
Example Answers, Rational Points on Curves

1 Feb 21

Question 1 (Feb 28, Q1). Let C be a plane affine curve in A2 (with
coordinates x, y). Suppose that P = (0, 0) is a smooth point of C and suppose
that the tangent line of C at P is not the line y = 0.

a) Show that the equation of C can be written in the form x+xQ(x, y)+
q(y) = 0 where Q ∈ k[x, y] and Q(0, 0) = 0 and q ∈ k[y] and q(0) = 0.

b) Let OP be the laocal ring of all f ∈ k(C), regular in P and let |calMP

be the ideal in OP consisting of all f with f(P ) = 0. Show that MP

is generated by y (i.e. y is a local parameter of C at P ).

c) Show that to any non-trivial rational function f ∈ k(C) there exists
an integer n and a rational function g ∈ OP , invertible in OP , such
that f = yng.

Answer. Part a) Suppose the equation of C is give by F (x, y) = 0. Since
F (P ) = 0 and P is non-singular we see that F has the local form F =
ax+by+higher order terms in x, y. Since the tangent is not y = 0 we see that
a 6= 0. By taking F/a instead of F we get that the equation looks locally like
0 = x + by + . . .. Collect the monomials in y into the polynomial q(y), then
the remaining terms are all divisible by x. Hence F = x + xQ(x, y) + q(y).
For future use we write q(y) = yrq∗(y) where q∗(0) 6= 0.

Part b) First of all note that y ∈MP . Secondly, let f ∈MP . By defini-
tion of a regular functions there exist polynomials A(x, y), B(x, y) such that
f = A(x, y)/B(x, y) in an open neighbourhood of P and B(0, 0) 6= 0. More-
over, A(0, 0) = 0. Hence A(x, y) = xa(x, y) + yb(y) for some polynomials
a(x, y) ∈ k[x, y], b(y) ∈ k[y]. From part a) we see that x = −yrq∗(y)/(1+Q).
Hence

f =
A(x, y)
B(x, y)

=
y

B(x, y)
(
b(y)− yr−1q∗(y)/(1 + Q)

)
.

Since 1 + Q(x, y), B(x, y) ∈ O∗
P we conclude that f ∈ (y). Hence |calMP =

(y).
Part c) Since any f ∈ k(C) can be written as quotient of polynomials

in k[x, y] it suffices to prove our statement for f ∈ k[x, y]. We say that yk

divides f if f = ykh where h ∈ OP . Now f is algebraic over y, denote the
minimal polynomial by R(X) and suppose R has coefficients in k[y]. Let us
say,

Rm(y)fm + · · ·R1(y)f + R0(y) = 0
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with Ri(y) ∈ k[y]. We now see that if yk divides f then yk divides R0(y).
Hence there is a maximal integer n such that yn divides f . In particular,
f = ynf∗ with f∗ ∈ OP . If f∗(P ) = 0 this implies by part b) that f∗ is
divisible by y, contradicting the maximality of n. Thus f∗(P ) 6= 0 and hence
f∗ ∈ O∗

P .

Question 2 (Feb 28, Q2). Consider the plane projective curve C given
by x3y + y3z + z3x = 0. Let f be the rational function on C given by x/z.

a) Determine the degree of f .

b) Determine the zeros and poles of f with their multiplicities.

c) Determine all points P ∈ C where f has index of ramification eP > 1.

Answer. Part a) Affinely written (by setting z = 1) the curve C has the
equation x3y + y3 + x = 0 and the function f reads f = x. Since F =
y3 +x3y +x is a cubic polynomial, irreducble over k(x), we get that k(C) =
k(x)[y]/(F ) is an extension of degree 3 over k(f) = k(x). Hence the degree
of f is 3.

Part b) First we determine the zeros of x/z. Setting x = 0 we get
from the equation of C that y = 0 or z = 0. Let us first consider the point
x = y = 0. Write the equation affinely (by setting z = 1) as y3+x3y+x = 0.
We see that y is a local parameter and that the function x, hence f has a
zero of order 3.

Now consider the point x = z = 0. Written affinely (by setting y = 1)
we get x3 + z + z3x = 0 and f = x/z. We see that x is a local parameter
at our point and that z has a zero of order 3 at our point. Hence x/z has a
pole of order 2.

To determine the poles we set z = 0. From the equation of C we get
x = 0 or y = 0. We just saw that f has a second order pole at x = z = 0. So
we can expect that f has a first order pole at z = y = 0. let us check. Write
the equation affinely by setting x = 1. I.e. y + y3z + z3 = 0 and f = 1/z.
Hence z is a local parameter, and thus f = 1/z has a first order pole at our
point.

Part c) We solve f(x, y, z) = b for every b and check when there are
multiple solutions. We already dealt with b = 0,∞ in the previous part.
Eliminate x from x/z = b and the equation of C. We get b3z3y+y3z+bz4 =
0. We can assume z = 1, since z = 0, hence x = 0, is known to be a
third order zero. We are left with y3 + b3y + b = 0. This has multiple
solutions if and only if the discriminant of this polynomial in y vanishes.
I.e. 4b9 + 27b2 = 0. Since we had already dealt with b = 0 we are left with
4b7 + 27 = 0. To each such value of b our equation has a double solution,
namely y = −3/(2b2). So we find seven points P with eP = 2.
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Additional remark: Here is a nice illustration of the Riemann-Hurwitz
formula. Above we found seven points with eP . There is also a pole of order
2 and a zero of order 3. So

∑
P (eP − 1) = 10 and we get

2g − 2 = −2n +
∑
P

(eP − 1) = −6 + 10 = 4.

We conclude that g = 3 as should be the case with a smooth quartic curve
in ¶2.

3


