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2 1 THE MODULAR GROUP

1 The modular group

1.1 Definition

Consider the upper half plane

H = {τ ∈ C | Im(τ) > 0}.

Let SL(2,R) be the group of real 2×2-matrices with determinant 1. The group SL(2,R) acts
on H via

ϕ(a b
c d

) : τ 7→ aτ + b

cτ + d
.

Lemma 1.1.1 Suppose τ = x+ iy ∈ H. Then, for any M =

(
a b
c d

)
∈ SL(2,R) we have

Im

(
aτ + b

cτ + d

)
=

y

|cτ + d|2
.

In particular, ϕM (τ) ∈ H.

Proof. Notice that

Im

(
aτ + b

cτ + d

)
= Im

(aτ + b)(cτ + d)

|cτ + d|2

= Im
acττ + bd+ adτ + bcτ

|cτ + d|2

= Im
ad(x+ iy) + bc(x− iy)

|cτ + d|2

= Im
(ad− bc)iy

|cτ + d|2
=

y

|cτ + d|2
> 0.

2

One easily checks that ϕM ◦ ϕM ′ = ϕMM ′ and ϕM = Id ⇐⇒ M = ±
(
1 0
0 1

)
. From now

on we say that M ∈ SL(2,R) acts on H when we mean ϕM . Also note that it is actually the
group SL(2,R)/{±1} which acts on H.

We now compute the fixpoints of

(
a b
c d

)
. That is, we determine τ0 ∈ H such that

τ0 =
aτ0 + b

cτ0 + d
.

It immediately follows that cτ20 + (d− a)τ0 − b. Hence, when c ̸= 0,

τ0 =
a− d+

√
(a− d)2 + 4bc

2c
.

The discriminant equals (a − d)2 + 4bc = (a + d)2 − 4(ad − bc) = (a + d)2 − 4. So we can
distinguish the following cases

|a+ d| > 2. There are two real fixpoints and we call the transformation hyperbolic.

|a+ d| < 2. There are two complex fixpoints, one in the upper half plane. We call the
transfomation elliptic.

F.Beukers, Modular Forms



1.2 SL(2,Z) 3

|a+d| = 2. There is precisely one real fixpoint and we call the transformation parabolic.

When c = 0 we have the transformation τ 7→ aτ+b
d . In that case we call i∞ (the point at

infinity) a fixpoint. When a ̸= d we get the extra fixpoint τ0 = b/(d− a). In the first case we
have that ad = 1 and a = d = ±1. Hence |a + d| = 2 and we call our transformation again
parabolic. When a ̸= d it follows from ad = 1 that |a+d| > 2 and we call our transformation
again hyperbolic.

1.2 SL(2,Z)
We define

SL(2,Z) =
{(

a b
c d

)
| a, b, c, d ∈ Z and ad− bc = 1

}
.

We distinguish two special elements of SL(2,Z) namely

T =

(
1 1
0 1

)
S =

(
0 1
−1 0

)
corresponding to

T : τ 7→ τ + 1 S : τ 7→ −1

τ
.

Theorem 1.2.1 The group SL(2,Z) is generated by S and T .

Proof. Let

(
a b
c d

)
∈ SL(2,Z) and apply the following algorithm.

1. If c = 0, then terminate.

2. Choose n ∈ Z such that |a+ nc| ≤ |c|/2.

3.

(
a b
c d

)
:=

(
1 n
0 1

)(
a b
c d

)
=

(
a+ nc b+ nd

c d

)
.

4.

(
a b
c d

)
:=

(
0 1
−1 0

)(
a b
c d

)
=

(
c d
−a −b

)
.

5. Goto step (1).

After step (4) the new value of |c| is at most 1/2 times the original value of |c|. Hence
after a finite number of loops we obtain c = 0 and we are left with a matrix of the form(
a b
0 d

)
∈ SL(2,Z). Since ad = 1 and a, d ∈ Z we have either a = d = 1 or a = d = −1. In

the first case we verify that our matrix equals T b, in the second case S2T−b, since S2 = −Id.

2

In H we consider the so-called fundamental domain of SL(2,Z)/± 1. Define

F = {τ ∈ H | |Reτ | ≤ 1/2, |τ | ≥ 1}.

We say that τ, τ ′ ∈ H are SL(2,Z)-equivalent if there exists M ∈ SL(2,Z) such that τ ′ = Mτ .
The equivalence relation is indicated by ∼.

F.Beukers, Modular Forms



4 1 THE MODULAR GROUP

-1 -1/2 11/2

Theorem 1.2.2 1. To every τ0 ∈ H there exists τ1 ∈ F which is SL(2,Z)-equivalent to
τ0.

2. Let τ0, τ1 ∈ F be distinct and suppose that τ1 ∼ τ0. Then τ1, τ0 ∈ ∂F and we have
either τ1 = τ0 ± 1 or τ1 = −1/τ0, or both (when τ0 = e2πi/3 or eπi/3).

Proof. For part (1) we perform the following algorithm

1. Choose n ∈ Z such that |Reτ0 + n| ≤ 1/2 and put τ0 := τ0 + n.

2. If |τ0| ≥ 1 we are done. If |τ0| < 1 we put τ0 := −1/τ0 and go to the previous step.

We assert that this process terminates after a finite number of steps. Notice that Im(−1/τ0) =
τ0/|τ0|2. So every time we enter step (2) with |τ0|2 ≤ 1/2, the new value of τ0 will have
imaginary part at least twice as large as the original one. So after a finite number of steps we
reach a situation where |τ0|2 > 1/2. When |τ0| ≥ 1 we are done, but when 1/2 < |τ0|2 < 1 we
easily verify that −1/τ0 ∈ F ∪ T (F ) ∪ T−1(F ). So at most one more translation is required
to end in F .
Now suppose that τ1 ∼ τ0 and τ0, τ1 ∈ F . Suppose τ1 = aτ0+b

cτ0+d . Then

Imτ1 =
Imτ0

|cτ0 + d|2
=

Imτ0
c2|τ0|2 + 2cdReτ0 + d2

(1)

Using |τ0| ≥ 1 and 2|Reτ0| ≤ 1 we derive

c2|τ0|2 + 2cdReτ0 + d2 ≥ c2 − |cd|+ d2 ≥ 1.

Since c, d are integers that cannot be both zero. Hence Imτ1 ≤ Imτ0. Similarly we see that
Imτ0 ≤ Imτ1. Hence Imτ1 = Imτ0. From (1) we now deduce that

1 = c2|τ0|2 + 2cdReτ0 + d2 ≥ c2 − |cd|+ d2 ≥ 1

and hence all inequalities are equalities. In particular when c = 0 we find d = ±1 and
τ1 = τ0 + b/d. Hence τ1, τ0 are on the vertical lines Reτ = 1/2. When c ̸= 0 we deduce that
c2|τ0|2 = 1, hence |c| = 1, |τ0| = 1. If d = 0 then τ1 = −1/τ0. If d ̸= 0 we derive in addition
that 2|Reτ0| = 1. This is the situation where τ0 = e2πi/3 or eπi/3.

2
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5

2 First examples of modular forms

2.1 The Poisson summation formula

The simplest examples of modular forms are theta-series and Eisenstein series. To derive
their special modular properties we need the following useful theorem.

Theorem 2.1.1 (Poisson summation formula) Let f : R → C be a function which is
twice continuously differentiable and suppose that

1.
∫∞
−∞ |f(x)|dx converges.

2.
∫∞
−∞ |f̂(y)|dy converges, where

f̂(y) =

∫ ∞

−∞
e−2πixyf(x)dx

is the Fourier transform of f .

