Homework Hypergeometric Functions, part IV

- 1. Let $0 < \lambda, \mu < 1$ be given. Consider the curvilear triangle Δ with vertices $0, 1, e^{2\pi i\lambda}$ and angles $2\lambda\pi, \mu\pi, \mu\pi$ respectively. So there are two edges which are line segments, between 0 and 1, and between 0 and $e^{2\pi i\lambda}$. Take the angular bisector in 0 and use it to cut Δ into two pieces, which are triangles with angles $\lambda\pi, \mu\pi$ and $\pi/2$. Denote the piece containg the vertices 0, 1 by $\tilde{\Delta}$.
 - (i) Sketch a picture of the triangles and compute the vertex P of the triangle $\tilde{\Delta}$ with angle $\pi/2$.

Let η be the Schwarz map which maps the upper half plane \mathcal{H} to Δ such that $\eta(0) = 0, \eta(1) = 1, \eta(\infty) = e^{2\pi i\lambda}$. Let $\tilde{\eta}$ be the Schwarz map which map the upper half plane \mathcal{H} to $\tilde{\Delta}$ such that $\tilde{\eta}(0) = 0, \tilde{\eta}(1) = 1, \tilde{\eta}(\infty) = P$.

(ii) Consider $\tilde{\eta}^{-1}: \tilde{\Delta} \to \mathcal{H}$ and extend it to an an analytic function on Δ . Show that $\tilde{\eta}^{-1} \circ \eta$ extends to a rational function R(z) on $\mathbb{C} \cup \infty$. Furthermore, prove that $R(z) = p \left(\frac{z}{z-q}\right)^2$ for some constants p, q. Determine p, q.

We know that $\eta, \tilde{\eta}$ can be given by quotients of hypergeometric functions of the form

$$\eta(z) = r \; \frac{z^{1-c} \, {}_{2}F_{1}(a+1-c,b+1-c,2-c|z)}{{}_{2}F_{1}(a,b,c|z)},$$
$$\eta(z) = \tilde{r} \; \frac{z^{1-\tilde{c}} \, {}_{2}F_{1}(\tilde{a}+1-\tilde{c},\tilde{b}+1-\tilde{c},2-\tilde{c}|z)}{{}_{2}F_{1}(\tilde{a},\tilde{b},\tilde{c}|z)},$$

where r, \tilde{r} are some non-zero normalization constants.

(iii) Determine $a, b, c, \tilde{a}, \tilde{b}, \tilde{c}$ in terms of λ, μ .

From item (ii) we know that $\eta(z) = \tilde{\eta}(R(z))$, so there is a relation between the Schwarz quotients with parameters a, b, c and parameters $\tilde{a}, \tilde{b}, \tilde{c}$. We know like to establish a relation between the hypergeometric functions themselves.

(iv) Take the derivative of the relation $\eta(z) = \tilde{\eta}(R(z))$ and deduce a relation of the form

$$_2F_1(\tilde{a},\tilde{b},\tilde{c}|R(z)) = S(z)^{\rho} \, _2F_1(a,b,c|z)$$

where S(z) is a rational function and ρ a constant. Determine S(z) and ρ . (Hint: use that the derivative of f/g is $(f'g - fg')/f^2$ and note we have a Wronskian determinant in the numerator).