Solutions assignment I

Problem 1

Consider the cubic curve $E: y^2 = x^3 + ax + b$, where $x^3 + ax + b$ has distinct zeros. The closure of E in the projective plane contains one extra point, which we denote by O, the point at infinity. Without using the Riemann-Roch theorem prove that for every integer n > 0 the dimension of L(nO)equals n and display a basis of this space. (Hint: functions in L(nO) are regular on the affine part of E; what are the orders of x, y at O?) Solution. In class we showed that x has a pole of order two at O and w

Solution. In class we showed that x has a pole of order two at O and y a pole of order 3. Notice that functions in L(nO) are regular on the affine part of E, hence given by polynomials in x, y. Since $y^2 = x^3 + ax + b$. The space of functions regular on the affine part of E is spanned by x^m (m = 0, 1, 2, 3, ...) and yx^m (m = 0, 1, 2, ...). Clearly the pole order of x^m at O is 2m, an even number, and the pole order of yx^m at O equals 2m + 3, an odd number. So the pole order of these functions are distinct, hence these functions are linearly independent. A basis for L(nO) is given by $1, x, x^2, \ldots, x^{[n/2]}$ and $y, yx, \ldots, yx^{[(n-3)/2]}$. Hence the dimension of L(nO) equals [n/2] + 1 + [(n-3)/2] + 1 = n.

Problem 2

Let C be a smooth projective algebraic curve. A birational isomorphism from C to itself is called an automorphism. The automorphism group of C is denoted by $\operatorname{Aut}(C)$.

- 1. Suppose the genus of C is 0. Show that $\operatorname{Aut}(C)$ is isomorphic to the group GL(2, k) modulo scalars. (Hint: Notice that C is isomorphic to \mathbb{P}^1 and that rational functions on \mathbb{P}^1 can be considered as rational maps from \mathbb{P}^1 to itself)
- 2. Suppose the genus of C is 1 and write C in standard Weierstrass form $y^2 = x^3 + ax + b$. Show that if $ab \neq 0$, then $\operatorname{Aut}(C)$ is generated by the translations $P \mapsto P + Q$ with a fixed $Q \in C$ and the involution $(x, y) \mapsto (x, -y)$. (Hint: If s is in $\operatorname{Aut}(C)$, then there exists a translation T so that Ts fixes the point at infinity). Suppose ab = 0, write down a set of generators for $\operatorname{Aut}(C)$. In these problems you may only use basic

definitions and the result of problem (1). So no standard theorems on elliptic curves, you are proving one of them.

Solution

- 1. We determine $\operatorname{Aut}(\mathbb{P}^1)$. Any rational map is of the form f(t)/g(t) with $f,g \in k[t]$. Suppose that $f/g \in \operatorname{Aut}(\mathbb{P}^1)$. Then, with finitely many exceptions, for any $a \in k$ the equation f(t)/g(t) = a has precisely one solution. Hence f(t) ag(t) = 0 has one solution for almost all $a \in k$. We conclude that f, g have degree at most degree 1 and that at least one of them is non-constant. Write f(t) = at + b, g(t) = ct + d. Notice that non-constantness of f(t)/g(t) implies $ad bc \neq 0$. Conversely any rational map $t \mapsto (at + b)/(ct + d)$ has an inverse, namely (dt-b)/(-ct+a). Associate the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to the automorphism (at + b)/(ct + d). Then one easily checks that the matrix of composition of two automorphisms equals the product of the matrices of the automorphic.
- 2. We use the following general remark. Let $f \in k(C)$ and let $\phi \in Aut(C)$. Then the functions f and $f \circ \phi$ have the same degree, simply because ϕ does nothing than to move around the poles of f.