3. The infinite series
∑

n∈Z |f(n+ x)| converges uniformly for x in any compact interval.

4. The infinite series
∑

m∈Z |f̂(n+y)|dy converges uniformly for y in any compact interval.

Then ,for any x ∈ R, ∑
n∈Z

f(n+ x) =
∑
m∈Z

f̂(m)e2πimx.

In particular, ∑
n∈Z

f(n) =
∑
m∈Z

f̂(m).

Proof (sketch). The function F (x) :=
∑

n∈Z f(n+ x) is periodic with period 1. So it has a
Fourier expansion

F (x) =
∑
m∈Z

Fme2πimx

where

Fm =

∫ 1

0

F (x)e−2πimxdx.

Note that the latter integral can be rewritten as

Fm =

∫ 1

0

∑
n∈Z

f(n+ x)e−2πimxdx

=

∫ ∞

−∞
f(x)e−2πimxdx = f̂(m)

Hence ∑
n∈Z

f(n+ x) =
∑
m∈Z

f̂(m)e2πimx.

2
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6 2 FIRST EXAMPLES OF MODULAR FORMS

2.2 The theta-series

The following function is classical since it occurs standard in the solution of the socalled heat
equation. Consider the function

θ(τ) =
∑
n∈Z

eπin
2τ

which converges for every τ ∈ H.

Theorem 2.2.1 We have for every τ ∈ H,

1. θ(τ + 2) = θ(τ)

2. θ(−1/τ) =
√
τ/i θ(τ)

Here
√
τ/i is chosen with positive real part.

Proof. We apply the Poisson summation formula to f(x) = eπix
2τ . Then

f̂(y) =

∫ ∞

−∞
exp(πix2τ − 2πixy)dx

=

∫ ∞

−∞
exp(πiτ(x− y/τ)2 − πiy2/τ)dx

= exp(−πiy2/τ)

∫ ∞

−∞
exp(πiτx2)dx

The last integral is standard and equals
√
i/τ . Hence

∑
n∈Z

eπin
2τ =

√
i

τ

∑
m∈Z

e−πim2/τ .

2

2.3 Eisenstein series

For every k ∈ Zk≥3 we define

Gk(τ) =
(k − 1)!

2(2πi)k

∑
m,n

′ 1

(mτ + n)k

as function of τ ∈ H. The ′ in the summation means that we skip the term with m = n = 0.
When k ≥ 3 the double series is absolutely convergent. Notice also that Gk(τ) ≡ 0 when k
is odd. This follows from the antisymmetry in the defining summation.

Theorem 2.3.1 Let Bk be the k-th Bernoulli number and denote q = e2πiτ . Let σr be the
sum of divisors function given by σr(n) =

∑
d|n d

r. Then, for all τ ∈ H,

Gk(τ) = −Bk

2k
+

∞∑
n=1

σk−1(n)q
n.

Recall that
z

ez − 1
=

∞∑
k=0

Bk

k!
zk.

For the proof of Theorem 2.3.1 we need the following Lemmas.

F.Beukers, Modular Forms



2.3 Eisenstein series 7

Lemma 2.3.2 (Euler) For any even k ∈ Z≥2 we have

ζ(k) :=
∞∑

n=1

1

nk
= − (2πi)k

(k − 1)!

Bk

2k
.

Lemma 2.3.3 Let k ∈ Z≥2. Then, for any z ∈ H we have∑
n∈Z

1

(n− z)k
=

(2πi)k

(k − 1)!

∞∑
r=1

rk−1e2πirz.

Proof. We apply the Poisson summation formula to f(x) = 1/(x− z)k. Notice that

f̂(r) =

∫ ∞

−∞

e2πirx

(x− z)k
dx.

When r ≥ 0 we integrate over a closed loop ΓR consisting of the interval [−R,R] and the half
circle Reiϕ with 0 ≤ ϕ ≤ π. Then we let R → ∞. The integral over the half circle goes to
0, the integral over the segment to f̂(r). On the other hand, according to Cauchy’s residue
theorem, for R > |z| the integral over ΓR equals 2πi times the residue of e2πirx/(x− z)k at
the pole x = z. This equals (2πir)ke2πirz/(k − 1)!. Hence, when m ≥ 0,

f̂(r) =
(2πi)k

(k − 1)!
rk−1.

When r < 0 we can use the alternative contour consisting of [−R,R] and the half circle in the
lower half plane. Since this alternative contour has no zeros in its interior, Cauchy’s theorem
gives us f̂(r) = 0 when r < 0. Poisson summation now gives us the desired formula.

2

Notice that the series in e2πiz in Lemma 2.3.3 is the k − 11-st derivative of −π
(k−1)! (1/2 +∑∞

r=1 e
2πirz which equals −π

(k−1)! cotπz. Conversely, Lemma 2.3.3 could also have been derived

by differentiation of Euler’s identity

1

z
+

∞∑
n=1

(
1

z + n
+

1

z − n

)
= π cotπz

which holds for all z ̸∈ Z.

Proof of Theorem 2.3.1. Recall that when k ∈ Z≥2 is even,

Gk(τ) =
(k − 1)!

2(2πi)k

∑
m,n

′ 1

(mτ + n)k

=
(k − 1)!

2(2πi)k

(∑
n

′ 1

nk
+ 2

∞∑
m=1

∑
n∈Z

1

(−mτ + n)k

)

The first term reads 2(k − 1)!ζ(k)/2(2πi)k which is equal to −Bk/2k according to Euler’s
lemma. We use Lemma 2.3.3 with z = mτ to compute the second term. We obtain

Gk(τ) = −Bk

2k
+

∞∑
m=1

∞∑
r=1

rk−1e2πirmτ . (2)

Put q = e2πiτ and group the terms to a power series in q. We get

Gk(τ) = −Bk

2k
+

∞∑
n=1

σk−1(n)q
n.

F.Beukers, Modular Forms



8 2 FIRST EXAMPLES OF MODULAR FORMS

2

Examples,

G4(τ) =
1

240
+ q + 9q2 + 28q3 + 73q4 + · · ·

G6(τ) = − 1

504
+ q + 33q2 + 244q3 + 1057q4 + · · ·

G8(τ) =
1

480
+ q + 129q2 + 2188q3 + · · ·

When we carry out the summation over m in (2) we get

Gk(τ) = −Bk

2k
+

∞∑
r=1

rk−1qr

1− qr
.

This is the socalled Lambert series expansion for Gk.
By their definition, the Eisenstein series have a remarkable set of functional equation. For

any

(
a b
c d

)
∈ SL(2,Z) notice that

Gk

(
aτ + b

cτ + d

)
=

∑
m,n

′ (cτ + d)k

(m(aτ + b) + n(cτ + d))k

= (cτ + d)k
∑
m,n

′ 1

((ma+ nc)τ + bm+ nd)k

Because the pair (ma + nc, bm + nd) runs over Z2 when (m,n) does, the latter summation
equals Gk(τ). Thus we find that

Gk

(
aτ + b

cτ + d

)
= (cτ + d)kGk(τ).

2.4 Modular forms

Motivated by the examples we define modular functions with respect to SL(2,Z).

Definition 2.4.1 Let k be a positive even integer. A holomorphic function f on H is called
a modular form of weight k with respect to SL(2,Z) if the following two conditions hold.

1.

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for all

(
a b
c d

)
∈ SL(2,Z) and all τ ∈ H.

2. f can be written as a power series in q = e2πiτ , convergent for all |q| < 1.

