Exercises Hypergeometric Functions, Nov 23 2015

- 1. Let $d \in \mathbb{N}$.
 - (a) Prove that for any $a \in \mathbb{R}$ and any $n \in \mathbb{N}$:

$$d^{dn} \prod_{k=0}^{d-1} (\alpha + k/d)_n = (d\alpha)_{dn}.$$

- (b) Prove that $(dn)! = d^{dn} \prod_{k=1}^{d} (k/d)_n$ for any $n \in \mathbb{N}$.
- (c) Show that the power series

$$\sum_{k>0} \frac{(30k)!k!}{(15k)!(10k)!(6k)!} z^k$$

can be expressed in terms of a hypergeometric function of order 8. Show that the latter function is algebraic.

- (d) Show that the coefficients of the above series are all integers (you may use that the number of prime factors p in n! equals $\lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \cdots$).
- 2. Let α, β be a pair of multisets (i.e. repetition of elements is allowed) of hypergeometrische parameters of size m and suppose that there exist multisets γ, δ such $\alpha = \bigcup_{k=0}^{d-1} (\gamma + k/d)$ en $\beta = \bigcup_{k=0}^{d-1} (\delta + k/d)$ We use the notation $\{\gamma_1, \ldots, \gamma_k\} + 1/d = \{\gamma_1 + 1/d, \ldots, \gamma_k + 1/d\}$.
 - (a) Express the *m*-th order hypergeometric functions $F(\alpha; \beta|z)$ in terms of the m/d-th order hypergeometric function $F(\gamma; \delta|z)$.
 - (b) Show that if $F(\gamma; \delta|z)$ is algebraic, then so is $F(\alpha; \beta|z)$.