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1 Introduction

At the end of the 1970’s it seemed that my fate as a young beginning research mathematician
was closely linked with work of Roger Apéry. My first acquaintance with his work was not
through ζ(3), but through the diophantine equation x2 + D = pn in the unknown integers
x, n, where D, p are given integers with p prime. This happened to be my thesis subject and
the papers [A1,A2] turned out to be two very short but relevant papers on the subject. It
was therefore a nice surprise for me to see Apéry ”live” during the Journées Arithmetiques in
1978 in Luminy. This surprise became excitement with Apéry’s announcement of his proof of
ζ(3) 6∈ Q and ended in utter confusion after hearing his famous lecture.
The ensuing history has been told in several other places in a much better way than I would
be able to do. See [P],[MF]. Let me only say that it has been my good fortune to find a very
simple version of the proof a few months after Apéry’s announcement, see [B1]. As is well
known, many people, including myself, have tried to generalise this simplified proof to obtain
irrationality of ζ(5) or some other numbers of interest, like Catalan’s constant. Ironically
all generalisations tried so far did not give any new interesting results. Only through a
combination of miracles such generalisations seem to work, which in practice means that we
fall back to ζ(2) or ζ(3) again. In the early 1980’s several papers of mine have dealt with such
generalisations and with properties of the numbers

∑n
k=0

(
n+k

k

)2(n
k

)2 which occur in Apéry’s
proof. I would like to take the opportunity to give a short overview of these results in this
paper.

2 Irrationality

Let us recall the plan of Apéry’s irrationality proof. Consider the recurrence relation

(n + 1)3un+1 = (34n3 + 51n2 + 27n + 5)un − n3un−1

The solution with starting values u0 = 1, u1 = 5 has the peculiar property that it has integral
terms, despite the fact that at every recursion step we divide by (n + 1)3. The n-th term is
given by

n∑
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k

)2(n

k

)2

.
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We call these the Apéry numbers and denote them by an. The terms of the solution with
starting values 0, 6 are denoted by cn. We can show that l3ncn ∈ Z, where ln denotes the
lowest common multiple of 1, 2, 3, . . . , n. Using the prime number theorem we can show that
ln = Oε(e(1+ε)n) for any ε > 0. Genaral theory of recurrences tells us that limn→∞ cn/an exists
and Apéry showed that the limit is ζ(3). In fact, a more detailed analysis shows that

0 < cn − anζ(3) < (
√

2− 1)4n.

Suppose ζ(3) were rational. Then we would have cn−anζ(3) >> l−3
n . However, this contradicts

the upper bound since (
√

2− 1)4n < e−3. Hence ζ(3) is irrational.
Now consider the generating function of the Apéry numbers A(t) =

∑∞
n=0 antn. Because of the

recurrence relation for the an, the function A(t) satisfies the third order differential equation

(t4 − 34t3 + t2)y′′′ + (6t3 − 153t2 + 3t)y′′ + (7t2 − 112t + 1)y′ + (t− 5)y = 0.

This differential equation turns out to be the symmetric square of a second order differential
equation with coefficients in C(t). This basically means that the solution space of the third
order equation is spanned, over the constants, by the squares of the second order equation.
According to B.Dwork this observation had already been made by Apéry and the second order
equation reads

(t3 − 34t2 + t)y′′ + (2t2 − 51t + 1)y′ +
1
4
(t− 10)y = 0

In particular, function
√

(A(t) is a solution of the second order equation. Let us write√
(A(t) =

∑∞
n=0 vntn. Then it is not hard to see that 4nvn ∈ Z for all n and

(n + 1)2vn+1 = (34n2 + 17n + 5/2)vn − (n− 1/2)2vn−1

for n ≥ 1. Denote the solution of the recurrence with starting values 0, 1 by wn. General
theory of recurrences tells us that limn→∞wn/vn exists. Call it α. For people who are into
the business of irrationality proving the observation that (

√
2−1)4 < 1/4e2 suffices to recognize

that our recurrence actually gives us an irrationality proof for α along the lines sketched above.
However, this time it is not so clear what α is. We can compute it numerically up to arbitrary
precision and the first thing I did was to compare its value with the values of ”interesting”
numbers like Euler’s constant or Catalan’s constant. But to no avail. Later, in [B2], I was
able to give some sort of series expansion for α. Consider the infinite product

q
∞∏

n=1

(1− qn)3(1− q3n)3
(1 + q3n)9/2

(1 + qn)3/2

Denote its power series expansion by
∑

n≥1 αnqn. Then we have α =
∑
≥1 αn/n2. Let me be

the first to admit that this is not an interesting number!
Let us return to our second order differential equation. It has the four singularities t =
0, (1±√2)4,∞. It is a Fuchsian equation with the following table of local exponents.

point exponents
0 0, 0
(1±√2)4 0, 1/2
∞ 1/2, 1/2
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Consider the rational function x(1−9x)/(1−x). It has degree 2 and ramifies above the points
(1±√2)4 at x = (3± 2

√
2)/3. Replace t in our second order equation by x(1− 9x)/(1− x).

Then the points x = (3± 2
√

2)/3 will become regular points of the new differential equation
and the values of x above t = 0,∞ give us four singular points of the new equation. It has
Riemann scheme,

point exponents
0 0, 0
1 1/2, 1/2
1/9 0, 0
∞ 1/2, 1/2

Replacing y by (1− x)1/2y gives us a second order equation with Riemann scheme

point exponents
0 0, 0
1 0, 0
1/9 0, 0
∞ 1, 1

which reads

x(x− 1)(9x− 1)y′′ + (27x2 − 20x + 1)y′ + (9x + .......)y = 0.