Remarks:

1. Notice that the Eisenstein series we defined satisfy the conditions above.

2. It does not make sense to define modular forms with respect to SL(2,Z) of odd weight
k. For such a form we would have f(−1/τ) = τkf(τ) but also f(1/(−τ)) = (−τ)kf(τ),
which is exactly the opposite of τkf(τ). However when we consider modular forms with
respect to subgroups of SL(2,Z), modular forms of odd weight do make sense.

F.Beukers, Modular Forms



2.5 The pseudoform G2 9

3. The theta-function is not a modular form with respect to SL(2,Z) for many reasons.
To start with, it seems to have weight 1/2. It is not invariant under τ → τ + 1 and it
is not a power series in q. However, it will turn out to be a modular form with respect
to subgroups of SL(2,Z).

The second condition of our definition comes down to the following. Let f be a modular form.
Through the functional equation f(τ +1) = f(τ) and the fact that f is holomorphic in H we

deduce that F (q) := f
(

log q
2πi

)
, as a function of q, is holomorphic for all q with 0 < |q| < 1.

Hence q = 0 is an isolated singularity of F (q). Condition (2) on modular forms simply says
that F (q) can be extended holomorphically to q = 0. Since q = 0 corresponds to τ = i∞ we
say that f is holomorphic at τ = i∞. In particular a modular form has an expansion as a
power series in q which converges for all q with |q| < 1. Moreover, if the constant term of
the q-expansion of f is zero, we say that f has a zero at τ = i∞.

2.5 The pseudoform G2

After having seen G4, G6, . . . it is very tempting to define

G2(τ) = − 1

24
+

∞∑
r=1

rqr

1− qr
, q = e2πiτ

and hope that it is modular. It turns out to be almost modular.

Theorem 2.5.1 Let G∗
2(τ) = G2(τ) +

1
8πIm(τ) . Then, for all

(
a b
c d

)
∈ SL(2,Z) we have

G∗
2

(
aτ + b

cτ + d

)
= (cτ + d)2G∗

2(τ).

In particular, this implies that

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ)−

c(cτ + d)

4πi
.

Proof (sketch) We cannot define G2 through a series of the form

∑
m,n

′ 1

(mτ + n)2

since it does not converge. However, for any s > 0 the series∑
m,n

′ 1

(mτ + n)2|mτ + n|s

does converge. It also turns out that the limit as s ↓ 0 exists. For a proof see the appendix
to this section. Call this limit G∗

2(τ). This is known as Hecke’s trick named after E.Hecke
(1925), one of the founders of the classical theory of modular forms. Of course this limit has
the desired modular behaviour. Moreover, Hecke showed that G∗

2(τ) = G2(τ) + 1/8πIm(τ).
For a proof of this fact we refer again to the appendix of this section.

2
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10 2 FIRST EXAMPLES OF MODULAR FORMS

2.6 The discriminant function

Consider the function

∆(τ) = q

∞∏
r=1

(1− qn)24, q = e2πiτ .

We will show that it is a modular forms of weight 12. Notice that

∆′(τ)

∆(τ)
=

d

dτ

(
2πiτ + 24

∞∑
r=1

log(1− qr)

)

= 2πi

(
1− 24

∞∑
r=1

rqr

1− qr

)
= −48πiG2(τ)

Using the transformation property of G2 we find that

∆′(−1/τ)

∆(−1/τ)
= τ2

∆′(τ)

∆(τ)
+

12

τ
.

Hence
d

dτ
(log∆(−1/τ)) =

d

dτ
(log(τ12∆(τ))).

After integration and exponentiation we find that there exists c ̸= 0 such that

∆(−1/τ) = cτ12∆(τ).

Substitution of τ = i and the fact that ∆(i) ̸= 0 shows that c = 1. Moreover, we have trivially
that ∆(τ + 1) = ∆(τ). Since τ → τ + 1 and τ → −1/τ generate SL(2,Z) we coinclude that
∆(τ) is a modular form of weight 12.
Since the product expansion for ∆(τ) converges for all q with |q| < 1 we see that ∆(τ) is
non-zero throughout H and it has a zero at i∞.
We denote the coefficients of the q-series expansion of ∆(τ) by τ(n). In other words,

∆(τ) =
∞∑

n=1

τ(n)qn

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + 8405q7 + · · ·

It was discovered by Ramanujan that τ(n) is a multiplicative function of n. A proof was
given by Mordell around 1916. It was also conjectured by Ramanujan that |τ(p)| < 2p11/2

for all primes p. This is a very special case of the so-called Riemann hypothesis in positive
characteristic which was only proved by Deligne around 1973. Another conjecture, which is
still unproven yet, is that τ(n) ̸= 0 for all n.

2.7 Appendix

In this section we elaborate on Hecke’s trick relating G2 and G∗
2. We start with the function

G2(s, τ) =
−1

8π2

∑
m,n

′ 1

(mτ + n)2|mτ + n|s

for τ ∈ H and s > 0. We rewrite the summation as

G2(s, τ) =
−1

8π2

( ∞∑
n=1

2

n2+s
+

∞∑
m=1

∑
n∈Z

2

(n−mτ)2|n−mτ |s

)
.

F.Beukers, Modular Forms



2.7 Appendix 11

For each m we compute the summation over n ∈ Z using Poisson summation applied to the
function fm(x) = 1

(x−mτ)2|x−mτ |s . Notice

f̂m(r) =

∫ ∞

−∞

e2πirx

(x−mτ)2|x−mτ |s
dx.

Replace x by mx to obtain

f̂m(r) =
1

m1+s

∫ ∞

−∞

e2πirmx

(x− τ)2|x− τ |s
dx.

By a twofold partial integration it we see that for all r ̸= 0 we have |f̂m(r)| = O( 1
m3+sr2 )

where the O-symbol does not depend on s. So we get

G2(s, τ) =
−1

4π2

 ∞∑
n=1

1

n2+s
+

∞∑
m=1

∑
r ̸=0

f̂m(r) +
∞∑

m=1

f̂m(0)

 . (3)

When s ↓ 0 the first summation tends to −ζ(2)/4π2 = −1/24. Because of the estimate

(independent of s) for |f̂m(r)| we see that the double summation with r ̸= 0 converges to the
sum

−1

4π2

∞∑
m=1

1

m

∑
r ̸=0

∫ ∞

−∞

e2πirmx

(x− τ)2
dx

as s ↓ 0. By residue calculus as in the proof of Lemma 2.3.3 we show that the terms with
r < 0 are zero and the terms with r > 0 equal e2πimrτ . So the double sum equals

∞∑
m=1

∞∑
r=1

re2πirmτ .

Together with the constant term −1/24 this adds up to G2(τ). It remains to show that the
third summation in (3) converges to 1/8πIm(τ) as s ↓ 0. Notice

f̂m(0) =
1

m1+s

∫ ∞

−∞

1

(x− τ)2|x− τ |s
dx.

The latter integral equals

1

m1+s

∫ ∞

−∞

1

(x− iImτ)2|x− iImτ |s
dx =

1

(m Imτ)1+s

∫ ∞

−∞

1

(x− i)2|x− i|s
dx.

If we replace (x− i)2|x− i|s by (x− i)2+s/2(x+ i)s/2 in the last integral and perform a partial
integration we get∫ ∞

−∞

1

(x− i)2|x− i|s
dx = − s

2 + s

∫ ∞

−∞

1

(x2 + 1)1+s/2
dx.

