Huiswerkopgave 23 maart 2018

- 1. Let K be a field and L the splitting field of a separable polynomial $f \in K[x]$ of degree n. Denote the zeros of f in L by $\alpha_1, \alpha_2, \ldots, \alpha_n$.
 - (a) (1 pt) Prove that for i = 1, 2, ..., n:

 $[K(\alpha_1,\ldots,\alpha_i):K] \le n(n-1)\cdots(n-i+1).$

(hint: consider the chain of extensions $K \subset K(\alpha_1) \subset K(\alpha_1, \alpha_2) \subset \cdots$ and their degrees).

- (b) (1 pt) Prove that [L:K] divides n! (hint: recall that a Galoisgroup permutes zeros of polynomials).
- (c) (1/2 pt) Give an example in which the equality [L:K] = n! holds for some n > 2.
- (d) (1 pt) Suppose that [L : K] = n!. Show that we have equality sign in part 1a.
- 2. Let $f = X^4 + 1 \in \mathbb{Q}[X]$.
 - (a) (1 pt) Prove that f is irreducible over \mathbb{Q} .
 - (b) (1/2 pt) Let α be a zero of f in \mathbb{C} (no need to determine it). Show that the full set of zeros is given by $\{\alpha, -\alpha, i\alpha, -i\alpha\}$.
 - (c) (1/2 pt) Show that $\alpha^2 = \pm i$. Show that $L = \mathbb{Q}(\alpha)$ is the splitting field of f over \mathbb{Q} .
 - (d) (1/2 pt) What is the degree of L over \mathbb{Q} ? And the order of $G := \text{Gal}(L/\mathbb{Q})$?
 - (e) (1 pt) Why does $\sigma(\alpha) = -\alpha$ define an element of G? Same question for $\tau(\alpha) = \alpha^3$.
 - (f) (1 pt) Show that $\sigma^2 = \tau^2 = \text{id}$ and $\sigma \tau = \tau \sigma$. Determine G.
 - (g) (1 pt) Determine all subgroups of G and the corresponding intermediate fields in L/\mathbb{Q} . Write each of these intermediate fields as simple extension of \mathbb{Q} .
 - (h) (1 pt) Show that $L = \mathbb{Q}(i, \sqrt{2})$ and express α as \mathbb{Q} -linear combination of $\{1, i, \sqrt{2}, i\sqrt{2}\}$.