This is precisely the Picard-Fuchs equation of the modular family of elliptic curves accociated
to Γ1(6). It is at this point that the relation of Apéry’s irrationality proof with modular
forms becomes clear. By rephrasing everything in terms of modular forms one obtains a new
principle where one derives irrationality results for periods of modular forms. This is the
subject matter of the article [B2]. Unfortunately it turns out that in only a few cases all
requirements are met to indeed produce irrationality results.
We can also reverse the above procedure. Start with the recurrence relation

(n + 1)2un+1 = (11n2 + 11n + 3)un + n2un−1

which Apéry used to prove irrationality of ζ(2). In particular this recurrence has the solution
bn =

∑n
k=0

(
n
k

)2(n+k
k

)
. Its generating function B(x) =

∑∞
n=0 bntn satisfies the second order

differential equation

x(x2 + 11x− 1)y′′ + (3x2 + 22x− 1)y′ + (x + 3)y = 0.

In [B3] it is shown that this is the Picard-Fuchs equation of the modular family of elliptic
curves corresponding to Γ1(5). Let λ = −11/2 − 5

√
5. Then (1 − x/λ)B(x)2 is solution of

a 3rd order differential equation. Then use the independent variable t = x(λx + 1)/(x − λ)
instead of x to obtain the equation

t2(t2 − 2(124 + 55
√

5)t + 1)y′′′ + (6t3 − (1116 + 495
√

5)t2 + 3t)y′′+
+(7t2 − (812 + 360

√
5)t + 1)y′ + (t− 34− 15

√
5)y = 0
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There is also a corresponding recurrence relation which we prefer not to write down. How-
ever, it can be used (see [B2]) to prove that 8ζ(3) − 5

√
5L(3, χ) 6∈ Q(

√
5), where L(s, χ) =∑

n≥1

(
n
5

)
/ns.

Finally, without giving any details, the Chudnovsky’s [C] point out that there several other
recurrences which may lead to an irrationality proof, the problem being the exact meaning of
the irrational number. Such recurrences arise from Gauss-Manin systems of Shimura families
of abelian surfaces having multiplication by a quaternion algebra over Q.

3 Congruences

Another subject, which kept me busy for some time, is that of congruences for the Apéry
numbers an, bn defined in the previous section. Very soon after Apéry’s irrationality proof it
was realised by several authors, in particular Chowla, Cowles and Gessel, that the numbers
an, bn satisfy some interesting congruences. For example, for any prime p ≥ 5 we have ap−1 ≡ 1
(mod p3), bp−1 ≡ 1 (mod p3). Later these congruences were generalised in [B4] to

∀ m, r ∈ N : ampr−1 ≡ ampr−1−1 (mod p3r)

bmpr−1 ≡ bmpr−1−1 (mod p3r)

The proof of these congruences is extremely tedious and it would be nice to have a more
conceptual proof.
In [SB] the numbers bn are related to the zeta function of certain K3-surfaces. As a result the
following congruences were found,
For any m, r ∈ N with m odd and any odd prime we have

b(mpr−1)/2 − βpb(mpr−1−1)/2 + p2b(mpr−2−1)/2 ≡ 0 (mod pr)

where βp is obtained from the Taylor series expansion of q
∏∞

n=1(1− q4n)6 =
∑

n≥1 βnqn. This
is a q-series expansion of a modular of weight 3. Moreover, the modular form is a theta series
corresponding to the quadratic form x2 + y2 and we have βp = 0 if p ≡ 3 (mod 4) and
βp = 4a2 − 2p if p = a2 + b2, a odd. Numerical evidence suggests that the congruences hold
modulo p2r instead of pr.
The phenomenon that some congruences are true modulo higher powers than expected from
general theory occurs at several places. For example, consider an elliptic curve E over Q given
in its Weierstrass normal form. Let z = x/y be the local parameter at the origin of E and
consider the series expansion of the holomorphic differential form,

ω =
∞∑

n=1

fnzn−1dz

Then we have the so-called Atkin Swinnerton-Dyer congruences. Let p be any prime for which
E has good reduction.

∀m, r : fmpr − tpfmpr−1 + pfmpr−2 ≡ 0 (mod pr)
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where tp is the trace of Frobenius on H1
et(E). In case E has ordinary reduction at p these

congruences can be rephrased as

∀m, r : fmpr ≡ τpfmpr−1 (mod pr)

where τp is the unit eigenvalue of the Frobenius map. It was shown by M.Coster and L.van
Hamme that the congruences hold modulo p2r instead of pr if E has complex multiplication,
see [CH] and [C] where one finds also several other references.
Motivated by the congruences for bn I wondered if something similar holds for Apéry’s numbers
an. After a few trials the right guess was found and using the modular interpretation of the
an it did not take long to prove the following statement (see [B5]).
Let

q

∞∏

n=1

(1− q2n)4(1− q4n)4 =
∑

n≥1

αnqn

Then, for any m, r ∈ N, m odd we have

a(mpr−1)/2 − αpa(mpr−1−1)/2 + p3a(mpr−2−1)/2 ≡ 0 (mod pr)

Numeric experiment again seems to suggest that these congruences hold modulo p2r.
Finally let me end with a statement of which I have absolutely no idea how to prove. Write
n is base 5. Count the total number of 1’s and 3’s in this representation. Call it q. Then 5q

divides an. Similarly, write n in base 11. Count the total number of 5’s in this representation.
Then 11q divides an. I would be very interested in having a proof of these statements.
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Besan con 1985, Astérisque 147-148 (1987), 271-284

B3 - F.Beukers, Irrationality of π2, periods of an elliptic curve and Γ1(5), in Proceedings
”Approximations diophantiennes...”, Luminy 1982 (D.Bertrand, M.Waldschmidt eds.),
Progress in Mathematics, Birkhäuser (1983)
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