Putting everything together we get

∞∑
m=1

f̂m(0) =
sζ(1 + s)

2 + s

1

Imτ

1+s ∫ ∞

−∞

1

(x2 + 1)1+s/2
dx.

Now we let s ↓ 0. Then sζ(1 + s) tends to 1 and the integral to π. Hence the sum
∑

m f̂(0)

tends to −π/2Imτ . Hence −(4π2)−1
∑∞

m=1 f̂m(0) tends to π/8Imτ , as desired.
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12 3 ELEMENTARY PROPERTIES OF MODULAR FORMS

3 Elementary properties of modular forms

3.1 Classification

Using the discriminantfunction ∆(τ) it is very easy to give a characterisation of all modular
forms with respect to SL(2,Z). First let us repeat that the weight of such a modular form is
an even integer.

Theorem 3.1.1 The only modular forms of weight 0 are the constant functions. There are
no non-trivial modular forms of weight 2 or negative weight.

Proof. Suppose f is a modular form of weight 0. Hence it is invariant under SL(2,Z) and its
range is determined by the range of values f(τ), τ ∈ F , hence the range on Im(τ) ≥

√
3/2.

In terms of its q-expansion, the range of f coincides with the range for |q| ≤ e−π
√
3. But

this is a compact set and thus we see that |f | attains a local maximum. This is only possible
when f is constant.
Now suppose that f has negative weight k < 0. Then g = ∆|k|f12 has weight 0 and must be
constant. Since ∆ has a zero at i∞, the same holds for g. Hence g ≡ 0, which implies f ≡ 0.
Suppose that f is a modular forms of weight 2. Let f(τ) =

∑∞
n=0 anq

n be its q-expansion
and F (τ) = a0τ +

∑∞
n=1 anq

n/(2πin) its integrated form. More explicitly F ′(τ) = f(τ).
From f(−1/τ) = τ2f(τ) it follows that

1

τ2
F ′
(
−1

τ

)
= F ′(τ).

Integration yields the existence of a constant C such thar F (−1/τ) = F (τ) + C for every
τ ∈ H. In particular τ = i. Hence F (i) = F (i) + C and we conclude that C = 0. Also note
that F (−1/(τ + 1)) = F (τ + 1) = F (τ) + a0. This holds for all τ , in particular τ = e2πi/3.
We find F (e2πi/3) = F (e2πi/3) + a0 and hence a0 = 0. Thus F is a modular form of weight
zero with constant term of its q-expansion equal to zero. We conclude that F ≡ 0, hence
f ≡ 0.

2

Clearly, modular forms of weight k form a C-linear vector space which we denote by Mk.
The subspace of forms that vanish in i∞ is called the space of cusp forms and is denoted by
Sk.
We have seen above that Mk is trivial if k = 2 or a negative integer. For all other values of k
the space Mk is non-trivial because of the existence of 1 ∈ M0 and Gk ∈ Mk for k = 4, 6, . . ..
Letting k ≥ 4 and f ∈ Mk we can choose a constant such that f − cGk ∈ Sk. Hence
Mk = CGk ⊕ Sk. Furthermore, when we have a cusp form f ∈ Sk then f/∆ is again a
modular form, but of weight k− 12. Conversely, given any g ∈ Mk−12, the form g∆ is a cusp
form of weight k. From these considerations we deduce the following Theorem.

Theorem 3.1.2 Let k be a non-negative even integer. Then

1.

dim(Mk) =

{
[k/12] if k ≡ 2 (mod 12)
[k/12] + 1 otherwise

2. 123∆ = (240G4)
3 − (−504G6)

2.

3. Mk is spanned by all Ga
4G

b
6 with 4a+ 6b = k.

4. G6(i) = 0 and G4(ω) = 0 where ω = e2πi/3.

5. G4 and G6 are algebraically independent over C

F.Beukers, Modular Forms



3.2 Consequences 13

Proof. When k < 12 there cannot be any cusp forms, since Sk is isomorphic to Mk−12 = {0}.
Hence dim(Mk) = 1 if k = 0, 4, 6, 8, 10. We know that M2 is trivial.
Since Mk = CGk ⊕ Sk we have dim(Mk) = 1 + dim(Sk) = 1 + dim(Mk−12). Assertion (1)
now follows by induction on k.
To show part (2) we notice that (240G4)

3− (−504G6)
3 is a cusp form of weight 12. Dividing

it by ∆ gives us a modular of weight 0, hence a constant. A straightforward computation
gives us

(240G4)
3 − (−504G6)

2 = 1728q − 41472q2 + · · ·
We see that the constant should be 1728 = 123.
Part (3) follows again by induction and fact (2).
To prove (4) notice that G6(−1/τ) = τ6G6(τ). We substitute τ = i to get G6(i) = −G6(i),
from which our assertion follows. Similarly G4(−1/(τ + 1)) = τ4G4(τ) where we can substi-
tute τ = ω. We find G4(ω) = ωG4(ω) and our assertion follows.
To prove (5) suppose we have a non-trivial polynomial P ∈ C[X,Y ] such that P (G4, G6) ≡ 0.
We can assume P is not divisible by Y and write P (X,Y ) = αXm + Y Q(X,Y ) with α ̸= 0.
So, αGm

4 + G6Q(G4, G6) ≡ 0. Substitute τ = i and we get αG4(i)
m = 0. Hence G4(i) = 0,

which is easily contradicted by the fact that G4(i) = 0.006065 . . ..
2

3.2 Consequences

The small values of dim(Mk) give us many possibilities to create polynomial relations between
the Gk and ∆. In the previous setion we have already seen that (240G4)

3−(504G6)
2 = 123∆.

Also note that G8 and G2
4 are in M8. But dim(M8) = 1 so there exists a constant such

that G8 = cG2
4. We easily calculate G8 = 120G2

4. Comparison of the coefficients yields the
identity

σ7(n) = σ3(n) + 120

n−1∑
r=1

σ3(r)σ3(k − r),

something that would be quite hard to prove directly.
Another application is the following. The forms G2

6, G12,∆ all have weight 12. Since
dim(M12) = 2 there is a linear relation of the form G12 = α∆+ βG2

6. Since

24 · 2730 ·G12 = 691 + 24 · 2730(q + · · ·)
5042G2

6 = 1− 1008q + · · ·
∆ = q − · · ·

we deduce that

24 · 2730 ·G12 = 691 · 5042G2
6 + (24 · 2730 + 1008 · 691)∆.

On both sides we have power series expansions with integer coefficients. Consider everything
modulo 691. We obtain

G12 ≡ ∆ (mod 691)

hence
τ(n) ≡ σ11(n) (mod 691)

for all n ∈ N.
One may ask what happens if we differentiate a modular form. The result will in general not
be a modular form. Let f ∈ Mk. Then, for any γ ∈ SL(2,Z) it follows by differentation of
f(γ(τ)) = (cτ + d)kf(τ) that

f ′(γ(τ))
1

(cτ + d)2
= ck(cτ + d)k−1f(τ) + (cτ + d)kf ′(τ).
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14 3 ELEMENTARY PROPERTIES OF MODULAR FORMS

Hence f ′(γ(τ)) = ck(cτ + d)k+1f(τ) + (cτ + d)k+2f ′(τ). Using the identity G2(γ(τ)) =
(cτ + d)2G2(τ) − c(cτ + d)/4πi we find that f ′(τ) + 4πikG2(τ)f(τ) is a modular form of
weight k + 2. It is now straightforward to derive the following identities

1

2πi
G′

4(τ) =
7

10
G6(τ)− 8G2(τ)G4(τ)

1

2πi
G′

6(τ) =
10

21
G8(τ)− 12G2(τ)G6(τ)

A similar, but slightly more involved calculation gives us

1

2πi
G′

2(τ) =
5

6
G4(τ)− 2G2(τ)

2.