According to the hint we can restrict ourselves to an automorphism ϕ that fixes the point O, the point at infinity. Let $\phi(x, y) = (f_1(x) + yf_2(x), g_1(x) + yg_2(x))$. Since O is sent to O the components of ϕ are regular on the affine part of E, hence they are polynomial in x, y. We now apply our remark to the function x. Note that $x \circ \phi$ is $f_1(x) + yf_2(x)$. Since $x \circ \phi$ has degree 2 we conclude that f_1 is of the form px + q with $p, q \in k$ and $f_2 = 0$. Similarly $g_1 + yg_2$ has degree 3 hence $g_2 = r \in k$ and $g_1 = sx + t$ with $s, t \in k$. Furthermore,

$$(ry + sx + t)^{2} = (px + q)^{3} + a(px + q) + b,$$

hence

$$r^{2}y^{2} + 2(rx+t)y + (rx+t)^{2} = (px+q)^{3} = a(px+q) = b.$$

Note that $y^2 = x^3 + ax + b$. By comparison of the coefficients of y on the left and right we conclude that $sx + t \equiv 0$. So we are left with

$$r^{2}(x^{3} + ax + b) = (px + q)^{3} + a(px + q) + bx$$

Comparison of coefficient of x^2 yields $0 = 3p^2q$. As $p \neq 0$ we conclude that q = 0. Hence

$$r^{2}(x^{3} + ax + b) = p^{3}x^{3} + apx + b.$$

Comparison of the coefficients now yields

 $r^2 = p^3$, $ar^2 = ap$, $r^2b = b$.

If $ab \neq 0$ the third equation gives $r^2 = 1$, hence $r = \pm 1$ and the second $p = r^2 = 1$. Hence the only non-trivial automorphism is $(x, y) \mapsto (x, -y)$.

When b = 0 we have $a \neq 0$, otherwise the curve is singular. From the first and second equation we derive $r^2 = p^3$ and $p = r^2$. Hence $r = i^k, p = i^{2k}$ where $i^2 = -1$ and k = 0, 1, 2, 3.

When a = 0 we have $b \neq 0$. From the first and third equation we derive $r^2 = p^3, r^2 = 1$. Hence $r = \pm 1$ and $p = \omega^k$ with k = 0, 1, 2 and ω is a primitive third root of unity.

Problem 3, Hindry/Silverman A.4.2

Recall that a smooth projective curve C of genus $g \ge 2$ is called hyperelliptic if there exists a double covering $\pi: C \to \mathbb{P}^1$. Let C be a hyperelliptic curve.

- 1. Show that C has an affine model U given by an equation of the form $y^2 = F(x)$ where F(x) is a polynomial with distinct roots.
- 2. Let $g = [(\deg(F) 1)/2]$ and let $F^*(u) = u^{2g+2}F(u^{-1})$. Show that the equation $v^2 = F^*(u)$ also defines a smooth affine model U' of C.
- 3. More precisely, show that there is an isomorphism $V \to V'$ given by

$$(x,y) \mapsto (u,v) = (x^{-1}, yx^{-g-1})$$

where $V = \{(x, y) \in U \mid x \neq 0\}$ and $V' = \{(u, v) \in U' \mid u \neq 0\}$. Prove that C is isomorphic to the curve obtained by using this map to glue U and U' together.

4. Let U and U' be as above and define the map

$$\phi: U \to \mathbb{P}^{[\deg(F)/2]+1}, \qquad (x, y) \mapsto (1: x: \ldots: x^{[\deg(F)/2]}: y).$$

Prove that ϕ is an embedding. Prove that the Zariski-closure of $\phi(U)$ in $\mathbb{P}^{[\deg(F)/2]+1}$ is smooth, hence isomorphic to C.

- 5. Prove that the map $\pi : C \to \mathbb{P}^1$ is ramified at exactly 2g + 2 points. Use the Riemann-Hurwitz formula to deduce that C has genus g. If C is given by the affine model $y^2 = F(x)$ with $\pi(x, y) = x$, identify the ramification points.
- 6. Prove that the set $\{x^j dx/y \mid j = 0, 1, \dots, g-1\}$ is a basis for the space of regular differential forms on C.

Solution

1. Denote the rational function giving the degree 2 map $\pi : C \to \mathbb{P}^1$ by x. Since x has degree 2, the extension k(C)/k(x) has degree 2. Hence k(C) = k(x, y) where y satisfies a quadratic equation over k(x). By a suitable choice of y we arrive at a quadratic equation of the form $y^2 = G(x)$, where $G \in k[x]$. Write $G(x) = F(x)H(x)^2$, where F is a square-free polynomial. Replace y by yH(x) to obtain $y^2 = F(x)$, an equation of the desired form.

