∞ the two points t = 1,∞. Notice that our equation has local exponents
0, 1/2 in z = 1. Hence the new equation has local exponents 0, 1 in t = 2, with regular
solutions, and t = 2 turns out to be a regular point. At t = 0 we get the local exponents
0, 2(1/2 − a − b) and in t = 1,∞, the points above z = ∞, we have the local exponents
a, b and a, b. Thus our equation in t has again three singular points and Riemann scheme

0 1 ∞
0 a a

1− 2a− 2b b b

By the method sketched above, one easily sees that (1 − t)aF (2a, a + b, 2a + 2b|t) is a
solution of this equation. Moreover, this is the unique (up to a constant factor) solution
holomorphic near t = 0. At the same time F (a, b, a + b + 1/2|t2/(4t − 4)) is a solution,
and by the uniquess equality follows.

Exercise 1.5.6 Prove in a similar way the equality

F (a, b, a+ b+ 1/2|4z − 4z2) = F (2a, 2b, a+ b+ 1/2|z).

F.Beukers: Hypergeometric Functions, preliminary notes
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Gauss hypergeometric functions

2.1 Definition, first properties

Let a, b, c ∈ R and c 6∈ Z≤0. Define Gauss’ hypergeometric function by

F (a, b, c|z) =
∑ (a)n(b)n

(c)nn!
zn. (2.1)

The Pochhammer symbol (x)n is defined by (x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1).
The radius of convergence of (2.1) is 1 unless a or b is a non-positive integer, in which
cases we have a polynomial.

Examples.

(1− z)−a = F (a, 1, 1|z)

log
1 + z

1− z
= 2zF (1/2, 1, 3/2|z2)

arcsin z = zF (1/2, 1/2, 3/2|z2)

K(z) =
π

2
F (1/2, 1/2, 1, z2)

Pn(z) = 2nF (−n, n+ 1, 1|(1 + z)/2)

Tn(z) = (−1)nF (−n, n, 1/2|(1 + z)/2)

Here K(z) is the Jacobi’s elliptic integral of the first kind given by

K(z) =

∫ 1

0

dx√
(1− x2)(1− z2x2)

.

The polynomials Pn, Tn given by Pn = (1/n!)(d/dz)n(1 − z2)n and Tn(cos z) = cos(nz)
are known as the Legendre and Chebyshev polynomials respectively. They are examples
of orthogonal polynomials.

19
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One easily verifies that (2.1) satisfies the linear differential equation

z(θ + a)(θ + b)F = θ(θ + c− 1)F, θ = z
d

dz
.

Written more explicitly,

z(z − 1)F ′′ + ((a+ b+ 1)z − c)F ′ + abF = 0. (2.2)

There exist various ways to study the analytic continuation of (2.1), via Euler integrals,
Kummer’s solutions and Riemann’s approach. The latter will be discussed in later sec-
tions. The Euler integral reads

F (a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt (c > b > 0)

and allows choices of z with |z| > 1. The restriction c > b > 0 is included to ensure con-
vergence of the integral at 0 and 1. We can drop this condition if we take the Pochhammer
contour γ given by

0 1

X

Y

as integration path. Notice that the integrand acquires the same value after analytic
continuation along γ.
It is a straightforward exercise to show that for any b, c− b 6∈ Z we have

F (a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)
1

(1− e2πib)(1− e2πi(c−b))

∫
γ

tb−1(1− t)c−b−1(1− tz)−adt

Kummer gave the following 24 solutions to (2.2)

F (a, b, c|z)

= (1− z)c−a−bF (c− a, c− b, c|z)

= (1− z)−aF (a, c− b, c|z/(z − 1))

= (1− z)−bF (a− c, b, c|z/(z − 1))

z1−cF (a− c+ 1, b− c+ 1, 2− c|z)

= z1−c(1− z)c−a−bF (1− a, 1− b, 2− c|z)

= z1−c(1− z)c−a−1F (a− c+ 1, 1− b, 2− c|z/(z − 1))

= z1−c(1− z)c−b−1F (1− a, b− c+ 1, 2− c|z/(z − 1))
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F (a, b, a+ b− c+ 1|1− z)

= x1−cF (a− c+ 1, b− c+ 1, a+ b− c+ 1|1− z)

= z−aF (a, a− c+ 1, a+ b− c+ 1|1− 1/z)

= z−bF (b− c+ 1, b, a+ b− c+ 1|1− 1/z)

(1− z)c−a−bF (c− a, c− b, c− a− b+ 1|1− z)

= (1− z)c−a−bz1−cF (1− a, 1− b, c− a− b+ 1|1− z)

= (1− z)c−a−bza−cF (1− a, c− a, c− a− b+ 1|1− 1/z)

= (1− z)c−a−bzb−cF (c− b, 1− b, c− a− b+ 1|1− 1/z)

z−aF (a, a− c+ 1, a− b+ 1|1/z)

= z−a(1− 1/z)c−a−bF (1− b, c− b, a− b+ 1|1/z)

= z−a(1− 1/z)c−a−1F (a− c+ 1, 1− b, 2− c|1/(1− z))

= z−a(1− 1/z)−aF (a, c− b, a− b+ 1|1/(1− z))

z−bF (b, b− c+ 1, b− a+ 1|1/z)

= z−b(1− 1/z)c−a−bF (1− a, c− a, b− a+ 1|1/z)

= z−b(1− 1/z)c−b−1F (b− c+ 1, 1− a, 2− c|1/(1− z))

= z−b(1− 1/z)−bF (b, c− a, b− a+ 1|1/(1− z))

Strictly speaking, the above six 4-tuples of functions are only distinct when c, c − a −
b, a − b 6∈ Z. If one of these numbers is an integer we find that there are other solutions
containing logarithms. For example, when c = 1 we find that z1−c becomes log z and a
second solution near z = 0 reads

(log z)F (a, b, 1|z) +
∞∑
n=1

(a)n(bn)

(n!)2
zn

[
n∑
k=1

(
1

a+ k − 1
+

1

b+ k − 1
− 2

k

)]
.

Notice that this solution can be obtained by taking the difference of solutions z1−cF (a−
c+ 1, b− c+ 1, 2− c|z)− F (a, b, c|z), divide it by c− 1 and take the limit as c→ 1.
Later it will turn out that Riemann’s approach to hypergeometric functions gives a re-
markably transparent insight into these formulas as well as the quadratic transformations
of Kummer and Goursat.
Examples of such transformations are

F (a, b, a+ b+ 1/2|4z − 4z2) = F (2a, 2b, a+ b+ 1/2|z)

and
F (a, b, a+ b+ 1/2|z2/(4z − 4)) = (1− z)aF (2a, a+ b, 2a+ 2b|z).
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Finally we mention the 6 contiguous functions

F (a± 1, b, c|z), F (a, b± 1, c|z), F (a, b, c± 1|z).

Gauss found that F (a, b, c|z) and any two contiguous functions satisfy a linear relation
with coefficients which are linear polynomials in z or constants, for example,

(c− a)F (a− 1, b, c|z) + (2a− c− az + bz)F (a, b, c|z) + a(z − 1)F (a+ 1, b, c|z) = 0.

Notice also that F ′(a, b, c|z) = (ab/c)F (a+ 1, b+ 1, c+ 1|z). These observations are part
of the following theorem.

Theorem 2.1.1 Suppose a, b 6≡ 0, c(mod Z) and c 6∈ Z. Then any function F (a+ k, b+
l, c+m|z) with k, l,m ∈ Z equals a linear combination of F, F ′ with rational functions as
coefficients.

Proof. One easily verifies that

F (a+ 1, b, c|z) =
1

a
(z
d

dz
+ a)F (a, b, c|z)

F (a− 1, b, c|z) =
1

c− a
(z(1− z)

d

dz
− bz + c− a)F (a, b, c|z)

and similarly for F (a, b+ 1, c|z), F (a, b− 1, c|z). Furthermore,

F (a, b, c+ 1|z) =
c

(c− a)(c− b)
(z(1− z)

d

dz
+ c− a− b)F (a, b, c|z)

F (a, b, c− 1|z) =
1

c− 1
(z
d

dz
+ c− 1)F (a, b, c|z)

Hence there exists a linear differential operator Lk,l,m ∈ C(z)[ d
dz

] such that F (a + k, b +
l, c+m|z) = Lk,l,mF (a, b, c|z). Since F satifies a second order linear differential equation,
Lk,l,mF can be written as a C(z)-linear combination of F and F ′. 2

In general we shall call any function F (a + k, b + l, c + m|z) with k, l,m ∈ Z contiguous
with F (a, b, c|z). Thus we see that, under the assumptions of Theorem 2.1.1, any three
contiguous functions satisfy a C(z)-linear relation.
For many more identities and formulas we refer to [AS] and [E].