From these identities we see that the ring C[G2, G4, G6] is closed under differentiation, a fact
first discovered by Ramanujan.

3.3 Modular functions

There are no modular forms of weight zero except the constant ones. However, if we allow
for poles we have more possibilities. Let us define

j(τ) =
(240G2(τ))

3

∆(τ)
.

This function has no poles in H, however, it does have a pole at τ = i∞ as can be seen from
the Laurent series expansion

j(τ) =
1

q
+ 744 + 196884q2 + 21493760q3 + · · · , q = e2πiτ .

Note that this Laurent expansion converges for all |q| < 1.

Definition 3.3.1 A meromorphic function f on H is called a modular function if

1. f
(

aτ+b
cτ+d

)
= f(τ) for all

(
a b
c d

)
∈ SL(2,Z).

2. There exists n ∈ Z≥0 such that e2πinτf(τ) is bounded as τ → i∞, i.e f has at worst a
pole in i∞. When n is chosen minimal we say that f has a pole of order n at i∞.

Notice that a modular function f has a Laurent series expansion in q = e2πiτ ,

f(τ) = c−nq
−n + · · ·+ c1q

−1 + c0 + c1q + c2q
2 + · · · (4)

Definition 3.3.2 Every modular function with respect to SL(2,Z) can be written as rational
function in j(τ). In other words, the field of modular functions i generated over C by j(τ).

Proof. Let f(τ) be a modular function. Suppose that it has no poles in H and that it has a
pole of order n at i∞. If n = 0 we know that f is constant and we are done. Suppose f has
a Laurent expansion given by (4). Then f − cnj

n is a modular function with a pole of order
at most n − 1. We repeat this argument as many times as necessary and we find that f is
polynomial in j.
Now suppose that f has poles τ1, . . . , τk of orders n1, . . . , nk. Then G(τ) := f(τ)

∏k
r=1(j(τ)−

j(τr))
nr is a modular functions without poles in H. According to our previous argument g(τ)

should be a polynomial in j. Hence f itself is rational function of j.
2

The j-invariant has the beautiful property that its function values are in 1-1-correspondence
with SL(2,Z)-equivalence classes of point in H.
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3.3 Modular functions 15

Theorem 3.3.3 The function j(τ) has the following properties:

1. j(i) = 123 = 1728 and j(ω) = 0 where ω = e2πi/3.

2. j(τ) assumes real values on the lines Reτ = 0,±1/2 and on the unit circle |τ | = 1.

3. For any τ1, τ2 ∈ H we have

j(τ1) = j(τ2) ⇐⇒ τ1 ∼ τ2.

4. The map j : H → C is surjective.

Proof. We have seen in Theorem 3.1.2 that G4(ω) = 0 and G6(i) = 0. Via the relation
j = (240G4)

3/∆ = 123(240G4)
3/(240G4)

3 − (504G6)
2 the first assertion follows.

Notice that the complex conjugate of q = e2πiτ is given by q = e−2πiτ . Hence, using the q-
expansion of j, which has real coefficients, we get that j(τ) = j(−τ . Suppose that τ0 is purely
imaginary. Then −τ0 = τ0. Hence j(τ0) = j(τ0) and we see that j(τ0) is real. Suppose that
Reτ0 = 1/2. Then −τ0 = τ0 − 1. Hence j(τ0) = j(τ0 − 1) = j(τ0) and we see again that j(τ0)
is real. Finally suppose that |τ0| = 1. Then −τ0 = −1/τ . Hence j(τ0) = j(−1/τ0) = j(τ0)
and so again j(τ0) is real.
Let F o be the part of F (the fundamental domain of SL(2,Z)) where we have deleted the
boundary points with negative real part. Then every τ ∈ H is SL(2,Z)-equivalent to a unique
point in F o. Without loss of generality we can assume that τ1, τ2 ∈ F o. Choose c ∈ C. Let
Nc be the number of points τ0 ∈ F o such that j(τ0) = c. Suppose first that cnot ∈ R. In
particular, j(τ) − c has no zeros on the boundary of F . We will show that Nc = 1. Notice
that

Nc =
1

2πi

∫
Γ

j′(τ)

j(τ)− c
dτ,

where Γ is the closed contour given by the following picture,

We assume that T is chosen sufficiently large so that |j(τ)| > |c| for all τ with Imτ > T .
Notice that the differential form j′dτ/j − c is invariant under SL(2,Z). The vertical parts
of Γ are related by the relation τ 7→ τ + 1. They are traveresed in opposite directions by Γ,
hence the two contributions cancel. The part of Γ on the unit circle consists of two parts
that are related by τ 7→ −1/τ . The integrals over these two parts also cancel. Hence our
integral consists simply of an integration over the segment [−1/2 + iT, 1/2 + iT ] from right
to left. The q-expansion of j′/(j− c) is easily seen to be −2πi+ positive powers of q = e2πiτ .
Integration of qn over our segment yields 0 if n > 0 and −1 if n = 0. Hence integration of
j′(j − c) over the segment yields 2πi. As a result we obtain that Nc = 1.
Now suppose c ∈ R and suppose that there are two non-equivalent points τ1, τ2 such that
j(τ1) = j(τ2) = c. Let U1, U2 be two disjoint open neighbourhoods of τ1, τ2 which do not
contain SL(2,Z)-equivalent points. Then j(U1) and j(U2) are two open neighbourhoods of
c, which have a non-real point c′ in common. This contradicts our earlier assertion than
Nc′ = 1 for non-real c′.

2

We now quote some remarkable properties of the j-invariant. Let us write

j(τ) =
1

q
+ 744 +

∞∑
n=1

c(n)qn.

Then the coefficients c(n) satisfy

c(5n) ≡ 0 (mod 5) c(7n) ≡ 0 (mod 7) c(11n) ≡ 0 (mod 11)
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16 3 ELEMENTARY PROPERTIES OF MODULAR FORMS

for all positive integers n.
The largest sporadic simple group has order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71,

the Fischer-Griess monster. The dimensions of its lowest dimensional irreducible representa-
tions are 1, 196883, 2126876, . . .. Notice that

c(1) = 1 + 196883, c(2) = 1 + 196883 + 2126876

It turns out that the numbers c(n) are simple linear combinations of the dimensions of
irreducible representations of the Monster group. This phenomenon, known as ’monstrous
moonshine’, was conjectured by Conway and Norton in the late 1970’s. It was proved by
Richard Borcherds, who received the Fields medal for this work.
A third remarkable property of the j-invariant is that j assumes algebraic values at imaginary
quadratic arguments. A very special case is when d is a positive integer which is 3 modulo

4 and such that Q(
√
−d) has class number 1. Then j

(
1+

√
−d

2

)
∈ Z. The most spectacular

case is

j

(
1 +

√
−163

2

)
= −262537412640768000 = −6403203.
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4 Hecke operators

4.1 Determinant n matrices

Consider for every n ∈ Zn>0 the set

Mn = {
(
A B
C D

)
| A,B,C,D ∈ Z, AD −BC = n}.

Two matrices M1,M2 ∈ Mn are called equivalent if there exists α ∈ SL(2,Z) such that M1 =
αM2. We first show that there is finite set of classes and display a full set of representatives.

Lemma 4.1.1 Every equivalence class contains and element with C = 0 and D > 0.

