
Example Answers, Rational Points on Curves

1 Feb 21

Question 1 (Feb 21, Q1). We provide P5 with the 6 homogeneous co-
ordinates Xij , i = 0, 1; j = 0, 1, 2. Denote the homogeneous co-ordinates on
P1 by x0, x1 and the homogeneous coordinates on P2 by y0, y1, y2. Show that
the image of the Segre embedding ϕ : P1 × P2 → P5 given by Xij = xiyj is
a projective variety given by the equations XijXkl = XkjXil for all i, k =∈
{0, 1} and j, l ∈ {0, 1, 2}.

Answer. Clearly any P ∈ Im(ϕ) satisfies the equations. Conversely suppose
P ∈ P5 satisfies the equations. At least one coordinate of P = (Xij), X00

(say), is non-zero. Consider the coordinates Xij as entries of a 2× 3 matrix
A. The equations state that the column rank of A is at most 1. Hence the
row rank of A is at most 1. Since the first row is non-zero (as X00 6= 0),
we must have that the 2nd row is λ times the 1st row for some λ ∈ K.
Therefore P = ϕ((1 : λ), (X00 : X01 : X02)) and P ∈ Im(ϕ).

Question 2 (Feb 21, Q2).

• a) Show that the image Q of the Segre mapping ϕ : P1 × P1 → P3 is
given by the equation xv− yu = 0, where x, y, u, v are the homogenous
coordinates of P3.

• b) Show that Q is birationally equivalent to P2.

• c) Show that Q is not isomorphic to P2.

Answer. (a) The same argument as used in the last question works.

(b) Q → P2, (x : y : u : v) 7→ (x : y : u) is well-defined on xyuv 6= 0.
P2 → Q, (x : y : u) 7→ (x : y : u : yu/x) is well-defined on xyu 6= 0. They
are inverses to each other on these open sets. Therefore Q is birationally
equivalent to P2.

Another argument might be to remark that A1 × A1 is isomorphic to
A2. Since these two sets are open subsets of P1 × P1 and P2 this implies
that P1 × P1 and P2 are birationally isomorphic. (c) Q contains two non-

intersecting copies of P1, namely the curve given by the equations x = y = 0
and the curve given by the equations u = v = 0. In P2 any 2 curves intersect.
Therefore Q is not isomorphic to P2.

Another example of two non-intersecting line on P1 × P1 are {0} × P1

and {1} × P1.

1



Question 3 (Feb 21, Q3, taken from [1] exercise 5.11).

• a) Consider the rational projection map from P3 to P2 given as follows.
The coordinates of P3 are denoted (x : y : z : w). Set P := (0 : 0 :
0 : 1). Take any point (x : y : z : w) 6= P and take a line through this
point and P and intersect with the hyperplane w = 0. Show that this
gives the map (x : y : z : w) 7→ (x : y : z). We call this the projection
from P onto the hyperplane w = 0. On which points is this map a
morphism?

• b) Now consider the algebraic curve C1 given by the equations x2 −
xz−yw = 0 and yz−xw−zw = 0. Show that the projection described
in part (a) gives a morphism of this curve minus P onto the cubic
plane curve C2 : y2z − x3 + xz2 = 0 minus the point (1 : 0 : −1).

Answer. (a) The line joining (x : y : z : w) to P is given by θ : (λ : µ) 7→
λ(x : y : z : w) + µ(0 : 0 : 0 : 1). This intersects with the hyperplane w = 0
at θ(1 : −w) = (x : y : z : 0). This shows that the map is as claimed. It is
defined (and is a morphism) on P3 minus the point P .

(b) Suppose that (x : y : z : w) ∈ C1. Multiplying the first equation of
C1 by (x + z) and the second equation by y gives

x(x + z)(x− z) = yw(x + z) = y2z, (1)

so that y2z − x3 + xz2 = 0 and the projection ϕ maps C1 − P into C2. If
(x : y : z) ∈ C2 and y(x + z) 6= 0 we can use (1) and construct a preimage
of ϕ. This leaves only the points Q = (1 : 0 : 1), (1 : 0 : −1), (0 : 1 : 0)
and (0 : 0 : 1) as candidates for not being in the image. For each point
Q we substitute its homogeneous coordinates into the equations for C1 and
check whether there is a common solution w. We find that all points except
Q = (1 : 0 : −1) lie in the image of ϕ.

Question 4 (Feb 21, Q4(a), [1] exercise 5.1). Locate the singular points
and sketch the following curves in A2 (assume char(K) 6= 2). Which is which
in Figure 4 (loc.cit.) ?