2.2 Monodromy of the hypergeometric function

Let us now turn to the monodromy of the hypergeometric equation. Consider the three
loops g0, g1, g∞ which satisfy the relation g0g1g∞ = 1.

F.Beukers: Hypergeometric Functions, preliminary notes



CHAPTER 2. GAUSS HYPERGEOMETRIC FUNCTIONS 23

0 1

z0

X

Y

We denote the corresponding monodromy matrices by M0,M1,M∞. They also satisfy
M0M1M∞ = 1 and M0,M∞ generate the monodromy group. Since the local exponents
at 0, 1,∞ are 0, 1 − c, 0, c − a − b and a, b respectively, the eigenvalues of the matrices
M0,M1 and M∞ are 1, exp(2πi(1 − c)), 1, exp(2πi(c − a − b)) and exp(2πia), exp(2πib)
respectively. The monodromy group can be considered as being generated by M0,M∞ and
we know that M∞M0 = M−1

1 has eigenvalue 1. This scant information already suffices to
draw some important conclusions.

Lemma 2.2.1 Let A,B ∈ GL(2,C). Suppose that AB−1 has eigenvalue 1. Then there
exists a common eigenvector of A,B if and only if A,B have a common eigenvalue.

Proof. Notice that ker(A−B) has dimension at least 1. If the dimension were 2 we would
have A = B and our lemma would be trivial. So we can assume dim(ker(A−B)) = 1. In
this proof we let v ∈ ker(A−B), v 6= 0.
Suppose there exists a common eigenvector, w say, of A,B with eigenvalues λA, λB. If
these eigenvalues are equal, we are done. Suppose they are not equal. Then w, v span
C2. Choose α, β such that Av = αv + βw. Since Av = Bv we also have Bv = αv + βw.
Hence with respect to the basis v, w the matrices of A,B read(

α β
0 λA

) (
α β
0 λB

)
Hence they have the common eigenvalue α.
Suppose A,B have a common eigenvalue λ. If v is an eigenvectore of A we are done, since
Av = Bv implies that it is also an eigenvector of B. So suppose v is not an eigenvector
of A. Consider the vector w = (A − λ)v. Since A − λ has non-trivial kernel we have
< w >C= (A − λ)C2. In particular, (A − λ)w is a scalar multiple of w, i.e. w is an
eigenvector of A. We also have w = (B − λ)v and a similar argument shows that w is an
eigenvector of B. Hence A,B have a common eigenvector. 2

Corollary 2.2.2 The monodromy group of (2.2) acts reducibly on the space of solutions
if and only if at least one of the numbers a, b, c− a, c− b is integral.
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Proof. This follows by application of the previous lemma to the case A = M∞, B = M−1
0 .

Since M−1
1 = M∞M0 the condition that AB−1 has eigenvalue 1 is fullfilled. Knowing the

eigenvalues of M0,M∞ one easily checks that equality of eigenvalues comes down to the
non-empty intersection of the sets {0, c} and {a, b} considered modulo Z.

Definition 2.2.3 A hypergeometric equation is called reducible if its monodromy group is
reducible. A hypergeometric equation is called abelian if its monodromy group is abelian.

Typical examples of abelian equations are (2.2) with a = c = 0 having solutions 1, (1 −
z)−(b+1) and a = b = 1, c = 2 having solutions 1/z, log(1−z)/z. Here is a simple necessary
condition for abelian equations, which has the pleasant property that it depends only on
a, b, c(mod Z).

Lemma 2.2.4 If (2.2) is abelian then at least two of the numbers a, b, c − a, c − b are
integral.

Proof. Abelian monodromy implies reducibility of the monodromy, hence at least one of
the four numbers is integral. Let us say a ∈ Z, the other cases can be dealt with similarly.
It suffices to show that in at least one of the points 0, 1,∞ the local exponent difference
of (2.2) is integral. Then clearly, 1 − c ∈ Z implies c − a ∈ Z, c − a − b ∈ Z implies
c− b ∈ Z and a− b ∈ Z implies b ∈ Z.
Suppose that all local exponent differences are non-integral. In particular the eigenvalues
of each of the generating monodromy elements M0,M1,M∞ are distinct. Then abelian
monodromy implies that the monodromy group acts on the solution space in a com-
pletely reducible way as a sum of two one-dimensional representations. In particular the
generators of these representations are functions of the form

zλ(1− z)µq(z) zλ
′
(1− z)µ

′
p(z)

where p(z), q(z) are polynomials with the property that they do not vanish at z = 0
or 1. The local exponents can be read off immediately, λ, λ′ at 0, µ, µ′ at 1 and −λ −
µ − deg(q),−λ′ − µ′ − deg(p) at ∞. The sum of the local exponents must be 1, hence
− deg(p)− deg(q) = 1. Clearly this is a contradiction. 2

Lemma 2.2.5 Suppose that A,B ∈ GL(2,C) have disjoint sets of eigenvalues and sup-
pose that AB−1 has eigenvalue 1. Then, letting X2 + a1X + a2 and X2 + b1X + b2 be the
characteristic polynomials of A,B, we have up to common conjugation,

A =

(
0 −a2

1 −a1

)
, B =

(
0 −b2

1 −b1

)
.

Proof. Choose v ∈ ker(A − B) and w = Av = Bv. Since A,B have disjoint eigenvalue
sets, v is not an eigenvector of A and B. Hence w, v form a basis of C2. With respect to
this basis A,B automatically obtain the form given in our Lemma. 2
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Corollary 2.2.6 Suppose that (2.2) is irreducible. Then, up to conjugation, the mon-
odromy group depends only on the values of a, b, c modulo Z.

Let us now assume that a, b, c ∈ R, which is the case most frequently studied. The
eigenvalues of M0,M1,M∞ then lie on the unit circle.

Definition 2.2.7 Let R, S be two disjoint finite subsets of the unit circle of equal cardi-
nality. The sets R, S are said to interlace if every segment on the unit circle, connecting
two points of R, contains a point of S.

Lemma 2.2.8 Let A,B be non-commuting elements of GL(2,C). Suppose that the eigen-
values of A,B have absolute value 1 and that AB−1 has eigenvalue 1. Let G be the group
generated by A,B. Then there exists a unique (up to a constant factor) non-trivial her-
mitian form F on C2 such that F (g(x), g(y)) = F (x, y) for every g ∈ G and every pair
x, y ∈ C2. Moreover,

F degenerate ⇐⇒ A,B have common eigenvalues

Supposing A,B have disjoint eigenvalue sets, we have in addition,

F definite ⇐⇒ eigenvalues of A,B interlace

F indefinite ⇐⇒ eigenvalues of A,B do not interlace

We call these three cases the euclidean, spherical and hyperbolic case respectively.

Proof. Let v ∈ ker(A− B) and w = Av. Suppose first that v, w form a basis of C2. Of
course, with respect to this basis A and B have the form given in the previous lemma.
In particular we see that A,B cannot have the same characteristic equation, since this
would imply that A = B.
We have to find a hermitean form F such that

F (gv, gv) = F (v, v) F (gv, gw) = F (v, w)

F (gw, gv) = F (w, v), F (gw, gw) = F (w,w)

for every g ∈ G. It suffices to take g = A,B. Let X2 + a1X + a2 and X2 + b1X + b2

be the characteristic polynomials of A,B. Since the roots are on the unit circle we have
a2ā2 = 1, a2ā1 = a1 and similarly for b1, b2.
Let us first take g = A. Then F (Av,Av) = F (v, v) implies

F (w,w) = F (v, v).

