Computer session SCI 111, differential equations

Sample systems of first order equations

In this computer session we study systems of first order differential equations
of the form

dx
dy
i g(x,y)

Because the right hand sides of these equations do not depend explicitly
on t we call such a system autonomous. In the following problems we shall
consider various autonomous systems using the applet newphase which can
be found under www.math.uu.nl/people/beukers/phase/newphase.html.

Linear equations with constant coefficients

These are systems of the form

A —ax+b
o — T tby
%:cx-i-dy

where a, b, ¢, d are constants. The shape of the vector field depends on the
eigenvalues A1, Ay of the matrix (Z Z) Here are the possibilities,

1. Both \; are positive.

2. Both \; are negative.

3. The A; are real with different sign.

4. The \; are complex with positive real part.

5. The \; are complex with negative real part.

Here is a sample system,
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Problem 1.1 Determine (by hand) A1, A2 as functions of c.

Study the vectorfield and its integral curves as we let ¢ vary (i.e. make
various choices for ¢). Pay particular attention to the cases ¢ > 1,0<c< 1
and ¢ < 0. Which of the above instances apply to these possiblities for ¢ 7
Problem 1.2 Answer the same questions for

dr —x +
at y
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First order differential equations

Consider the general first order differential equation

dy
CA )
e (z,y)

We can rewrite it as an autonomous system by changing the x on the left
into t and adding the trivial equation ‘fl—f = 1. So we get,

dx
== -1
dt
dy
-~ _ F

Problem 1.3 Study the solutions of the equation % = y(1 — y) and make

a sketch which gives an idea of the complete set of solutions.
What happens to the solutions satisfying 0 < y(0) < 1 ? And the solutions
that satisfy y(0) > 1?7

Second order equations

A general second order differential equation without explicit time-dependence

has the form
Az dzx

a2 = (%E)

Introduce the new variable y = % and our equation reads

dy
P F



Together with y = ‘é—f this yields an autonomous system
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The z, y-plane is called the phase plane by the physicists. This is a termi-
nology that we shall adopt.
In this way for example we can study second order linear equations ‘ﬁ—f +
afl—f + bz = 0 by studying the system
dx
dt
dy
dt
which is what we did previously
The differential equation z” + w?x = 0 corresponds to the so-called har-
monic oscillator with angular frequency w. Its solutions are given by linear
combinations of sinwt and cos wt.
Problem 1.4 Take w = 1 and study the solutions with our phase-plane
plotter. The harmonic ocsillator with damping is decribed by z” + kx’ +
w?x = 0 where k > 0 is a damping factor. Study the solutions for w = 1 and
increasing k. Pay particular attention to the cases k < 2 and k > 2. What
happens in the case of negative friction, i.e. k < 07
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The pendulum

The differential equation of a pendulum is given by
"+ (g/l)sinz =0

where x is the angle of displacement, g the accelaration of gravity and [ the
length of the pendulum. We shall take g/l = 1. In the sample systems of
our program you find this system included.

Problem 1.5 Study its solutions in the phase plane and sketch them. Can
you understand the periodicity of the picture? Furthermore, there are two
kinds of orbits: closed ones and non-closed ones. What do they correspond
to physically? Explain.

Problem 1.6 Now introduce a small damping factor into the equation,

"+ kx +sinz = 0.

Study the corresponding system again with increasing k£ > 0. What happens
to the diagrams as k grows past k=2 7



Van de Pol equation

The Van der Pol equation is a classical equation which arose in the study of
spontaneously oscillating valve circuits. It reads

o +e(x? - 1)’ +x=0, e>0.

Problem 1.7 In the sample systems of our program we have the case e = 1.
Study it by sketching the integral curves. Also consider what happens if we
let e increase from e = 0.

Problem 1.8 Notice that the Van der Pol equation really looks like a har-
monic oscillator with a damping which depends on z. When e = 0 we have
exactly the harmonic oscillator. The damping becomes negative if |z| < 1
and e > 0. In the light of these remarks, do you get a better understanding
of the plots you obtained above?

You have undoubtedly noticed the persistent periodic solution to Van der
Pol’s equation. This is an example of a limit cycle.

Volterra’s equation

This system of equations models a very simple predator-prey system in the-
oretical biology. In general it reads

dx
ar z(a — by)
i% =y(—c+dx)

It is a sample system in our program witha=b=c=d = 1.

Problem 1.9 Study its solutions and make a sketch of them. Do the same
thing for various other choices of a,b,c,d. Note that the general picture
remains.

The integral curves turn out to be closed and this indicates that we are
dealing with an integrable system. This simply means that there is a function
F(x,y) such that F(x(t),y(t)) is constant for every solution z(t),y(t). The
function F' is called a first integral. In our twodimensional case the existence
of an integral F' implies that the solution curves of our system are the level
lines of F'(x,y). In our case at hand with a = b = ¢ = d = 1 this integral
function is given by F(x,y) = In|z| 4+ In|y| —  — y. Can you show this? If
not, make a check by plotting the level lines of F' using Mathematica.