For a singular point (x_0, y_0) in the affine part the equations $y_0^2 = F(x_0)$, $0 = F_x(x_0)$, $y_0 = 0$ are satisfied. Hence $y_0 = 0$ and $F(x_0) = F_x(x_0) = 0$, i.e. x_0 is double zero of F. The latter is impossible, so we conclude that the affine curve U is smooth.

- 2. If in the equation $y^2 = F(x)$ we replace x by 1/u and y by v/u^{g+1} , then we obtain $v^2 = u^{2g+2}F(1/u) = F^*(u)$, another affine model of C. That this model U' is smooth follows from the fact that F^* has no double zeros. This is because F has no double zeros.
- 3. One easily checks that the rational function $V \to V'$ is an isomorphism. The functions are regular on V and the inverse function $(u, v) \mapsto (x, y) = (1/u, v/u^{2g+2})$ is regular on V'. Let W the Zariski open subset of C on which x is regular. Then clearly W is isomorphic to U. Let W' be the open subset of C where u = 1/x is regular. Then W' is isomorphic to U'. Notice also that the union of W and W' is all of C

(at any point $P \in C$ either x or 1/x is regular) and the intersection $W \cap W'$ is compatible with the gluing of U and U'.

4. This problem is a correction for the wrongly stated question in Hindry/Silverman. However this correction turns out to be harder than I thought when $\deg(F)$ is odd. Instead we consider the embedding

 $\phi: U \to \mathbb{P}^{g+1}, \quad (x, y) \mapsto (1, x, x^2, \dots, x^{g+1}, y).$

The solution for the harder problem needs an adaptation when $\deg(F)$ is odd.

Notice that at any point $P = (x_P, y_P) \in U$ either $x - x_P$ is a local parameter (when $y_P \neq 0$) or y is a local parameter (if $y_P = 0$). Since xand y both occur linearly in $(1, x, x^2, \ldots, x^{g+1}, y)$ the image $\phi(U)$ has a well-defined tangent at every point. We extend ϕ to the whole curve C by choosing an extension on U' as follows,

$$\phi: (u, v) \mapsto (u^{g+1}, \dots, u, 1, v) \sim (1, u^{-1}, \dots, u^{-g-1}, vu^{-g-1}).$$

The latter equals $(1, x, \ldots, x^{g+2}, y)$ in the original x, y-coordinates. For the same reason as before the image $\phi(U')$ is smooth. Clearly ϕ now defines a birational isomorphism between two smooth curves, hence ϕ is an isomorphism.

5. The map $C \to \mathbb{P}^1$ is a morphism. For any $a \in k$ the equation $y^2 = F(a)$ in y has either two solutions (when $F(a) \neq 0$) or one solution y = 0when F(a) = 0. To find $\pi^{-1}(\infty)$ we change to u, v coordinates and we need to solve $v^2 = F^*(0)$ in v. When $F^*(0) = 0$ there is one solution, and two solutions otherwise. Notice that $F^*(0) = 0$ if and only if F has odd degree. The number of ramification points (all of order 2) is thus $\deg(F)$ if $\deg(F)$ is even and $\deg(F) + 1$ if $\deg(F)$ is odd. In all cases the number is 2g + 2. We now apply Hurwitz formula to $\pi : C \to \mathbb{P}^1$ where g_C is the genus of C:

$$2g_C - 2 = -4 + (2g + 2)(2 - 1).$$

Hence $2g_C - 2 = 2g - 2$ nad we see that $g_C = g$.

6. Notice that any form $x^j dx/y$ is regular on U. This is clear when $y \neq 0$, when y = 0 we use $2ydy = F_x dx$ to find $x^j dx/y = 2x^j dy/F_x$. And F_x is nonvanishing in the points with y = 0. For any $0 \leq j < g$ the form $x^j dx/y$ is also regular on U' as can be seen by using the u, v coordinates. We get $x^j dx/y = -u^{g-j-1} du/v$. By the same arguments as above this is regular on U'.

It remains to show that the forms are linarly independent. Choose $a \in k$ such that $F(a) \neq 0$ and $b \in \overline{k}$ such that $b^2 = F(a)$ It suffices to show that $(x-a)^j dx/y$ are linearly independent. Since x-a is a local parameter at the point (a, b) we see that $(x-a)^j dx/y$ has vanishing order precisely j. Hence these forms are k-linear independent.