The conditions F (Av,Aw) = F (v, w) and F (Aw,Av) = F (w, v) imply F (w,A2v) =
F (v, w) and F (A2v, w) = F (w, v). Hence, using A2 = −a1A− a2,

−ā1F (w,w)− ā2F (w, v) = F (v, w) (2.3)

−a1F (w,w)− a2F (v, w) = F (w, v) (2.4)
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Because of the relations a2 = ā−1
2 and a2ā1 = a1 these equations are actually the same.

The condition F (Aw,Aw) = F (w,w) yields F (A2v,A2v) = F (w,w) and hence

|a1|2F (w,w) + a1ā2F (w, v) + ā1a2F (v, w) + |a2|2F (v, v) = F (w,w).

Using |a2|2 = 1, a2ā1 = a1 and F (w,w) = F (v, v) this is equivalent to

a1ā1F (w,w) + a1ā2F (w, v) + a1F (v, w) = 0

which is precisely (2.3) times a1. Hence A-invariance of F is equivalent to

F (v, v) = F (w,w), F (w, v) + a1F (w,w) + a2F (v, w) = 0.

Invariance of F with respect to B yields the additional condition

F (w, v) + b1F (w,w) + b2F (v, w) = 0.

Since A and B do not have the same characteristic equation the solutionspace for F is
one-dimensional. When a2 = b2 a solution is given by

F (w,w) = F (v, v) = 0, F (w, v) = (−a2)1/2, F (v, w) = (−a2)−1/2,

when a2 6= b2 a solution is given by

F (w,w) = F (v, v) = 1, F (w, v) = ε, F (v, w) = ε̄, ε =
a1 − b1

b2 − a2

.

We formally take ε = ∞ if a2 = b2. In both cases cases we see that F is definite,
degenerate, indefinite according to the conditions |ε| < 1, |ε| = 1, |ε| > 1. It now a
straightforward excercise to see that these inequalities correspond to interlacing, coincid-
ing or non-interlacing of the eigenvalues of A and B.
We are left with the case when v is an eigenvector of A and B. Let α be the eigenvalue.
If both A and B have only eigenvalues α they automatically commute, which case is
excluded. So either A or B has an eigenvalue different from α. Let us say that A has
the distinct eigenvalues α, α′. Let w be an eigenvector corresponding to α′. Then, with
respect to v, w the matrix of B must have the form(

α b12

0 β

)
.

with b12 6= 0. It is now straightforward to verify that

(
0 0
0 1

)
is the unique invariant

hermitean matrix. Moreover it is degenerate, which it should be as A,B have a common
eigenvector. 2

Definition 2.2.9 With the assumptions as in the previous lemma let G be the group
generated by A and B. Then G is called hyperbolic, euclidean, spheric if F is indefinite,
degenerate, definite respectively.
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Corollary 2.2.10 Let {x} denote the fractional part of x (x minus largest integer ≤
x). Suppose that (2.2) is irreducible. Let F be the invariant hermitean form for the
monodromy group. In particular, the sets {{a}, {b}} and {0, {c}} are disjoint. If {c} is
between {a} and {b} then F is positive definite (spherical case). If {c} is not between {a}
and {b} then F is indefinite (hyperbolic case).

The most pittoresque way to describe the monodromy group is by using Schwarz’ triangles.
First a little geometry.

Definition 2.2.11 A curvilinear triangle is a connected open subset of C∪∞ = P1 whose
boundary is the union of three open segments of a circle or straight line and three points.
The segments are called the edges of the triangles, the points are called the vertices.

It is an exercise to prove that, given the vertices and the corresponding angles (< π), a
curvilinear triangle exists and is uniquely determined This can be seen best by taking the
vertices to be 0, 1,∞. Then the edges connected to ∞ are actually straight lines.
More generally, a curvilinear triangle in C ∪ ∞ = P1 is determined by its angles (in
clockwise ordering) up to a Möbius transformation.
Let z0 be a point in the upper half plane H = {z ∈ C|=(z) > 0} and let f, g be two
independent solutions of the hypergeometric equation near z0. The quotient D(z) = f/g,
considered as a map from H to P1, is called the Schwarz map and we have the following
picture and theorem.

1 ∝0 D(0)

D(1)

D(∝ )

 D(z)  

Theorem 2.2.12 (Schwarz) Let λ = |1 − c|, µ = |c − a − b|, ν = |a − b| and Suppose
0 ≤ λ, µ, ν < 1. Then the map D(z) = f/g maps H ∪ R one-to-one onto a curvilinear
triangle. The vertices correspond to the points D(0), D(1), D(∞) and the corresponding
angles are λπ, µπ, νπ.

As to the proof of Schwarz’ theorem, the following three ingredients are important.

– The map D(z) is locally bijective in every point of H. Notice that D′(z) = (f ′g −
fg′)/g2. The determinant f ′g − fg′ is the Wronskian determinant of our equation
and equals z−c(1− z)c−a−b−1. In particular it is non-zero in H. When g has a zero
at some point z1 we simply consider 1/D(z) instead. Since f and g cannot vanish
at the same time in a regular point, we have f(z1) 6= 0.
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– The map D(z) maps the segments (∞, 0), (0, 1), (1,∞) to segments of circles or
straight lines. For example, since a, b, c ∈ R we have two real solutions on (0, 1) (see
Kummer’s solutions). Call them f̃ , g̃. Clearly, the function D̃(z) = f̃/g̃ maps (0, 1)
on a segment of R. Since f, g are C-linear combinations of f̃ , g̃ we see that D(z) is
a Möbius transform of D̃(z). Hence D(z) maps (0, 1) to a segment of a circle or a
straight line.

– The map D(z) maps a small neighbourhood of 0 to a sector with angle |1− c| = λ
and similarly for 1,∞. This follows from the fact that near z = 0 the functions f, g
are C-linear combinations of F (a, b, c|z) and z1−cF (a− c+ 1, b− c+ 1, 2− c|z).

For the exact determination of the image of the Schwarz map we need the following
additional result.

Proposition 2.2.13 (Gauss) Suppose that a, b, c ∈ R, c 6∈ Z≤0 and c > a + b. Prove
that

F (a, b, c|1) =
Γ(c− a)Γ(c− b)
Γ(c)Γ(c− a− b)

.

This can be proven by evaluation of Euler’s integral using the Euler Beta-function.
To study the analytic continuation ofD(z) we use Schwarz’ reflection principle. Hopefully,
the following picture illustrates how this works.

1 ∝0

D(0)

D(1)

D(∝ )

 D(z)  

The monodromy group modulo scalars arises as follows. Let W be the group generated
by the reflections in the edges of the curvilinear triangle. The monodromy group is
the subgroup of W consisting of all elements which are product of an even number of
reflections. In the following section we shall study precisely such groups.

2.3 Triangle groups

In this section we let S be either the Poincaré disk {z ∈ C| |z| < 1}, C or P1. equipped
with the hyperbolic, euclidean and spherical metric respectively.
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Definition 2.3.1 A (geodesic) triangle is an connected open subset of S, of finite volume,
whose boundary in S is a union of three open segments of a geodesic and at most three
points. The segments are called the edges of the triangles, the points are called the vertices.

We first point out that under very mild conditions any curvilinear triangle can be thought
of as a geodesic triangle.

Lemma 2.3.2 Let λ, µ, ν be real numbers in the interval [0, 1). There exists a geodesic
triangle with angles λπ, µπ, νπ if and only if λ+ µ+ ν < 1 + 2 min(λ, µ, ν).

Proof. Suppose first that λ+µ+ν < 1. Our condition is then trivially satisfied. For any
such curvilinear triangle we can take the common orthogonal circle of the three edges,
which will become the boundary of a Poincaré disk. The edges are then automatically
geodesics.
Suppose that λ + µ + ν = 1. Our condition is equivalent to saying that all angles are
positive. In this case geodesic triangles are planar triangles in the euclidean geometry
with finite area. The latter property is equivalent to positivity of all angles.
Suppose that λ+ µ+ ν > 1. From spherical geometry it follows that a spherical triangle
exists if and only if our condition is satisfied.

We let W (∆) be the group of isometries of S generated by the 3 reflections through the
edges of a geodesic triangle ∆. First we look at subgroups generated by reflection in two
intersecting geodesics.