• (a) x2 = x4 + y4;

• (b) xy = x6 + y6;

• (c) x3 = y2 + x4 + y4;

• (d) x2y + xy2 = x4 + y4.
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Answer. (a) Suppose that P is a singular point of the curve defined by
f = x2 − x4 − y4. Then ∇f(P ) = 0, f(P ) = 0. I.e.

∂f

∂x
= 2x− 4x3 = 0,

∂f

∂y
= 4y3 = 0, f = x2 − x4 − y4 = 0.

We deduce that (0, 0) is the unique singular point. Locally at (0, 0) the
curve looks like 2 copies of the y-axis. The curve is the Tacnode of Figure 4.

(b) Suppose that P is a singular point of the curve defined by f =
xy − x6 − y6. Then ∇f(P ) = 0, f(P ) = 0. I.e.

y = 6x5, x = 6y5, xy = x6 + y6.

We have (0, 0) as singular point. For char(K) 6= 3, there are other P for
which∇f(P ) = 0, but these do not correspond to points with f(P ) = 0. The
curve has an isolated singularity at the origin, where the curve looks locally
like two lines crossing transversally. The curve is the Node of Figure 4.

(c) Suppose that P is a singular point of the curve defined by f =
x3 − y2 − x4 − y4. Then ∇f(P ) = 0, f(P ) = 0. I.e.

3x2 = 4x3, 2y = −4y3, x3 = y2 + x4 + y4

We have (0, 0) as singular point. There are other P for which ∇f(P ) = 0,
but these do not correspond to points with f(P ) = 0. Therefore the curve
has an isolated singularity at the origin. Here the curve looks locally like
two copies of the x-axis. The curve is the Cusp of Figure 4.

(d) Suppose that P is a singular point of the curve defined by f =
x3 − y2 − x4 − y4. Then ∇f(P ) = 0, f(P ) = 0. I.e.

2xy + y2 = 4x3, 2xy + x2 = 4y3, x2y + xy2 = x4 + y4

Adding x times the first equation to y times the second equation gives

3(x2y + xy2) = 4(x4 + y4)

Combining with the 3rd equation gives xy(x− y) = 0. Substituting into the
equation f(P ) = 0 leads to P = (0, 0). This is the only singularity. Near P
the curve looks locally like 3 lines crossing transversally. The curve is the
Triple Point of Figure 4.

Question 5 (Feb 21, Q4(b), [1] exercise 5.2). Locate the singular
points and describe the singularities of the following surfaces in A2 (assume
char(K) 6= 2). Which is which in Figure 5?

• (a) xy2 = z2;
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• (b) x + 2 + y2 = z2;

• (c) xy + x3 + y3 = 0.

Answer. (a) Suppose that P is a singular point of the surface defined by
f = xy2 − z2. Then ∇f(P ) = 0, f(P ) = 0. I.e.

∇(f)(P ) = (y2, 2xy,−2z) = (0, 0, 0), xy2 = z2.

This leads us to conclude that the whole of the line y = z = 0 is singular.
At (0, 0, 0) the surface looks locally like two copies of the hyperplane z = 0.
At the other singular points (x, 0, 0), x 6= 0 it looks like two hyperplanes
intersecting transversally. The surface is the Pinch Point of Figure 5.

(b) Suppose that P is a singular point of the surface defined by f =
x + 2 + y2 − z2. Then ∇f(P ) = 0, f(P ) = 0. I.e.

∇(f)(P ) = 2(x, y,−z) = (0, 0, 0), x2 + y2 = z2.

This leads us to conclude that P = (0, 0, 0) is the the only singularity. At
(0, 0, 0) the surface looks locally like a cylinder that has degenerated to a
point. The surface is the Conical Double Point of Figure 5.

(c) Suppose that P is a singular point of the surface defined by f =
xy + x3 + y3. Then ∇f(P ) = 0, f(P ) = 0. I.e.

∇(f)(P ) = (y + 3x2, x + 3y2, 0) = (0, 0, 0), xy + x3 + y3 = 0.

Taking the inner product of ∇(f(P ) with (x, y, 0) leads to 2xy+3(x3+y3) =
0. Subtract the equation f(P ) = 0 and we get xy = 0. Substitute into
f = 0 and we conclude P = (0, 0, z) for some z ∈ K. The whole of the
line x = y = 0 is singular. The surface looks locally along the singularity
like 2 hyperplanes crossing transversally. The surface is the Double Line of
Figure 5.
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