
Solutions assignment I

Problem 1

Consider the cubic curve E : y2 = x3 +ax+ b, where x3 +ax+ b has distinct
zeros. The closure of E in the projective plane contains one extra point,
which we denote by O, the point at infinity. Without using the Riemann-
Roch theorem prove that for every integer n > 0 the dimension of L(nO)
equals n and display a basis of this space. (Hint: functions in L(nO) are
regular on the affine part of E; what are the orders of x, y at O?)
Solution. In class we showed that x has a pole of order two at O and y
a pole of order 3. Notice that functions in L(nO) are regular on the affine
part of E, hence given by polynomials in x, y. Since y2 = x3 + ax + b. The
space of functions regular on the affine part of E is spanned by xm (m =
0, 1, 2, 3, . . .) and yxm (m = 0, 1, 2, . . .). Clearly the pole order of xm at O
is 2m, an even number, and the pole order of yxm at O equals 2m + 3,
an odd number. So the pole order of these functions are distinct, hence
these functions are linearly independent. A basis for L(nO) is given by
1, x, x2, . . . , x[n/2] and y, yx, . . . , yx[(n−3)/2]. Hence the dimension of L(nO)
equals [n/2] + 1 + [(n− 3)/2] + 1 = n.

Problem 2

Let C be a smooth projective algebraic curve. A birational isomorphism
from C to itself is called an automorphism. The automorphism group of C
is denoted by Aut(C).

1. Suppose the genus of C is 0. Show that Aut(C) is isomorphic to the
group GL(2, k) modulo scalars. (Hint: Notice that C is isomorphic to
P1 and that rational functions on P1 can be considered as rational maps
from P1 to itself)

2. Suppose the genus of C is 1 and write C in standard Weierstrass form
y2 = x3 +ax+ b. Show that if ab 6= 0, then Aut(C) is generated by the
translations P 7→ P +Q with a fixed Q ∈ C and the involution (x, y) 7→
(x,−y). (Hint: If s is in Aut(C), then there exists a translation T so
that Ts fixes the point at infinity). Suppose ab = 0, write down a set
of generators for Aut(C). In these problems you may only use basic
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definitions and the result of problem (1). So no standard theorems on
elliptic curves, you are proving one of them.

Solution

1. We determine Aut(P1). Any rational map is of the form f(t)/g(t) with
f, g ∈ k[t]. Suppose that f/g ∈ Aut(P1). Then, with finitely many
exceptions, for any a ∈ k the equation f(t)/g(t) = a has precisely
one solution. Hence f(t) − ag(t) = 0 has one solution for almost all
a ∈ k. We conclude that f, g have degree at most degree 1 and that at
least one of them is non-constant. Write f(t) = at + b, g(t) = ct + d.
Notice that non-constantness of f(t)/g(t) implies ad − bc 6= 0. Con-
versely any rational map t 7→ (at + b)/(ct + d) has an inverse, namely

(dt−b)/(−ct+a). Associate the matrix

(
a b
c d

)
to the automorphism

(at + b)/(ct + d). Then one easily checks that the matrix of composi-
tion of two automorphisms equals the product of the matrices of the
automorphisms. Hence Aut(C) and GL(2, k)/k∗ are isomorphic.

2. We use the following general remark. Let f ∈ k(C) and let φ ∈ Aut(C).
Then the functions f and f ◦ φ have the same degree, simply because
φ does nothing than to move around the poles of f .

According to the hint we can restrict ourselves to an automorphism φ
that fixes the point O, the point at infinity. Let φ(x, y) = (f1(x) +
yf2(x), g1(x) + yg2(x)). Since O is sent to O the components of φ are
regular on the affine part of E, hence they are polynomial in x, y. We
now apply our remark to the function x. Note that x◦φ is f1(x)+yf2(x).
Since x ◦ φ has degree 2 we conclude that f1 is of the form px + q with
p, q ∈ k and f2 = 0. Similarly g1 + yg2 has degree 3 hence g2 = r ∈ k
and g1 = sx + t with s, t ∈ k. Furthermore,

(ry + sx + t)2 = (px + q)3 + a(px + q) + b,

hence

r2y2 + 2(rx + t)y + (rx + t)2 = (px + q)3 = a(px + q) = b.

Note that y2 = x3 + ax + b. By comparison of the coefficients of y on
the left and right hand side we conclude that sx+ t ≡ 0. So we are left
with

r2(x3 + ax + b) = (px + q)3 + a(px + q) + b.
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Comparison of coefficient of x2 yields 0 = 3p2q. As p 6= 0 we conclude
that q = 0. Hence

r2(x3 + ax + b) = p3x3 + apx + b.

Comparison of the coefficients now yields

r2 = p3, ar2 = ap, r2b = b.

If ab 6= 0 the third equation gives r2 = 1, hence r = ±1 and the second
p = r2 = 1. Hence the only non-trivial automorphism is (x, y) 7→
(x,−y).

When b = 0 we have a 6= 0, otherwise the curve is singular. From
the first and second equation we derive r2 = p3 and p = r2. Hence
r = ik, p = i2k where i2 = −1 and k = 0, 1, 2, 3.

When a = 0 we have b 6= 0. From the first and third equation we derive
r2 = p3, r2 = 1. Hence r = ±1 and p = ωk with k = 0, 1, 2 and ω is a
primitive third root of unity.

Problem 3, Hindry/Silverman A.4.2

Recall that a smooth projective curve C of genus g ≥ 2 is called hyperelliptic
if there exists a double covering π : C → P1. Let C be a hyperelliptic curve.

1. Show that C has an affine model U given by an equation of the form
y2 = F (x) where F (x) is a polynomial with distinct roots.