Proof. To any element

(
A B
C D

)
∈ Mn we choose integers c, d such that gcd(c, d) = 1 and

cA+ dC = 0 and cB + dD > 0. Choose a, b ∈ Z such that ad− bc = 1. Then(
a b
c d

)(
A B
C D

)
=

(
A′ B′

0 D′

)
where D′ = cB + dD > 0, as desired.

2

Lemma 4.1.2 Two matrices Mi =

(
Ai Bi

Ci Di

)
∈ Mn (i = 1, 2) with Di > 0 are equivalent

if and only if A1 = A2, D1 = D2 and B1 ≡ B2 (mod D1).

Proof. Suppose that

(
a b
c d

)
M1 = M2. Then clearly, c = 0. Hence a = d = ±1. Since

dD1 = D2 and D1, D2 > 0 we conclude that a = d = 1. Finally, B2 = B1 + bD1, from which
B2 ≡ B1 (mod D1) follows.

Suppose conversely that the conditions are met. So A2 = A1, D2 = D1 and there exists b ∈ Z
such that B2 = B1 + bD1. Then,(

1 b
0 1

)(
A1 B1

0 D1

)
=

(
A1 B1 + bD1

0 D1

)
=

(
A2 B2

0 D2

)
.

Hence M1 and M2 are equivalent.

2

The following is now an immediate consequence.

Theorem 4.1.3 A full system of representatives of equivalence classes in Mn is given by

Mh =

(
Ah Bh

0 Ch

)
, AhDh = n, Dh > 0, Bh = 0, 1, . . . , Dh − 1.

Here is an important observation. Suppose that M1 ∼ M2 then, for any β ∈ SL(2,Z) we
have M1β ∼ M2β. In other words, the right action of SL(2,Z) permutes the equivalence
classes in Mn.
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18 4 HECKE OPERATORS

4.2 Definition

Theorem 4.2.1 Let Mh =

(
Ah Bh

0 Dh

)
, h = 1, 2, . . . , r be a full system of representatives

of the classes in Mn. Let f be a modular form of weight k with respect to SL(2,Z). Then

Tn(f) := nk−1
r∑

h=1

(Chτ +Dh)
−kf

(
Ahτ +Bh

Chτ +Dh

)
is a modular form of weight k.

Proof. We introduce the formal power dτk/2 of the differential form dτ and use the property
that

d

(
aτ + b

cτ + d

)
=

ad− bc

(cτ + d)2
dτ

for any a, b, c, d ∈ R. This implies in particular that f(βτ)d(βτ)k/2 = f(τ)dτk/2 for any
β ∈ SL(2,Z). Suppose α ∈ SL(2,Z) This α permutes the equivalence classes as follows

Mhα = βhMσ(h) h = 1, 2, . . . , r

for some σ ∈ Sr and βh ∈ SL(2,Z) (h = 1, . . . , r).
Observe that the defining relation for Tn(f) can be rewritten as

Tn(f)(τ)dτ
k/2 = nk/2−1

r∑
h=1

f(Mhτ)(dMhτ)
k/2.

Replace τ by ατ with α ∈ SL(2,Z). We obtain

Tn(f)(ατ)(dατ)
k/2 = nk/2−1

r∑
h=1

f(Mhτ)(dMhατ)
k/2

= nk/2−1
r∑

h=1

f(βhMσ(h)τ)(dβhMσ(h)τ)
k/2

= nk/2−1
r∑

h=1

f(Mσ(h)τ)(dMσ(h)τ)
k/2

= nk/2−1
r∑

h=1

f(Mhτ)(dMhτ)
k/2 = Tn(f)(dτ)

k/2

The boundedness of Tn(f) when Imτ → ∞ becomes apparent from the explicit formula (5).
2

Using the explicit system of representatives we find that

Tn(f) = nk−1
∑

AD=n, B>0, B (mod D)

D−kf

(
Aτ +B

D

)
(5)

In particular, when n = p is prime,

Tp(f) = pk−1f(pτ) + p−1

p−1∑
b=0

f

(
τ + b

p

)
.
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Theorem 4.2.2 Let f(τ) be a modular form of weight k with q-expansion
∑∞

l=0 a(l)q
l, q =

e2πiτ . Then

Tnf(τ) =
∞∑
l=0

 ∑
d|gcd(n,l)

dk−1a(nl/d2)

 ql.

In the particular case when gcd(l, n) = 1 the l-th Fourier coefficient of Tnf equals a(ln).
Furthermore, when f is a cusp form, then so is Tnf . Consider Tn as a linear map from Mk

to itself. Then,

i) For any m,n,

TmTn =
∑

d|gcd(n,m)

dk−1Tnm/d2 .

ii) For all m,n we have TmTn = TnTm and when gcd(m,n) = 1, TmTn = Tmn.

iii) For any prime p and any r > 0,

TpTpr = Tpr+1 + pk−1Tpr−1 .

Proof. Notice

(Tnf)(τ) = nk−1
∑

AD=n

D−1∑
B=0

D−kf

(
Aτ +B

D

)

= nk−1
∑

AD=n

D−1∑
B=0

D−k
∞∑
l=0

a(l)qAl/De2πilB/D.

Notice that
D−1∑
B=0

e2πilB/D =
{
D when D—l
0 when D does not divide l

.

We assume that D|l and replace l by lD to obtain

Tn(f)(τ) = nk−1
∑

AD=n

D1−k
∞∑
l=0

a(lD)qAl.

Put A = d,D = n/d and sum over all d|n,

Tnf(τ) =
∑
d|n

|infty∑
l=0

dk−1a(ln/d)qdl.

From this equality we can read off the Fourier coefficients of Tnf .
Notice that ii) is a direct consequence of i) and that iii) is a special case of i) when m =
p, n = pr.

2

4.3 First application

Suppose f(τ) = a0 + a1q + a2q
2 + · · · ∈ Mk. Then,

Tnf(τ) = σk−1a0 + anq + · · · .

We see once again that Tn : Sk → Sk, so cuspforms are mapped to cuspforms. In particular,
Tn : S12 → S12 for every n. So ∆(τ) is a common eigenform for all Tn. We know that
Tn∆ = τ(n)q+ · · · hence the eigenvalue of Tn equals τ(n) and we obtain that Tn∆ = τ(n)∆.
Using Theorem 4.2.2 we get the following result.
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Theorem 4.3.1 (Mordell, 1917) Let τ(n) be the n-th coefficient of the q-expansion of ∆.
Then, for every m, l ∈ N,

τ(n)τ(l) =
∑

d|gcd(l,n)

d11τ(nl/d2).

In particular, when gcd(n, l) = 1 we get τ(n)τ(l) = τ(ln), hence τ is a multiplicative function.
When p is prime and r ∈ N we get

τ(p)τ(pr) = τ(pr+1) + p11τ(pr−1).
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5 L-series

5.1 Multiplicative functions

Let an ∈ C n = 1, 2, 3, . . . be a sequence of complex numbers. Very often we shall interpret
these numbers as the values of the function N → C given by k 7→ ak. A formal series of the
form

L(s) =
∞∑

n=1

an
ns

where s ∈ C, is called a Dirichlet series or L-series. We can multiply two L-series formally
as follows, ( ∞∑

n=1

an
ns

)( ∞∑
n=1

bn
ns

)
=

∞∑
n=1

cn
ns

where
cn =

∑
d|n

adbn/d.

The function cn is called the convolution product of the arithmetic functions an and bm.
A function f : N → C is called multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all
coprime m,n ∈ N.