Lemma 2.3.3 Let ρ, σ be two geodesics intersecting in a point P with an angle πλ. Let
r, s be the reflections in ρ, σ respectively. Then the group G generated by r, s is a dihedral
group consisting of rotations (rs)n around P with angles 2nπλ, n ∈ Z and reflections in
the lines (rs)n(ρ), (rs)n(σ). In particular G is finite of order 2m if and only if λ = q/m
for some q ∈ Z with q 6= 0 and gcd(m, q) = 1. Furthermore, G is discrete if and only if
λ is either zero or a rational number.

Theorem 2.3.4 For any geodesic triangle ∆ we have S = ∪γ∈W (∆)γ(∆), where ∆ denotes
the closure of ∆ in S.

Proof. First of all we note that there exists a positive d0 with the following property.
For any point P whose distance to ∆ is less than d0 there exists γ ∈ W (∆) such that
P ∈ γ(∆). For γ we can simply take a suitable element from one of the dihedral reflection
groups around the vertices.
A fortiori, any point P with distance less than d0 from ∪γ∈W (∆)γ(∆) belongs to this set.
As a consequence the set ∪γ∈W (∆)γ(∆) is open and closed in S, hence our theorem fol-
lows. 2

Definition 2.3.5 An elementary triangle is a geodesic triangle whose vertex angles are
all of the form π/n, n ∈ Z≥2 ∪∞.
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Theorem 2.3.6 Let ∆ be an elementary triangle. Then, for any γ ∈ W (∆), γ 6= Id we
have γ(∆) ∩∆ = ∅.

Proof. This is a special case of the theorem of Coxeter-Tits on representations of Coxeter
groups. See Humphreys book on Reflection groups and Coxeter groups [H].

A group G of isometries acting on S is said to act discretely if there exists a point P ∈ S
and a positive d0 such that distance(P, g(P ))> d0 whenever g 6= Id. In particular it
follows from the previous theorem that triangle groups generated by elementary triangles
act discretely. The following theorem characterises all groups W (∆) which act discretely
on the symmetric space S.

Theorem 2.3.7 Suppose W = W (∆) acts discretely. Then there exists an elementary
triangle ∆el such that W (∆) = W (∆el). Moreover, ∆ is a finite union of copies of ∆el

under elements of W .

Proof. First of all note that the vertex angles must be either 0 or rational multiples of
π, otherwise the corresponding dihedral group is not discrete.
We shall show that if ∆ is not elementary, then there exists a geodesic triangle ∆′ such
that W (∆) = W (∆′) and Vol(∆′) ≤ Vol(∆)/2. If ∆′ is not elementary we repeat the
process and so on. However, there is a limit to these processes since, by discreteness,
there is a positive lower bound to Vol(∆′′) for any ∆′′ satisfying W (∆) = W (∆′′). Hence
we must hit upon an elementary triangle ∆el such that W (∆) = W (∆el).
Let α, β, γ be the edges of ∆ and rα, rβ, rγ the corresponding reflections. Suppose that
the vertex angle between α and β is of the form mπ/n with gcd(m,n) = 1, but m > 1.
Let δ be the geodesic between α and β whose angle with α is π/n. Let rδ be the reflection
in δ. Then the dihedral group generated by rα and rβ is the same as the one generated
by rα and rδ. Let ∆′ be the triangle with edges α, δ, γ. Then, clearly, W (∆) = W (∆′).
If the volume of ∆′ is larger than half the volume of ∆ we simply perform the above
construction with α and β interchanged. 2

Below we give a list of non-elementary triangles ∆ = (λ, µ, ν) with vertex angles λπ, µπ, νπ
which allow a dissection with elementary triangles ∆el such that W (∆) = W (∆el). In
the spherical case discreteness of W (∆) implies finiteness. The list of spherical cases was
already found by H.A.Schwarz and F.Klein (see [Kl]). In the following table N denotes
the number of congruent elementary triangles needed to cover ∆.

λ µ ν N elementary
2/n 1/m 1/m 2 × (1/2, 1/n, 1/m) n odd
1/2 2/n 1/n 3 × (1/2, 1/3, 1/n) n odd
1/3 3/n 1/n 4 × (1/2, 1/3, 1/n) n 6≡ 0 mod 3
2/n 2/n 2/n 6 × (1/2, 1/3, 1/n) n odd
4/n 1/n 1/n 6 × (1/2, 1/3, 1/n) n odd
2/3 1/3 1/5 6 × (1/2, 1/3, 1/5)
1/2 2/3 1/5 7 × (1/2, 1/3, 1/5)
3/5 2/5 1/3 10 × (1/2, 1/3, 1/5)
1/3 2/7 1/7 10 × (1/2, 1/3, 1/7)
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As an application we construct a hypergeometric function which is algebraic over C(z).
Take the triangle (4/5, 1/5, 1/5), which is spherical. Corresponding values for a, b, c can
be taken to be 1/10,−1/10, 1/5. Hence the quotient of any two solutions f, g of the
corresponding hypergeometric is algebraic. Its derivative (f ′g − fg′)/g2 is algebraic and
so is the Wronskian determinant f ′g − fg′ = z−c(1 − z)c−a−b−1. Hence g and, a fortiori,
f are algebraic. In particular, F (1/10,−1/10, 1/5|z) is an algebraic function.
In many cases it is also possible to find elementary triangles ∆el which can be dissected
into isometric copies of a smaller elementary triangle ∆′el. Hence W (∆el) ⊂ W (∆′el). The
most spectacular example is the dissection of the triangle (1/7, 1/7, 1/7) into 24 copies of
(1/2, 1/3, 1/7). As a corollary of this dissection we find the remarkable identity

2F1

(
2

7
,
3

7
,
6

7

∣∣∣∣ z) = b(z)−1/28
2F1

(
1

84
,
29

84
,
6

7

∣∣∣∣ 123 z(z − 1)(z3 − 8z2 + 5z + 1)

b(z)3

)
where b(z) = 1 − 236z + 1666z2 − 3360z3 + 3395z4 − 1736z5 + 42z6 + 228z7 + z8. For a
complete list of such dissections and the corresponding identities we refer to [V].

2.4 Some loose ends

In the Schwarz map we have assumed that the parameters a, b, c are such that λ =
|1− c|, µ = |c− a− b|, ν = |a− b| are all less than 1. It turns out that in the irreducible
case this is no restriction, since we can shift a, b, c by integers without affecting the
monodromy group. In fact,

Lemma 2.4.1 Assume that none of the numbers a, b, c− a, c− b is integral. There exist
a′ ∈ a(mod Z), b′ ∈ b(mod Z), c′ ∈ c(mod Z) such that

0 ≤ λ, µ, ν < 1 λ+ µ+ ν < 1 + 2 min(λ, µ, ν)

where λ = |1 − c′|, µ = |c′ − a′ − b′|, ν = |a′ − b′|. In the case λ + µ + ν < 1 there exists
only one choice for a′, b′, c′ and in the case λ+µ+ ν > 1 there exist four possible choices.

Proof. First of all let us suppose that 0 ≤ a, b, c < 1. Without loss of generality we can
assume that a ≤ b. We consider the following cases.
Case i) 0 < a < c < b < 1. We take a′ = a, b′ = b, c′ = c. Then, λ = 1−c, µ = a+b−c, ν =
b− a and the inequalities are satisfied. Moreover, λ+ µ+ ν = 1 + 2b− 2c > 1.
Case ii) 0 < a ≤ b < c < 1. We take a′ = a, b′ = b, c′ = c. When c ≥ a + b we get
λ = 1−c, µ = c−a−b, ν = b−a and the inequalities hold. Moreover, λ+µ+ν = 1−2a < 1.
When c ≤ a + b we get λ = 1 − c, µ = a + b − c, ν = b − a and the inequalities hold.
Moreover, λ+ µ+ ν = 1 + 2b− 2c < 1.
Case iii) 0 ≤ c < a ≤ b < 1. We take a′ = a, b′ = b, c′ = c+1. Then, λ = c, µ = c+1−a−
b, ν = b−a and the inequalities are readily verified. Moreover, λ+µ+ν = 1+2c−2a < 1.
As to uniqueness we note that an integral shift in the a, b, c such that the corresponding
values of λ, µ, ν stay below 1 necessarily gives the substitutions of the form λ→ 1−λ, µ→
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1− µ, ν → ν and similar ones where two of the parameters are replaced by 1 minus their
value. In casethe condition λ+µ+ν < 1+2 min(λ, µ, ν) is violated by such a substitution.
For example, λ + µ + ν ≤ 1 implies 1− λ + 1− µ + ν = 2− (λ + µ + ν) + 2ν ≥ 1 + 2ν.
In the spherical case the condition is not violated.

