Example Answers, Rational Points on Curves

1 Feb 21

Question 1 (Feb 21, Q1). We provide P> with the 6 homogeneous co-
ordinates X;j,v = 0,1;j = 0,1,2. Denote the homogeneous co-ordinates on
P! by 20,21 and the homogeneous coordinates on P? by yo,y1,y2. Show that
the image of the Segre embedding ¢ : P! x P2 — P5 given by Xij = zy; is
a projective variety given by the equations X;; Xy = X3 Xy for all i,k =€
{0,1} and j,1 € {0,1,2}.

Answer. Clearly any P € Im(yp) satisfies the equations. Conversely suppose
P € P° satisfies the equations. At least one coordinate of P = (Xi5), Xoo
(say), is non-zero. Consider the coordinates X;; as entries of a 2 x 3 matrix
A. The equations state that the column rank of A is at most 1. Hence the
row rank of A is at most 1. Since the first row is non-zero (as Xgp # 0),
we must have that the 2nd row is A times the 1st row for some A € K.
Therefore P = o((1: A), (Xoo : Xo1 : Xo2)) and P € Im(yp). O

Question 2 (Feb 21, Q2).

e a) Show that the image Q of the Segre mapping ¢ : P! x P! — P3 is
given by the equation xv —yu = 0, where x,y,u,v are the homogenous
coordinates of P3.

e b) Show that Q is birationally equivalent to P2

e ¢) Show that Q is not isomorphic to P?.

Answer. (a) The same argument as used in the last question works.

b)Q — P2 (z:y:u:v)— (x:y:u)is well-defined on zyuv # 0.
P2 - Q, (x:y:u)— (x:y:u:yu/z)is well-defined on zyu # 0. They
are inverses to each other on these open sets. Therefore @ is birationally
equivalent to P?.

Another argument might be to remark that A' x Al is isomorphic to
A?. Since these two sets are open subsets of P! x P! and P? this implies
that P! x P! and P? are birationally isomorphic. (c) @ contains two non-

intersecting copies of P!, namely the curve given by the equations z =y = 0
and the curve given by the equations u = v = 0. In P? any 2 curves intersect.
Therefore @ is not isomorphic to P2.
Another example of two non-intersecting line on P* x P! are {0} x P!
and {1} x PL.
O



Question 3 (Feb 21, Q3, taken from [1] exercise 5.11).

e a) Consider the rational projection map from P3 to P? given as follows.
The coordinates of P3 are denoted (x : vy : z : w). Set P := (0:0 :
0:1). Take any point (x :y: z: w) # P and take a line through this
point and P and intersect with the hyperplane w = 0. Show that this
gives the map (x 1y :z:w)— (x:y:z). We call this the projection
from P onto the hyperplane w = 0. On which points is this map a
morphism?

e b) Now consider the algebraic curve Cy given by the equations x> —

xz—yw =0 and yz —xw — zw = 0. Show that the projection described
in part (a) gives a morphism of this curve minus P onto the cubic
plane curve Cy : y?z — 23 + 222 = 0 minus the point (1:0: —1).

Answer. (a) The line joining (z : y : z : w) to P is given by 0 : (A : u) —
Mz :y:z:w)+p(0:0:0:1). This intersects with the hyperplane w = 0
at (1 : —w) = (x : y : z : 0). This shows that the map is as claimed. It is
defined (and is a morphism) on P minus the point P.

(b) Suppose that (z : y : z : w) € Cy. Multiplying the first equation of
C1 by (z + z) and the second equation by y gives

rz+2)(z—2) = ywlx+z) =12, (1)

so that y?z — 23 4+ 222 = 0 and the projection ¢ maps C; — P into Cy. If
(r:y:2) € Cyand y(xr+ z) # 0 we can use (1) and construct a preimage
of . This leaves only the points @ = (1:0:1), (1:0:—1), (0:1:0)
and (0 : 0 : 1) as candidates for not being in the image. For each point
Q) we substitute its homogeneous coordinates into the equations for C; and
check whether there is a common solution w. We find that all points except
Q = (1:0:—1) lie in the image of ¢.

