Homework Hypergeometric Functions, part VI

- 1. A twisted form R(x)dx/y with $y = x^{\rho}(1-x)^{\sigma}(1-zx)^{\tau}$ with $\rho, \sigma, \tau \in \mathbb{R}$ and $\rho, \sigma, \tau, \rho + \sigma + \tau \notin \mathbb{Z}$ is called holomorphic at 0 if it has an expansion $x^{-\rho}(c_k x^k + c_{k+1}x^{k+1} + \cdots)dx$ such that $c_k \neq 0$ and $k \rho > -1$. Similarly at $x = 1, 1/z, \infty$. For example at x = 1 we replace x by 1 + t to determine the local expansion at t = 0 (or in terms of x 1 if you like). At ∞ we replace x by 1/t.
 - (a) What are the conditions on ρ, σ, τ such that
 - i. both dx/y and xdx/y are holomorphic everywhere
 - ii. precisely one of dx/y and xdx/y is holomorphic everywhere
 - iii. none of dx/y, xdx/y is holomorphic everywhere
 - (b) How do the above three conditions read in terms of the hypergeometric parameters a, b, c where $\rho = 1 b, \sigma = b + 1 c, \tau = a$?
 - (c) Determine in each of these cases the signature of the monodromy of the corresponding Euler integrals.
- 2. We consider a third order hypergeometric equation with parameters $\alpha_1, \alpha_2, 1/2$ and $\beta_1, \beta_2, 1$ with $\alpha_i, \beta_j \in \mathbb{R}$. We assume that $\alpha_1 + \alpha_2, \beta_1 + \beta_2 \in \mathbb{Z}$ and that the monodromy acts irreducibly.
 - (i) Show that the monodromy can be defined over \mathbb{R} (i.e. there exists a basis such that the monodromy matrices have entries in \mathbb{R}).
 - (ii) Choose a basis $y_1(z), y_2(z), y_3(z)$ in the space of solutions and consider the group of monodromy matrices G with respect to that basis. Show that there exists a symmetric 3×3 -matrix Q such that $g^tQg = Q$ for all $g \in G$.
 - (iii) Show that there exists a quadratic form $F(x_1, x_2, x_3) = \sum_{1 \le i \le j \le 3} f_{ij} x_i x_j$ with $f_{ij} \in \mathbb{C}$, not all zero, such that $F(y_1(z), y_2(z), y_3(z))$ is a rational function R(z) in z. Moreover, show that R(z) has a pole of order at most $2 \max(\beta_1 1, \beta_2 1)$ at z = 0, a pole of order at most $2(\alpha_1 + \alpha_2 + 1/2 \beta_1 \beta_2)$ at z = 1 and no other poles in \mathbb{C} . Show that at ∞ we have $R(z) = c/z^k + O(1/z^{k+1})$ with $k \ge 2 \min(\alpha_1, \alpha_2, 1/2)$.
 - (iv) Assume that $\alpha_1 + \alpha_2 = 1$ and $\beta_1 + \beta_2 = 2$. Formulate a necessary condition on α_i, β_j to ensure that $R(z) \equiv 0$.

We now restrict to the hypergeometric equation with parameters $\alpha_i = 1/2, \beta_i = 1$ for i = 1, 2, 3. There exists a basis of solutions of the form

$$y_1 = f_1$$

 $y_2 = f_1 \log z + f_2$
 $y_3 = f_1 (\log z)^2 / 2 + f_2 \log z + f_3$

where f_1 is the hypergeometric function and f_2, f_3 are power series expansions in z with $f_2(0) = f_3(0) = 0$.

- (v) Show that $y_2^2 2y_1y_3 \equiv 0$.
- (vi) Show that the Yukawa coupling $y_1^3W(y_1,y_2,y_3)/W(y_1,y_2)^3$ is a constant. Here W denotes the Wronskian determinant.