When we have obtained a geodesic Schwarz triangle in our construction we automatically
have a metric which is invariant under the projective monodromy group. This closely
reflects the nature of the natural hermitian form on the monodromy group itself.

Theorem 2.4.2 Let a, b, c ∈ R be such that

0 ≤ λ, µ, ν < 1 λ+ µ+ ν < 1 + 2 min(λ, µ, ν)

where λ = |1 − c|, µ = |c − a − b|, ν = |a − b|. Let M be the monodromy group of (2.2).
Then,

M is spheric ⇐⇒ λ+ µ+ ν > 1

M is euclidean ⇐⇒ λ+ µ+ ν = 1

M is hyperbolic ⇐⇒ λ+ µ+ ν < 1.

Proof. In the case when none of the numbers a, b, c− a, c− b is integral, this statement
can already be inferred from the proof of the previous lemma (we get only the hyperbolic
and spheric case). It remains to show that if one of the numbers a, b, c−a, c−b is integral,
we have λ + µ + ν = 1. Let us suppose for example that a ∈ Z. Notice that |a − b| < 1
and |a+ b| < |c|+ 1 < 3. Hence |a| ≤ |a− b|/2 + |a+ b|/2 < 2. So, a = 0,±1. A case by
case analysis using the inequalities for λ, µ, ν yields our statement. 2
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Chapter 3

Generalised hypergeometric
functions nFn−1

3.1 Definition, first properties

Let α1, . . . , αn; β1, . . . , βn be any complex numbers and consider the generalised hyperge-
ometric equation in one variable,

z(θ + α1) · · · (θ + αn)F = (θ + β1 − 1) · · · (θ + βn − 1)F, θ = z
d

dz
(3.1)

This is a Fuchsian equation of order n with singularities at 0, 1,∞. The local exponents
read,

1− β1, . . . , 1− βn at z = 0
α1, . . . , αn at z =∞
0, 1, . . . , n− 2, −1 +

∑n
1 (βi − αi) at z = 1

When the βi are distinct modulo 1 a basis of solutions at z = 0 is given by the functions

z1−βi
nFn−1

(
α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, ..∨.., βn − βi + 1

∣∣∣∣ z) (i = 1, . . . , n).

Here ..∨.. denotes suppression of the term βi−βi + 1 and nFn−1 stands for the generalised
hypergeometric function in one variable

nFn−1

(
α1, . . . , αn
β1, . . . , βn−1

∣∣∣∣ z) =
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn−1)kk!

zk.

At z = 1 we have the following interesting situation.

Theorem 3.1.1 (Pochhammer) The equation (2.2) has n−1 independent holomorphic
solutions near z = 1.

The proof of this result follows from the observation that the coefficient of
(
d
dz

)n
in (2.2)

equals zn+1 − zn and the following theorem.

33
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Theorem 3.1.2 Consider the linear differential equation

pn(z)y(n) + pn−1(z)y(n−1) + · · ·+ p1(z)y′ + p0(z)y = 0

where the pi(z) are analytic around a point z = a. Suppose that pn(z) has a zero of order
one at z = a. The the differential equations has n− 1 independent holomorphic solutions
around z = a.

Proof. Without loss of generality we can assume that a = 0 and pn(z) = z. Then we
determine a power series solution

∑
k≥0 fkz

k by substituting it into the equation. We
obtain a recursion relation of the following form,

k · · · (k − n+ 2)(k − n+ 1 + pn−1(0))fk =
∞∑
i=1

(k − i) · · · (k − n+ 2)ci(k)fk−i (R)

where ci(k) are polynomials in k of degree < n, the product (k − i) · · · (k − n + 2) is
considered 1 if i > n − 2 and fm is considered 0 if m < 0. With these conventions we
see that (R) holds for k = 0, 1, . . . , n − 1 independent of the choice of f0, f1, . . . , fn−2.
When pn−1(0) 6∈ Z≤0 we see that recursion (R) allows us to determine fk for k ≥ n− 1 in
a unique manner. In this way we find n − 1 independent holomorphic solutions. When
pn−1(0) ∈ Z≤0 we need to refine our argument slightly in the sense that there is a linear
relation between f0, . . . , fn−2 and fn−1−pn−1(0) can be chosen arbitrarily. 2

Finally we mention the Euler integral for nFn−1(α1, . . . , αn; β1, . . . , βn−1|z),

n−1∏
i=1

Γ(βi)

Γ(αi)Γ(βi − αi)

∫ 1

0

· · ·
∫ 1

0

∏n−1
i=1 t

αi−1
i (1− ti)βi−αi−1

(1− zt1 · · · tn−1)αn
dt1 · · · dtn−1

for all <βi > <αi > 0 (i = 1, . . . , n− 1).

3.2 Monodromy

Fix a base point z0 ∈ P1 − {0, 1,∞}, say z0 = 1/2. Denote by G the fundamen-
tal group π1(P1 − {0, 1,∞}). Clearly G is generated by the simple loops g0, g1, g∞
around the corresponding points together with the relation g0g1g∞ = 1. Let V (α, β) =
V (α1, . . . , αn; β1, . . . , βn) be the local solution space of (2.2) around z0. Denote by

M(α, β) : G→ GL(V (α, β))

the monodromy representation of (2.2). Write

h0 = M(α, β)g0 h1 = M(α, β)g1 h∞ = M(α, β)g∞.

The eigenvalues of h0 and h∞ read exp(−2πiβj) and exp(2πiαj) respectively. Since there
are n−1 independent holomorphic solutions near z = 1 the element h1 has n−1 eigenvalues
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1 together with n − 1 independent eigenvectors. Equivalently, rank(h1 − Id) ≤ 1. An
element h ∈ GL(V ) such that rank(h− Id) = 1 will be called a (pseudo)-reflection. The
determinant of a reflection will be called the special eigenvalue. From the relation between
the generators of the fundamental group it follows that h−1

1 = h∞h0 is a (pseudo)reflection.

Theorem 3.2.1 Let H ⊂ GL(n,C) be a subgroup generated by two matrices A,B such
that AB−1 is a reflection. Then H acts irreducibly on Cn if and only if A and B have
disjoint sets of eigenvalues.

Proof. Suppose that H acts reducibly. Let V1 be a nontrivial invariant subspace and let
V2 = Cn/V1. Since A − B has rank 1, A and B coincide on either V1 or V2. Hence they
have a common eigenvalue.
Suppose conversely that A and B have a common eigenvalue λ. Let W = ker(A − B).
Since AB−1 − Id has rank one, the same holds for A − B. Hence dim(W ) = n − 1. If
any eigenvector of A belongs to W , it must also be an eigenvector of B, since A and B
coincide on W . Hence there is a one-dimensional invariant subspace. Suppose W does
not contain any eigenvector of A or B. We show that the subspace U = (A − λ)Cn is
invariant under H. Note that A−λId has a non-trivial kernel which has trivial intersection
with W . Hence U has dimension n − 1 and U = (A − λ)W . Since A − λ and B − λ
coincide on W we conclude that also U = (B − λ)W and hence, by a similar argument
as for A, U = (B − λ)Cn. Notice that U is stable under A, as follows trivially from
A(A−λ)Cn = (A−λ)ACn = (A−λ)Cn. For a similar reason U is stable under B. Hence
H has the invariant subspace U . 2

Corollary 3.2.2 The monodromy group of (2.2) acts irreducibly if and only if all differ-
ences αi − βj are non-integral.

This Corollary follows by application of our Theorem with A = h∞ and B = h−1
0 .

From now on we shall be interested in the irreducible case only.

Theorem 3.2.3 (Levelt) Let a1, . . . , an; b1, . . . , bn ∈ C∗ be such that ai 6= bj for all i, j.
Then there exist A,B ∈ GL(n,C) with eigenvalues a1, . . . , an and b1, . . . , bn respectively
such that AB−1 is a reflection. Moreover, the pair A,B is uniquely determined up to
conjugation.