5.2 L-series and Eulerpoducts

We have the following characterisation of multiplicative functions.

Theorem 5.2.1 The function a(n) of n is multiplicative if and only if its L-series can be
written in the form

∞∑
n=1

a(n)

ns
=

∏
p prime

(
1 +

a(p)

ps
+

a(p2)

p2s
+ · · ·

)
.

Proof. Suppose a(n) is multplicative. Let p1, p2, . . . be the sequence of prime numbers. By
unique factorisation in primes we can write

∞∑
n=1

a(n)

ns
=

∑
r1,r2,...≥0

a(pr11 pr22 · · ·)
(pr11 pr22 · · ·)s

=
∑

r1,r2,...≥0

a(pr11 )a(pr22 ) · · ·
(pr11 pr22 · · ·)s

=
∏

p prime

(
1 +

a(p)

ps
+

a(p2)

p2s
+ · · ·

)
Conversely it follows from the product expansion that

a(n) = a(pr11 · · · prkk ) = a(pr11 ) · · · a(prkk ).

2

Examples of Euler products
Example 1) a(n) = 1 for all n ∈ N.

∞∑
n=1

1

ns
=
∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=
∏
p

1

1− p−s
.

F.Beukers, Modular Forms



22 5 L-SERIES

Example 2)

∞∑
n=1

ϕ(n)

ns
=

∏
p

(
1 +

ϕ(p)

ps
+

ϕ(p2)

p2s
+ · · ·

)

=
∏
p

(
1 + (1− 1/p)

∞∑
r=1

pr−rs

)

=
∏
p

(
1 + (1− 1/p)

p1−s

1− p1−s

)

=

(
1− p−s

1− p1−s

)
=

ζ(s− 1)

ζ(s)

Example 3)
∞∑

n=1

τ(n)

ns
=
∏
p

(
1 +

τ(p)

ps
+

τ(p2)

p2s
+ · · ·

)
.

The relation τ(p)τ(pr) = τ(pr+1) + p11τ(pr−1) implies that

1 +
τ(p)

ps
+

τ(p2)

p2s
+ · · · = 1

1− τ(p)p−s + p11−2s
.

Hence
∞∑

n=1

=
∏
p

1

1− τ(p)p−s + p11−2s
.

Theorem 5.2.2 Let f =
∑∞

n=0 cnq
n ̸≡ 0 with q = e2πiτ be a modular form of weight k

which is an eigenform with respect to the Hecke operator Tn for every n ∈ N. Let λn be the
eigenvalue of Tn. Then c1 ̸= 0, cn = λnc1 for all n and

∞∑
n=1

λn

ns
=
∏
p

1

λpp−s + pk−1−2s
.

Proof. By comparison of the coefficient of q in Tnf = λnf we find that cn = λnc1. Since
cn ̸= 0 for at least one n, we infer that c1 ̸= 0. From the relations TmTn = TnTm = Tmn when
gcd(m,n) = 1 we see that λn is a multiplicative function of n. Together with the relation
λ(p)λ(pr) = λ(pr+1) + pk−1λ(pr−1) this yields our last assertion.

2

Consequence: Let f = q + a2q
2 + a3q

3 + · · · be a cuspform of weight k which is a common
eigenform for all Tn. Then

∞∑
n=1

=
∏
p

1

1− app−s + pk−1−2s
.

We call f a normalised eigenform of the Hecke operators. In particular, if dim(Sk) = 1 there
is always a normalised eigenform. Notice that dim(Sk) = 1 ⇐⇒ k = 12, 16, 18, 20, 22, 26.

5.3 Convergence

Let f ∈ Sk with q-series
∑∞

n=1 cnq
n and let

L(f, s) =

∞∑
n=1

cn
ns

be its associated L-series. We shall be interested in the region of convergence for this L-series.
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Theorem 5.3.1 Let f be as above and cn the coefficients of its q-series expansion. Then
there exists γ > 0 such that

|cn| < γnk/2

for all n ∈ N.

Proof. Notice that |f(τ)|yk/2 is invariant under SL(2,Z), where y = Imτ . Hence, letting F
be the fundamental domain of SL(2,Z),

max
τ∈H

|f(τ)|yk/2 = max
τ∈F

|f(τ)|yk/2

≤ max
y≥

√
3/2

yk/2
∞∑

n=1

|cn|e−2πny

≤ ( max
y≥

√
3/2

yk/2e−2πy)
∞∑

n=1

|cn|e−(n−1)π
√
3

≤ A

for some A > 0. From

cn =
1

2πi

∫
|q|=e−2πy

f

qn+1
dq

follows the estimate
|cn| ≤ e2nπy max

τ∈H
Ae2πnyy−k/2.

Choose y = 1/n and we obtain |cn| ≤ Ae2πnk/2.
2

As a consequence we see that the L-series L(f, s) converges for all Res > k/2 + 1. The
Ramanujan-Peterson conjecture asserts that if f is a normalised (i.e. c1 = 1) eigenform for
the Hecke-operators, then |cp| < 2p(k−1)/2 for all primes p. In particular, |τ(p)| < 2p11/2,
as conjectured by Ramanujan. The Ramanujan-Peterson conjecture is a special case of the
so-called Weil conjectures for algebraic varieties over finite fields. This conjecture was only
proved in 1973 by P.Deligne.

Theorem 5.3.2 Let f and L(f, s) be as above. Then L(f, s) converges for all s ∈ C with
Res > k/2 + 1. Furthermore L(f, s) can be continued analytically to the C and we have the
functional equation

Z(k − s) = (−1)k/2Z(s)

where Z(s) = Γ(s)(2π)−sL(f, s).

Recall that the Γ-function is defined by

Γ(s) =

∫ ∞

0

ys−1e−y dy

when Res > 0. It can be continued meromorphically to all of C.

Proof. The convergence when Res > k/2 + 1 follows from the previous Theorem. From the
definition of the Γ-function it follows that

Γ(s)(2πn)−s =

∫ ∞

0

e−2πnyys−1dy

for all Res > 0. Now assume that Res > k/2+ 1, multiply on both sides by cn and sum over
all n. We obtain

(2π)−sΓ(s)L(f, s) =

∫ ∞

0

f(iy)ys−1dy.
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Since f is modular, we have f(i/y) = (iy)kf(iy). Hence

(2π)−sΓ(s)L(f, s) =

∫ ∞

1

f(iy)ys−1dy +

∫ 1

0

(iy)−kf(i/y)ys−1 dy∫ ∞

1

f(iy)ys−1dy + i−k

∫ ∞

1

f(iw)wk−s−1 dw

Since f(iy) = O(e−2πy) for all y we see that the integrals on the right hand side converge
absolutely for any choice of s ∈ C. Hence the right hand side exists and is analytic for all
s ∈ C. If we denote right hand side by Z(s) we easily see that Z(k− s) = (−1)k/2Z(s) which
proves our functional equation.

2
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6 Peterson inner product

6.1 Fundamental domains

We first make the concept of a fundamental domain a bit more precise.

Definition 6.1.1 Let Γ be a subgroup of SL(2,Z). A fundamental domain D for the group
Γ is a measurable subset of H such that

1. To every z ∈ H there exists g ∈ Γ such that g(z) ∈ D.

2. For any two z1, z2 ∈ D we have z2 = g(z1), g ∈ Γ ⇒ z1 = z2.

For example, a fundamental domain for SL(2,Z) itself is given by the points with −1/2 <
Rez < 1/2 and |z| > 1 together with the half line Rez = −1/2, |z| > 1 and the arc |z| =
1, π/2 ≥ arg(z) ≤ 2π/3.
Notice that if D is a fundamental domain for Γ ⊂ SL(2,Z) then so is gD for any g ∈ Γ.

