Exercises Hypergeometric Functions, Sep 28, 2015

We recall the definition of a Schwarzian derivative,

$$S(w,z) = \left(\frac{w''}{w'}\right)' - \frac{1}{2} \left(\frac{w''}{w'}\right)^2.$$

1. Prove that

$$_{2}F_{1}(a,b,c|\frac{z}{z-1}) = (1-z)^{a} {}_{2}F_{1}(a,c-b,c|z).$$

(Hint: use Riemann schemes)

2. When $c \notin \mathbb{Z}$ a basis of solutions of the hypergeometric equation is given by

$$f(z) = {}_{2}F_{1}(a, b, c|z), \quad g(z) = z^{1-c} {}_{2}F_{1}(a+1-c, b+1-c, 2-c|z).$$

In this exercise we study the solutions when $c \in \mathbb{Z}$.

(a) Show that for c=1 the non-holomorphic solution near z=0 is given by

$$f(z)\log z + \sum_{k\geq 1} \frac{(a)_k(b)_k}{(k!)^2} \left(\sum_{j=1}^{k-1} \frac{1}{a+j} + \frac{1}{b+j} - \frac{2}{j+1}\right) z^k.$$

(Hint: the difference quotient $\frac{g(z)-f(z)}{c-1}$ is a solution of the hypergeometric equation for any c close to 1. Take the limit as $c \to 1$)

- (b) Find a basis of solutions around z = 0 for the hypergeometric equation when c = 0.
- 3. Consider the function

$$f(z) = \int_0^z \frac{dt}{\sqrt{1 - t^2}}$$

on the complex upper half plane \mathcal{H} . We take $\sqrt{1-t^2}$ positive realvalued on the real segment (-1,1).

- (a) Prove that f(z) maps $\overline{\mathcal{H}}$ (the upper half plane plus real line) one-to-one onto the half strip S in the complex plane given by $|\Re(z)| \leq a, \Im(z) \geq 0$ where $a = \int_0^1 \frac{dt}{\sqrt{1-t^2}}$. In particular, $f(-1) = -a, f(1) = a, f(\infty) = \infty$. (Hint: use the Schwarzian derivative).
- (b) Let $g: S \to \overline{\mathcal{H}}$ be the inverse of f. Show that it can be continued analytically to \mathbb{C} and show that g(z+4a)=g(z) for all $z\in\mathbb{C}$.
- 4. Consider the function

$$f(z) = \int_{\infty}^{z} \frac{dt}{\sqrt{t(1-t^2)}}$$

on the complex upper half plane \mathcal{H} . We take $\sqrt{t(1-t^2)}$ positive realvalued on the real segment $(-\infty, -1)$.

- (a) Prove that f(z) maps the real line to the boundary of a square S with vertices 0, b, b + bi, bi minus 0. Here $b = \int_{\infty}^{-1} \frac{dt}{\sqrt{t(1-t^2)}}$.
- (b) (much work) Prove that f(z) maps $\overline{\mathcal{H}}$ one-to-one onto the square S minus 0. (Hint: use the Schwarzian derivative and the local expansion of f(z) near $z = \infty$, or z = 0 if you prefer)
- (c) Let $g: S \to \overline{\mathcal{H}}$ be te inverse of f. Show that it can be continued meromorphically to \mathbb{C} with second order poles in the points 2mb, 2nbi with $m, n \in \mathbb{Z}$.
- (d) Show that g(z+2b) = g(z+2bi) = g(z) for all $z \in \mathbb{C}$.