Proof. First we show the existence. Let∏
i

(X − ai) = Xn + A1X
n−1 + · · ·+ An

∏
i

(X − bi) = Xn +B1X
n−1 + · · ·+Bn
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and

A =


0 0 . . . 0 −An
1 0 . . . 0 −An−1

0 1 . . . 0 −An−2
...

...
0 0 . . . 1 −A1

 B =


0 0 . . . 0 −Bn

1 0 . . . 0 −Bn−1

0 1 . . . 0 −Bn−2
...

...
0 0 . . . 1 −B1


Then rank(A−B) = 1, hence rank(AB−1 − Id) = 1 and AB−1 is a reflection.
To prove uniqueness of A,B we let W = ker(A − B). Note that dimW = n − 1. Let
V = W ∩ A−1W ∩ · · · ∩ A−(n−2)W . Then dimV ≥ 1. Suppose dimV > 1. Choose
v ∈ V ∩ A−(n−1)W . Then Aiv ∈ W for i = 0, 1, . . . , n − 1. Hence U =< Aiv >i∈Z⊂ W
is A-stable. In particular, W contains an eigenvector of A. Since B = A on W this is
also an eigenvector of B with the same eigenvalue, contradicting our assumption on A,B.
Hence dimV = 1. Letting v ∈ V we take v,Av, . . . , An−1v as basis of Cn. Since A = B
on W we have that Aiv = Biv for i = 0, 1, . . . , n− 2 and with respect to this basis A and
B have automatically the form given above. 2

Corollary 3.2.4 With the same hypotheses and Ai, Bj as in the proof of the previ-
ous theorem we have that < A,B > can be described by matrices having elements in
Z[Ai, Bj, 1/An, 1/Bn].

Levelt’s theorem is a special case of a general rigidity theorem which has recently been
proved by N.M.Katz. In the last section we shall give an elementary proof of Katz’s
theorem.

3.3 Hypergeometric groups

Definition 3.3.1 Let a1, . . . , an; b1, . . . , bn ∈ C∗. such that ai 6= bj for every i, j. The
group generated by A,B such that A and B have eigenvalues a1, . . . , an and b1, . . . , bn
respectively and such that AB−1 is a pseudoreflection, will be called a hypergeometric
group with parameters ai and bj. Notation: H(a, b) = a1, . . . , an; b1, . . . , bn.

In particular, the monodromy group of (2.2) is a hypergeometric group with ak = e2πiαk

and bk = e2πiβk .

Theorem 3.3.2 Let H be a hypergeometric group with parameters a1, . . . , an and b1, . . . , bn.
Suppose that these parameters lie on the unit circle in C. Then there exists a non-
degenerate hermitean form F (x, y) =

∑
Fijxiyj on Cn such that F (hx, hy) = F (x, y) for

all h ∈ H and all x, y ∈ Cn.
Denote by ≺,� the total ordering on the unit circle corresponding to increasing argument.
Assume that the a1 � . . . � an and b1 � . . . � bn. Let mj = #{k|bk ≺ aj} for j = 1, . . . , n.
Then the signature (p, q) of the hermitean form F is given by

|p− q| =

∣∣∣∣∣
n∑
j=1

(−1)j+mj

∣∣∣∣∣ .
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Definition 3.3.3 Let a1, . . . , an and b1, . . . , bn be sets on the unit circle. We say that
these sets interlace on the unit circle if and only if either

a1 ≺ b1 ≺ a2 ≺ b2 · · · ≺ an ≺ bn

or
b1 ≺ a1 ≺ b2 ≺ a2 · · · ≺ bn ≺ an.

Corollary 3.3.4 Let the hypergeometric group H have all of its parameters on the unit
circle. Then H is contained in U(n,C) if and only if the parametersets interlace on the
unit circle.

Theorem 3.3.5 Suppose the parameters {a1, . . . , an} and {b1, . . . , bn} are roots of unity,
let us say h-th roots of unity for some h ∈ Z≥2. Then the hypergeometric group H(a, b) is
finite if and only if for each k ∈ Z with (h, k) = 1 the sets {ak1, . . . , akn} and {bk1, . . . , bkn}
interlace on the unit circle.

Proof. The Galois group of Q(exp(2πi/h)) over Q is given by elements of the form

σk : exp(2πi/h)→ exp(2πik/h)

for any k, (k, h) = 1. The group H(a, b) can be represented by matrices with entries in the
ring of cyclotomic integers Z[exp(2πi/h)]. The Galois automorphsim σk establishes an iso-
morphism between H(a, b) and the hypergeometric group Hk with parameters ak1, . . . , a

k
n,

bk1, . . . , b
k
n. Each group Hk has an invariant hermitian form Fk for (k, h) = 1.

Suppose H(a, b) is finite. Then each Fk is definite, hence every pair of sets {ak1, . . . , akn}
and {bk1, . . . , bkn} interlace on the unit circle.
Suppose conversely that {ak1, . . . , akn} and {bk1, . . . , bkn} interlace for every k, (k, h) = 1.
Then each group Hk is subgroup of a unitary group with definite form Fk. In particular
the entries of each element are bounded in absolute value by some constant, C say. This
implies that any entry of any element of H(a, b) has conjugates which are all bounded by
C. Since there exist only finitely many elements of Z[exp(2πi/h)] having this property,
we conclude the finiteness of H(a, b). 2

An immediate consequence of this theorem is that, for example, the hypergeometric func-
tion

8F7

(
1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30

1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8

∣∣∣∣ z)
is an algebraic function.

3.4 Rigidity

In this section we formulate and prove Katz’s result on rigidity, see [Ka]. Let k be a field
and g1, g2, . . . , gr ∈ GL(n, k) Let G be the group generated by g1, . . . , gr. We say that the

F.Beukers: Hypergeometric Functions, preliminary notes



CHAPTER 3. HYPERGEOMETRIC FUNCTIONS NFN−1 38

r-tuple is irreducible if the group G acts irreducibly on kn. We call the r-tuple g1, . . . , gr
linearly rigid if for any conjugates g̃1, . . . , h̃r of g1, . . . , gr with g̃1g̃2 · · · g̃r = Id there exists
u ∈ GL(n, k) such that g̃i = ugiu

−1 for i = 1, 2, . . . , r.
For example, it follows from Levelt’s theorem that the generators g1 = A, g2 = B−1, g3 =
BA−1 of a hypergeometric group form a linearly rigid system.

Theorem 3.4.1 (Katz) Let g1, g2, . . . , gr ∈ GL(n, k) be an irreducible r-tuple with g1g2 . . . gr =
Id. Let, for each i, δi be the codimension of the linear space {A ∈ Mn(k)|giA = Agi}
(centralizer of gi). Then,

i) δ1 + · · ·+ δr ≥ 2(n2 − 1)

ii) If δ1 + · · ·+ δr = 2(n2 − 1), the system is linearly rigid.

iii) If k is algebraically closed, then the converse of part ii) holds

We note that the centraliser of g ∈ GL(n, k) depends only on the Jordan normal form
of g. If g is diagonalisable, the dimension of the centraliser is the sum of the squares of
the dimensions of the eigenspaces of g. When g has distinct eigenvalues this dimension
is n, when g is a (pseudo)reflection this dimension is (n − 1)2 + 1 = n2 − 2n + 2. The
corresponding codimensions are n2 − n and 2n− 2 respectively.
By way of example consider a hypergeometric group generated by g1 = A, g2 = B−1, g3 =
BA−1. In general A and B each have distinct eigenvalues, so δ1 = δ2 = n2 − n. Since g3

is a (pseudo)reflection we have δ3 = 2n− 2. Notice that δ1 + δ2 + δ3 = 2n2− 2. Hence the
triple A,B−1, BA−1 is linearly rigid. As a bonus we get that the eigenspaces of A and B
all have dimension one. Hence to each eigenvalue there is precisely one Jordan block in
the Jordan normal form.
Another example comes from the Jordan-Pochhammer equation, which is an n-th order
Fuchsian equation with n + 1 singular points and around each singular point the local
monodromy is (up to a scalar) a pseudo-reflection. So for each singularity we have δi =
2n−2. The sum of these delta’s is of course 2(n2−1). So if the monodromy is irreducible
we have again a rigid system. This case has been elaborated by [Ha].
The proof of Katz’s theorem is based on the following Theorem from linear algebra. In
this Theorem we consider a group G acting on a finite dimensional linear space V . For
every X ⊂ G we denote by d(X) resp. d∗(X) the codimension of the common fixed point
space in V resp. V ∗, the dual of V , of all elements of X.