Lemma 6.1.2 Let Γ be a subgroup of SL(2,Z)/ ± 1 of finite index r. Let SL(2,Z)/ ± 1 =
∪r
i=1Γαi be a decomposition of SL(2,Z)/±1 into disjoint left-cosets. Let F be a fundamental

domain of SL(2,Z). Then ∪r
i=1αi(F ) is a fundamental domain for Γ.

Proof. Exercise

6.2 Determinant p matrices

Let p be a prime. Let Mp be the set of 2× 2-matrices with integer entries and determinant
p.

Lemma 6.2.1 Denote Γ(1) = SL(2,Z). Then

Mp = Γ(1) ·
(
p 0
0 1

)
· Γ(1),

in other words, Mp is a single double coset of a determinant p matrix.

Let D be a fundamental domain of SL(2,Z). On the space Sk we define the Peterson inner
product as

⟨f, g⟩ =
∫
D

f(τ)g(τ)yk
dxdy

y2

where τ = x+ iy. We know that we have for every

(
a b
c d

)
∈ GL(2,R)+ (positive determi-

nant)

Im
aτ + b

cτ + d
= (ad− bc)

Imτ

|cτ + d|2

d
aτ + b

cτ + d
= (ad− bc)

dτ

(cτ + d)2

Hence
dxdy

y2
=

i

2

dτ ∧ τ

Imτ2

is invariant under GL(2,R)+. Furthermore, for every

(
a b
c d

)
∈ SL(2,Z) we have

f

(
aτ + b

cτ + d

)
g

(
aτ + b

cτ + d

)(
Im

aτ + b

cτ + d

)k

= f(τ)g(τ)(Imτ)k.

Hence f(τ)g(τ)yk is invariant under SL(2,Z) and ⟨f, g⟩ is independent of the choice of fun-
damental domain of SL(2,Z).
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6.3 Hermitean forms and operators

Lemma 6.3.1 The product form ⟨f, g⟩ is a hermitean product on the complex vector space
Sk.

Proof We must check the following properties

1. ⟨αf1 + βf2, g⟩ = α ⟨f1, g⟩+ β ⟨f2, g⟩ for every α, β ∈ C and f, g ∈ Sk.

2. ⟨f, g⟩ = ⟨g, f⟩ for every f, g ∈ Sk.

3. ⟨f, f⟩ > 0 for every non-trivial f ∈ Sk.

Remarks
Suppose Γ ⊂ SL(2,Z) is a subgroup of finite index in SL(2,Z). Let SL(2,Z) = ∪r

i=1αiΓ be a
disjoint union of right cosets. When D is a fundamental domain of SL(2,Z) then ∪r

i=1α
−1
i D.

Notice, ∫
D

f(τ)g(τ)yk
dxdy

y2
=

1

r

∫
D(Γ)

f(τ)g(τ)yk
dxdy

y2

where D(Γ) is a fundamental domain of Γ.

Let D(N) be a fundamental domain of Γ(N). Suppose S =

(
A B
C D

)
∈ MN . Then

S−1Γ(N)S ⊂ SL(2,Z) and S−1D(N) is a fundamental domain of S−1D(N)S. Furthermore
Γ(N) and S1D(N)S have the same index in SL(2,Z).

Proof that Tp is Hermitean.

Suppose

(
A B
C D

)
∈ Mp. Suppose f, g ∈ Sk. Then (Cτ + D)−kf(Sτ) is a modular form

with respect to Γ(p) and S−1Γ(p)S. Let S∗ =

(
D −B
−C A

)
and notice that S∗ ∈ Mp and

SS∗ = pId. Then

IS : =

∫
D(p)

(Cτ +D)kf(Sτ)g(τ)yk
dxdy

y2

=

∫
S−1D(p)

(Cτ +D)−kf(Sτ)g(τ)ykdxdyy2

Replace τ by S∗τ and use Im(S∗τ) = pIm(τ)| − Cτ +A|2 to get

IS =

∫
D(p)

(−Cτ +A)−kf(τ)g(S∗τ)yk
dxdy

y2

=

∫
D(p)

f(τ)(−Cτ +A)−kg(S∗τ)yk
dxdy

y2

So,if we take M0,M1, . . . ,Mp as above and write Mi =

(
Ai Bi

Ci Di

)
,then

⟨Tpf, g⟩ = [Γ(1) : Γ(p)]pk−1

p∑
i=0

∫
D(p)

(Ciτ +Di)
−kf(Miτ)g(τ)y

k dxdy

y2

= [Γ(1) : Γ(p)]pk−1

p∑
i=0

∫
D(p)

f(τ)(−Ciτ +Ai)−kg(M∗
i τ)y

k dxdy

y2

= ⟨f, Tpg⟩

2
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Proposition 6.3.2 Let V be a finite-dimensional vectorspace over C with hermitean product.
Let A1, A2, . . . be a sequence of Hermitean operators which all commute. Then there exists
an orthonormal basis of V consisting of common eigenvetors for all Ai.

Proof. We use induction with respect to dim(V ). When dim(V ) = 1 we are done trivially.
Suppose that dim(V ) = k > 1 and that our theorem has been proved for all dimensions ≤ k.
When all Ai are scalar multiplication we are done. Suppose that at least one Ai, say A1, is
non-scalar. Then V is a direct sum of pairwise orthogonal subspaces Ei of A1, with distinct
eigenvalues λi. Furthermore dim(Ei) < dim(V ) for all i.
Let v ∈ Ei for some i. Then A1v = λiv. For any Aj we have AjA1v = λiAjv. Now use
AjA1 = A1Aj . We find A1(Ajv) = λiAjv. Hence Ajv ∈ Ei. We thus see that for any i
and j, Aj(Ei) ⊂ Ei. So we can apply our induction hypothesis on each eigenspace Ei and
conclude the induction.

2

6.4 Main theorem on Hecke eigenforms on SL(2,Z)
Theorem 6.4.1 Let Sk be the space of cupsforms of weight k with respect to SL(2,Z). Then
there is a basis of f1, . . . , fr of common eigenvectors under the Hecke-operators such that

fi(τ) =
∞∑

n=1

cinq
n, ci1 = 1.

Moreover,
∞∑

n=1

cin
ns

=
∏
p

1

1− cipp−s + pk−1−2s

and f1, . . . , fr are uniquely determined and orthogonal with repect to the Peterson product.

Proof We know that the Tn are Hermitean under the Peterson product and TmTn = TnTm

for all m,n. So there is basis of Sk consisting of eigenforms for all Tn. Call these f1, . . . , fr
where we normalise fi such that ci1 = 1. This is possible because a priori ci1 ̸= 0 for a Hecke
eigenform. The product expansion of the L-series follows from the multaplicative properties
of the Hecke-operators.
Let f, g be two normalised Hecke-eigenforms and suppose f ̸= g. That means that there
exist Fourier coefficients fn, gn of f, g such that fn ̸= gn. Now oberve

fn ⟨f, g⟩ = ⟨Tnf, g⟩ = ⟨f, Tng⟩ = gn ⟨f, g⟩

Since fn ̸= gn we conclude that ⟨f, g⟩ = 0. So for any normalised eigenform f ̸= f1, . . . , fr
we have that ⟨f, fi⟩ = 0 for i = 1, . . . , r. Moreover, f1, . . . , fr form an orthogonal basis of Sk,
hence they are uniquely determined.

2
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