2. Let g = [(deg(F )− 1)/2] and let F ∗(u) = u2g+2F (u−1). Show that the
equation v2 = F ∗(u) also defines a smooth affine model U ′ of C.

3. More precisely, show that there is an isomorphism V → V ′ given by

(x, y) 7→ (u, v) = (x−1, yx−g−1)

where V = {(x, y) ∈ U | x 6= 0} and V ′ = {(u, v) ∈ U ′ | u 6= 0}. Prove
that C is isomorphic to the curve obtained by using this map to glue
U and U ′ together.
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4. Let U and U ′ be as above and define the map

φ : U → P[deg(F )/2]+1, (x, y) 7→ (1 : x : . . . : x[deg(F )/2] : y).

Prove that φ is an embedding. Prove that the Zariski-closure of φ(U)
in P[deg(F )/2]+1 is smooth, hence isomorphic to C.

5. Prove that the map π : C → P1 is ramified at exactly 2g + 2 points.
Use the Riemann-Hurwitz formula to deduce that C has genus g. If C
is given by the affine model y2 = F (x) with π(x, y) = x, identify the
ramification points.

6. Prove that the set {xjdx/y | j = 0, 1, . . . , g− 1} is a basis for the space
of regular differential forms on C.

Solution

1. Denote the rational function giving the degree 2 map π : C → P1 by
x. Since x has degree 2, the extension k(C)/k(x) has degree 2. Hence
k(C) = k(x, y) where y satisfies a quadratic equation over k(x). By
a suitable choice of y we arrive at a quadratic equation of the form
y2 = G(x), where G ∈ k[x]. Write G(x) = F (x)H(x)2, where F is a
square-free polynomial. Replace y by yH(x) to obtain y2 = F (x), an
equation of the desired form.

For a singular point (x0, y0) in the affine part the equations y2
0 =

F (x0), 0 = Fx(x0), y0 = 0 are satsfied. Hence y0 = 0 and F (x0) =
Fx(x0) = 0, i.e. x0 is double zero of F . The latter is impossible, so we
conclude that the affine curve U is smooth.

2. If in the equation y2 = F (x) we replace x by 1/u and y by v/ug+1, then
we obtain v2 = u2g+2F (1/u) = F ∗(u), another affine model of C. That
this model U ′ is smooth follows from the fact that F ∗ has no double
zeros. This is because F has no double zeros.

3. One easily checks that the rational function V → V ′ is an isomor-
phism. The functions are regular on V and the inverse function (u, v) 7→
(x, y) = (1/u, v/u2g+2) is regular on V ′. Let W the Zariski open subset
of C on which x is regular. Then clearly W is isomorphic to U . Let
W ′ be the open subset of C where u = 1/x is regular. Then W ′ is
isomorphic to U ′. Notice also that the union of W and W ′ is all of C
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(at any point P ∈ C either x or 1/x is regular) and the intersection
W ∩W ′ is compatible with the gluing of U and U ′.

4. This problem is a correction for the wrongly stated question in Hindry/Silverman.
However this correction turns out to be harder than I thought when
deg(F ) is odd. Instead we consider the embedding

φ : U → Pg+1, (x, y) 7→ (1, x, x2, . . . , xg+1, y).

The solution for the harder problem needs an adaptation when deg(F )
is odd.

Notice that at any point P = (xP , yP ) ∈ U either x − xP is a local
parameter (when yP 6= 0) or y is a local parameter (if yP = 0). Since x
and y both occur linearly in (1, x, x2, . . . , xg+1, y) the image φ(U) has
a well-defined tangent at every point. We extend φ to the whole curve
C by choosing an extension on U ′ as follows,

φ : (u, v) 7→ (ug+1, . . . , u, 1, v) ∼ (1, u−1, . . . , u−g−1, vu−g−1).

The latter equals (1, x, . . . , xg+2, y) in the original x, y-coordinates. For
the same reason as before the image φ(U ′) is smooth. Clearly φ now
defines a birational isomorphism between two smooth curves, hence φ
is an isomorphism.

5. The map C → P1 is a morphism. For any a ∈ k the equation y2 = F (a)
in y has either two solutions (when F (a) 6= 0) or one solution y = 0
when F (a) = 0. To find π−1(∞) we change to u, v coordinates and we
need to solve v2 = F ∗(0) in v. When F ∗(0) = 0 there is one solution,
and two solutions otherwise. Notice that F ∗(0) = 0 if and only if F has
odd degree. The number of ramification points (all of order 2) is thus
deg(F ) if deg(F ) is even and deg(F ) + 1 if deg(F ) is odd. In all cases
the number is 2g + 2. We now apply Hurwitz formula to π : C → P1

where gC is the genus of C:

2gC − 2 = −4 + (2g + 2)(2− 1).

Hence 2gC − 2 = 2g − 2 nad we see that gC = g.

6. Notice that any form xjdx/y is regular on U . This is clear when y 6= 0,
when y = 0 we use 2ydy = Fxdx to find xjdx/y = 2xjdy/Fx. And Fx

is nonvanishing in the points with y = 0.
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For any 0 ≤ j < g the form xjdx/y is also regular on U ′ as can be seen
by using the u, v coordinates. We get xjdx/y = −ug−j−1du/v. By the
same arguments as above this is regular on U ′.

It remains to show that the forms are linarly independent. Choose
a ∈ k such that F (a) 6= 0 and b ∈ k such that b2 = F (a) It suffices to
show that (x− a)jdx/y are linearly independent. Since x− a is a local
parameter at the point (a, b) we see that (x − a)jdx/y has vanishing
order precisely j. Hence these forms are k-linear independent.
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