Theorem 3.4.2 (L.Scott) Let H ∈ GL(V ) be the group generated by h1, h2, . . . , hr with
h1h2 · · ·hr = Id. Then

d(h1) + d(h2) + · · ·+ d(hr) ≥ d(H) + d∗(H).

Proof. Let W be the direct sum ⊕ri=1(1− hi)V . Define the linear map β : V → W by

β : v 7→ ((1− h1)v, . . . , (1− hr)v).
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Define the linear map δ : W → V by

δ : (v1, . . . , vr) 7→ v1 + h1v2 + h1h2v3 + · · ·+ h1 · · ·hr−1vr

Because of the identity

1− h1h2 · · ·hr = (1− h1) + h1(1− h2) + · · ·+ h1 · · ·hr−1(1− hr)

we see that the image of β is contained in the kernel of δ. Hence dim(=β) ≤ dim(ker δ).
Moreover, the kernel of β is precisely ∩ri=1 ker(1− hi). The dimension of the latter space
equals n− d(H). Hence dim(=β) = n− (n− d(H)) = d(H).
The image of δ is

(1− h1)V + h1(1− h2)V + · · ·+ h1 · · ·hr−1(1− hr)V

which is equal to (1−h1)V +(1−h2)V +· · ·+(1−hr)V . Note that any w ∈ ∩ri=1 ker(1−h∗i )
in the dual space V ∗ we vanishes on =δ. Hence dim(=δ) ≥ d∗(H).
Finally notice that dim(W ) =

∑r
i=1 d(hi). Putting everything together we get

r∑
i=1

d(hi) = dim(W ) = dim(ker δ) + dim(=δ)

≥ dim(=β) + dim(=δ)
≥ d(H) + d∗(H)

This is precisely the desired inequality. 2

Proof of Katz’s theorem. We follow the approach of Völklein-Strambach [VS]. For the
first part of Katz’s theorem we apply Scott’s Theorem to the vector space of n×n-matrices
and the group generated by the maps hi : A 7→ g−1

i Agi. Notice that d(hi) is now precisely
the codimension of the centraliser of gi, hence d(hi) = δi for all i. The number d(H) is
precisely the codimension of the space {A ∈ Mn(k)|gA = Ag for all g ∈ G}. By Schur’s
Lemma the irreducibility of the action of G implies that the dimension of this space is
1 and the codimension n2 − 1. So d(H) = n2 − 1. To determine d∗(H) we note that
the matrix space V = Mn(k) is isomorphic to its dual via the map V → V ∗ given by
A 7→ (X 7→ Trace(AX). Let us identify V with V ∗ in this way. Since Trace(Ag−1Xg) =
Trace(gAg−1X) we see that the action of g on the dual space is given by A 7→ gAg−1.
hence d∗(H) = n2 − 1. Application of Scott’s Theorem now shows that

δ1 + · · ·+ δ2 ≥ d(H) + d∗(H) = 2(n2 − 1)

To prove the second part of the theorem we apply Scott’s Theorem with V = Mn(k)
again, but now with the maps hi : A 7→ g−1

i Ag̃i. For each i choose ui ∈ GL(n, k) such
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that g̃i = uigiu
−1
i . Now note that

d(hi) = codim{A|g−1
i Ag̃i = A}

= codim{A|Ag̃i = giA}
= codim{A|Auigiu−1

i = giA}
= codim{A|(Aui)gi = gi(Aui)}
= codim{A|Agi = giA} = δi

The sum of the δi is given to be 2(n2 − 1). Together with Scott’s Theorem this implies
d(H) + d∗(H) ≤ 2(n2 − 1). This means that either d(H) < n2 or d∗(H) < n2 or both.
Let us assume d(H) < n2, the other case being similar. Then there is a non-trivial n× n
matrix A such that Ag̃i = giA for all i. From these inequalities we see in particular that
the image of A is stable under the group generated by the gi. Since the r-tuple g1, . . . , gr
is irreducible this means that A(kn) is either trivial or kn itself. Because A is non-trivial
we conclude that A(kn) = kn and A is invertible. We thus conclude that g̃i = A−1giA for
all i. In other words, our system g1, . . . , gr is rigid.
The proof of part iii) uses a dimension argument. Let Ci be the conjugacy class of gi
i = 1, 2, . . . , r. Consider the multiplication map Π : C1×C2× · · · ×Cr → GL(n, k) given
by (c1, c− 2, . . . , cr) 7→ c1c2 · · · cr. We have

dim(C1 × · · · × Cr) ≤ dim(Π−1(Id) + dim(=Π)

First of all note that dim(C1 × · · · × Cr) =
∑r

i=1 dim(Ci) =
∑r

i=1 δi. Secondly, by the
rigidity and irreducibility assumptions we have dim(Π−1(Id)) = n2 − 1. Finally, =Π is
contained in the hypersuface of all matrices whose determinant is det(g1g2 · · · gr) = 1.
Hence dim(=Π) ≤ n2 − 1.
These three facts imply that

∑r
i=1 δi ≤ 2(n2 − 1). Together with part i) this implies the

desired equality. 2

In many practical situations the local monodromies of differential equations have eigen-
values which are complex numbers with absolute value 1. In that case there exists also
a monodromy invariant Hermitian form on the solution space. We formulate this as a
Lemma.

Lemma 3.4.3 Let g1, g2, . . . , gr ∈ GL(n,C) be a rigid, irreducible system with g1g2 · · · gr =
Id. Suppose that for each i the matrices gi and g̃i = (gti)

−1 are conjugate. Then there

exists a non-trivial matrix H ∈Mn(C) such that gtiHgi = H for each i and H
t

= H.

Proof. Notice that, g̃1 · · · g̃r = Id. Moreover, the gi and g̃i are conjugate so by rigidity
there exists a matrix H ∈ GL(n,C) such that g̃i = HgiH

−1 for all i. Hence H = gtiHgi
for all i. Moreover, since the system g1, . . . , gr is irreducible, the matrix H is uniquely

determined up to a scalar factor. Since H
t

is also a solution we see that H
t

= λH for
some λ ∈ C. Moreover |λ| = 1 and writing λ = µ/µ we see that µH is a Hermitian
matrix. Now take H := µH. 2
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Chapter 4

Explicit monodromy for
hypergeometric equations

4.1 Introduction

Notice that the proof of Levelt’s Theorem ?? provides us a very explicit construction
of the monodromy matrices of the hypergeometric equation. However, the basis with
respect to which these monodromy matrices occur do appear in the proof. So Levelt’s
Theorem gives us only a determination of the monodromy group up to conjugation. In
many applications it is desirable to have the explicit matrices with respect to an explicitly
given basis of solutions. This is precisely the purpose of this chapter.
We consider the hypergeometric equation

z(θ + α1) · · · (θ + αn)F = (θ + β1 − 1) · · · (θ + βn − 1)F, θ = z
d

dz
. (4.1)

We consider it in the complex plane with the positive real axis deleted. That is, all
complex z with | arg(−z)| < π. We fix a basis of local solutions at z = 0 and at z = ∞.
We continue the local solutions around 0 analytically in C− R≥0 to ∞ and compare the
continued solutions with the local solutions at ∞. The coefficients that occur enable us
to compute the desired monodromy matrices.
To simplify matters we assume that the local bases of solutions do not contain logarithms,
that is the parameters αi are distinct modulo 1 and the parameters βi are distinct modulo
1. A solution basis around z = 0 can then be given by

(−z)1−βi
nFn−1

(
α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, ..∨.., βn − βi + 1

∣∣∣∣ z) (i = 1, . . . , n)

where the sign ∨ denotes suppression of βi − βi + 1. To make the final formulas more
elegant we multiply this solution with the constant

Γ(α1 − βi + 1) · · ·Γ(αn − βi + 1)

Γ(β1 − βi + 1) · · ·Γ(βn − βi + 1)
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and get the solution

Fi := (εz)1−βi
∑
k≥0

Γ(α1 − βi + k + 1) · · ·Γ(αn − βi + k + 1)

Γ(β1 − βi + k + 1) · · ·Γ(βn − βi + k + 1)
zk

where we introduced the extra factor ε = (−1)n−1 for reasons that will become clear later.
We also agree that for the determination of (εz)1−βi we choose−(n+2)π < arg(εz) < −nπ.
Similarly, around z =∞ a basis can be given by

Gi = (εz)−αi

∑
k≥0

Γ(αi − β1 + k + 1) · · ·Γ(αi − βn + k + 1)

Γ(αi − α1 + k + 1) · · ·Γ(αi − αn + k + 1)
(1/z)k

In order to determine the connection between these solution sets we propose to use the
technique of Mellin-Barnes integrals.

