Assignment III Rational Points on Curves 2006

Problem 1

Let $(p_0 : p_1 : \ldots : p_n) \in \mathbb{P}^n(\mathbb{Q})$, where $p_0, p_1, \ldots, p_n \in \mathbb{Z}$. Denote the projective height on $\mathbb{P}^n(\mathbb{Q})$ by $H_{\mathbb{Q}}$. Show that

$$H_{\mathbb{Q}}(p_0, p_1, \ldots, p_n) = \max_i |p_i|/\operatorname{gcd}(p_0, p_1, \ldots, p_n).$$

Problem 2

a) Let k be an algebraic number field and let S be a finite set of places (norms) on k, including all Archimedean ones. Let \mathcal{O}_S^* be the group of S-units. Let $a, b \in k^*$ and consider the equation

$$ax + by = 1 \quad \text{in } x, y \in \mathcal{O}_S^*. \tag{1}$$

Show, using Theorem 2.9 in the notes on Schmidt's subspace theorem, that equation (1) has at most finitely many solutions.

(b) Let $F \in \mathbb{Z}[x, y]$ be a homogeneous polynomial of degree n such that the coefficient of x^n is 1. Let $m \in \mathbb{Z}$ and $m \neq 0$. Consider the diophantine equation

$$F(x,y) = m \quad \text{in } x, y \in \mathbb{Z}.$$
(2).

Let k be the splitting field of F(x, 1). In particular there exist $\alpha_1, \ldots, \alpha_n \in k$ such that $F(x, y) = (x - \alpha_1 y) \cdots (x - \alpha_n y)$. Let S be the set of Archimedean norms of k together with all $\mathcal{P} - adic$ norms on k for which the ideal $\mathcal{P} \subset \mathcal{O}_k$ divides m. Let α be a zero of F(x, 1) and x, y a solution of equation (2). Show that $x - \alpha y \in \mathcal{O}_S^*$.

c) Assuming that F(x, 1) has at least three distinct zeros show that (2) has at most finitely many solutions.

Problem 3

In connection with Waring's problem it is a famous problem to show that

$$||(3/2)^k|| > (3/4)^k$$

for $k \in \mathbb{Z}_{\geq 5}$. Here ||x|| denotes the distance of x to the nearest integer. It is known that $||(3/2)^k|| > 2^{-0.9k}$. Using Schmidt's subspace theorem one can show that to any $\epsilon > 0$ there exists $k_0(\epsilon)$ such that $||(3/2)^k|| > 2^{-\epsilon k}$ for all $k > k_0$. The problem is to show this.

We proceed as follows. Let $x = ||(3/2)^k||$ and $y = 3^k - x2^k$. Now apply Schmidt's subspace theorem with three suitably chosen linear forms in two variables and $S = \{2, 3, \infty\}$ to prove the statement.

Unfortunately this proof gives us only an existence proof of k_0 , no actual value that can be computed.