O

Question 4 (Feb 21, Q4(a), [1] exercise 5.1). Locate the singular points
and sketch the following curves in A? (assume char(K) # 2). Which is which
in Figure 4 (loc.cit.) ¢

o (a) 2% =x* + 94
o (b) zy = 2%+ 45;
o (c)a®=y*+a' +yt;

o (d) 2%y + xy? = z* + 4t



Answer. (a) Suppose that P is a singular point of the curve defined by
f=2%—2*—y* Then Vf(P) =0, f(P) =0. Le.

ngm—llx?):O, g:4y3:0, f=a—at—yt=0.
ox oy
We deduce that (0,0) is the unique singular point. Locally at (0,0) the

curve looks like 2 copies of the y-axis. The curve is the Tacnode of Figure 4.

(b) Suppose that P is a singular point of the curve defined by f =
zy — 2% — 8. Then Vf(P) =0, f(P) = 0. Le.

5

y=6z°, x=06y", zy=a+1°.

We have (0,0) as singular point. For char(K) # 3, there are other P for
which V f(P) = 0, but these do not correspond to points with f(P) = 0. The
curve has an isolated singularity at the origin, where the curve looks locally
like two lines crossing transversally. The curve is the Node of Figure 4.

(c) Suppose that P is a singular point of the curve defined by f =
23 —y? —2* —y* Then Vf(P) =0, f(P)=0. Le.

302 =423, 2y =493, 23 =9+t + 4

We have (0,0) as singular point. There are other P for which V f(P) = 0,
but these do not correspond to points with f(P) = 0. Therefore the curve
has an isolated singularity at the origin. Here the curve looks locally like
two copies of the x-axis. The curve is the Cusp of Figure 4.

(d) Suppose that P is a singular point of the curve defined by f =
23 —y? —a* —y* Then Vf(P) =0, f(P)=0. Le.
2y 4+ y° =423, 2ay+a® =4y, 2Py+ay? =2t + o4
Adding x times the first equation to y times the second equation gives
3%y +ay?) = 42" +y")

Combining with the 3rd equation gives zy(x —y) = 0. Substituting into the
equation f(P) =0 leads to P = (0,0). This is the only singularity. Near P
the curve looks locally like 3 lines crossing transversally. The curve is the
Triple Point of Figure 4. O

Question 5 (Feb 21, Q4(b), [1] exercise 5.2). Locate the singular
points and describe the singularities of the following surfaces in A? (assume
char(K) # 2). Which is which in Figure 57

° (a) xy2 — 22,.



o (b)x+2+y?=2%

o (c)axy+ad+y3=0.

Answer. (a) Suppose that P is a singular point of the surface defined by
f=azy*— 2% Then Vf(P) =0, f(P) =0. Le.

V()(P) = (v, 22y, —22) = (0,0,0), zy® =27

This leads us to conclude that the whole of the line y = z = 0 is singular.
At (0,0,0) the surface looks locally like two copies of the hyperplane z = 0.
At the other singular points (z,0,0), = # 0 it looks like two hyperplanes
intersecting transversally. The surface is the Pinch Point of Figure 5.

(b) Suppose that P is a singular point of the surface defined by f =
r+2+y?— 22 Then Vf(P)=0, f(P)=0. Le.

V(f)(P)=2(z,y,—2) = (0,0,0), 2 4% = 22

This leads us to conclude that P = (0,0,0) is the the only singularity. At
(0,0,0) the surface looks locally like a cylinder that has degenerated to a
point. The surface is the Conical Double Point of Figure 5.

(c) Suppose that P is a singular point of the surface defined by f =
zy + 2% + 3. Then Vf(P) =0, f(P) =0. Le.

V(f)(P) = (y+32* z+3y*0)=(0,0,0), ay+az°+y®>=0.

Taking the inner product of V(f(P) with (z, y,0) leads to 2zy+3(z* +y*) =
0. Subtract the equation f(P) = 0 and we get zy = 0. Substitute into
= 0 and we conclude P = (0,0, 2) for some z € K. The whole of the
line z = y = 0 is singular. The surface looks locally along the singularity
like 2 hyperplanes crossing transversally. The surface is the Double Line of

Figure 5.
O
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