4.2 Mellin-Barnes integrals

In [GM] Golyshev anf Mellit describe a way to determine explicit monodromy of hyper-
geometric functions by studying Fourier transforms of products of factors of the form
1/Γ(γ ± s). In this section we adopt an approach inspired by them and which gives
precisely the same formulas, namely Mellin-Branes type integrals of products of factors
Γ(γ ± s).
Let αi, βj ∈ C for i, j = 1, 2, . . . , n and suppose from now on that the αi, βj are all
distinct modulo 1. This means we can write explicit solution bases for the hypergeometric
equations as in the previous section and, by Corollary ??, the monodromy representation
is irreducible. Let Γ be a path in the complex plane from i∞ to −i∞ and which bends
in such a way that all points −αi − k (i = 1, . . . , n, k ∈ Z≥0) are on the left of Γ and all
points −βi + k + 1 (i = 1, . . . , n, k ∈ Z≥0) are on the right of Γ. Let i ∈ {1, . . . , n} and
consider the integral

I =
1

2πi

∫
Γ

Γ(α1 + s) · · ·Γ(αn + s)Γ(1− β1 − s) · · ·Γ(1− βn − s) (εz)sds

where ε = (−1)n−1.
From Stirling’s formula (see [AAR, p21]) it follows that when s = a+ bi and a1 < a < a2

and |b| → ∞ that

|Γ(a+ bi)| =
√

2π|b|a−1/2e−π|b|/2[1 +O(1/|b|)].

Notice also that |(−z)a+bi| = |(εz)a|e−b arg(εz)| for all a, b ∈ R. Putting these estimates
together we see that the integral converges absolutely for all z ∈ C with | arg(εz)| < nπ.
The interval (−nπ, nπ) can be subdivided into n intervals of the form ((2r−n−2)π, (2r−
n)π). So, depending on the choice of determination of (εz)s the integral I represents n
functions Ir on C \ R≥0 indexed by r. We now compute Ir as a power series in z. So we

F.Beukers: Hypergeometric Functions, preliminary notes
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assume |z| < 1 and (2r − n − 2)π < arg(εz) < (2r − n)π. For any real a we denote by
Γa the vertical path from a + i∞ to a − i∞. Let a0 be larger than all real parts of the
−αi. We deform the contour Γ to Γa0 such that all points −αi − k with k ∈ Z≥0 stay on
the left. Then we continue to shift Γa0 to the right via the paths Γa with a→∞. In the
process the deformed paths may pass through a pole of Γ(1 − β1 − s) · · ·Γ(1 − βn − s)
and no others. That is, the points 1 − βi, 2 − βi, . . . for i = 1, . . . , n. The residue of the
integrand of Ir at the pole s = k + 1− βi equals

(εz)k(εz)1−βiΓ(α1 − βi + k + 1) · · ·Γ(αn − βi + k + 1)Γ(−β1 + βi − k) · · ·Γ(−βn + βi − k)

where the factor Γ(−βi + βi − k) is to be read as 1/k!. Once again we apply the identity
Γ(x)Γ(1− x) = sinπx to obtain

(εz)k(εz)1−βi
n∏
l=1

Γ(αl − βi + k + 1)

Γ(βl − βi + k + 1)

∏
l 6=i

π

sinπ(−βl + βi − k)

where the factor sinπ(−βi + βi − k) is omitted. So we get

Ir = Ii,a +
n∑
i=1

(εz)1−βi
∏
l 6=i

π

sin π(−βl + βi)

∑
k

n∏
l=1

Γ(αl − βi + k + 1)

Γ(βl − βi + k + 1)
zk

where the summation is over k = 0, 1, 2, . . . ba + <(βi)c and Ii,a denotes integration over
Γa. Finally we note that |Ii,a| → 0 as a → ∞, simply because |z| < 1 and so |(−z)a+bi|
decreases exponentially in a as a→∞. Therefore we conclude that

Ir = πn−1

n∑
i=1

e−2πirβi
Fi∏

l 6=i sin π(−βl + βi)
r = 1, 2, . . . , n.

We now compute Ir as a power zeries in 1/z. So we assume |z| > 1 and (2r − n− 2)π <
arg(εz) < (2r − n)π. Let a0 be a real number smaller than all real parts of the −βi. We
now deform the contour Γ to Γa0 while keeping all points −βi + k + 1 with k ∈ Z≥0 on
the right. From then on we shift Γa0 to Γa where we let a → −∞. In the process the
deformed paths may pass through the poles of Γ(s+α1) · · ·Γ(s+αn) and no others. That
is, the points −αj − k with k ∈ Z≥0. Use the fact that the residue of Γ(x) at x = k with
k ≤ 0 is given by (−1)k/k!. We obtain that the residue of the integrand equals

(εz)−k(εz)−αjΓ(α1−αj − k) · · ·Γ(αn−αj − k)Γ(−β1 +αj + k+ 1) · · ·Γ(−βn +αj + k+ 1)

where the factor Γ(αj −αj − k) is to be read as 1/k!. We use the identity Γ(x)Γ(1−x) =
π/ sin πx once again. We get

(ε)−k(εz)−αj

n∏
l=1

Γ(αj − β1 + k + 1)

Γ(αj − α1 + k + 1)

∏
l 6=i

π

sin(π(αl − αj − k))
.
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The integral over Γa tends to zero as a → −∞ because |z| > 1 and |(−z)a+bi| tends
exponentially to 0 as a→ −∞. Hence we conclude that for |z| > 1 we have

Ir = πn−1

n∑
j=1

e−2πirαj
Gj∏

l 6=j sin(π(αl − αj))
, r = 1, 2, . . . , n.

There is an interesting consequence.

Corollary 4.2.1 Let notation be as above. With respect to the basis of solutions I1, . . . , In
the monodromy matrix around z = 0 reads

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

0 0 0 · · · 1
−Bn −Bn−1 −Bn−2 · · · −B1


where Xn+B1X

n−1 + · · ·+Bn−1X+Bn is the polynomial with zeros e−2πiβk , k = 1, . . . , n.
Similarly, around the point z =∞ the monodromy matrix with respect to I reads

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

0 0 0 · · · 1
−An −An−1 −An−2 · · · −A1


where Xn+A1X

n−1 + · · ·+An−1X+An is the polynomial with zeros e−2πiαk , k = 1, . . . , n.

So we see that we have found an explicit basis of solutions of the hypergeometric equation
with respect to which the monodromy has the shape given in Levelt’s Theorem ??.

Proof. Let us denote I = (I1, . . . , In)t and denote by F the vector with coordinates

πn−1Fi∏
l 6=i sin π(−βl + βi)

.

We have seen above that I = MβF where Mβ is the VanderMonde type matrix
e−2πiβ1 e−2πiβ2 · · · e−2πiβn

e−4πiβ1 e−4πiβ2 · · · e−4πiβn

...
...

...
e−2nπiβ1 e−2nπiβ2 · · · e−2nπiβn

 .
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A closed loop around z = 0 in positive direction gives the local monodromy F → DβF
where Dβ is the diagonal matrix with entries e−2πiβj . Hence the solutions I goes over into
MβIβF = MβIβM

−1
β I. The local monodromy matrix with respect to I reads

MβIβM
−1
β =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

0 0 0 · · · 1
−Bn −Bn−1 −Bn−2 · · · −B1

 .

The calculation around z =∞ runs similarly.
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