Tentamen Voorstellingen van eindige Groepen (Exam Representations of groups)

6 juli 2007, 9.00-12.00 uur

• Write your name on every exam sheet you hand in. • Write on the first page also your studentnumber and e-mailaddress (for informing you about the result of this exam). • During this exam you may consult the book "Representations and characters of groups" by James and Liebeck. • Do not only give answers to the exam problems, but also show clearly by which arguments you arrive at these answers. • In case you can not answer some part of a problem, you may continue using the results formulated in this part of the problem in the *subsequent parts of the same problem*. GOOD LUCK!

Problem 1

In this problem the group G is given by generators and relations. The generators are a and b, subject to the relations $a^7 = 1$, $b^6 = 1$ (the unit element of the group), $b^{-1}ab = a^3$. The subgroup generated by a is called H.

- a. Show that H is a normal subgroup of G and that $G/_H$ is an abelian group.
- b. List all conjugacy classes of G by giving one element in each conjugacy class.
- c. Determine the degrees (=dimensions) of the irreducible characters of G.
- d. Give the complete character table of G.
- e. Let ψ be a non-trivial character of the subgroup H. Compute the induced character $\psi \uparrow_{H}^{G}$ and show that this is an irreducible character of G.

Problem 2

As usual S_4 is the group of permutations of the set $\{1, 2, 3, 4\}$. In this problem we investigate the following two representations of S_4 .

For the first representation we take the 4-dimensional vector space U with basis \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , \mathbf{e}_4 and define the representation $\pi : S_4 \to \mathrm{GL}(U)$ by $\pi(s)(\mathbf{e}_i) = \mathbf{e}_{s(i)}$ for $s \in S_4$.

For the second representation we take the 6-dimensional complex vector space V with basis consisting of vectors $E_{\{i,j\}}$ labeled with the 2-element subsets $\{i,j\}$ of $\{1,2,3,4\}$ (note that the notation means that $\{i,j\}$ and $\{j,i\}$ are the same sets and also that $i \neq j$). We define the representation $\rho: S_4 \to \operatorname{GL}(V)$ by $\rho(s)(E_{\{i,j\}}) = E_{\{s(i),s(j)\}}$ for $s \in S_4$.

- a. List all conjugacy classes of S_4 by giving one element in each conjugacy class.
- b. Compute the character of the representation π ; call this character ψ .

- c. Compute the character of the representation ρ ; call this character χ .
- d. How many irreducible characters are there in the decomposition of ψ into irreducibles?
- e. Compute $\langle \chi, \psi \rangle$.
- f. Give an argument, which does NOT use the character table of S_4 , to show that $\chi \psi$ is a character of S_4 .

Problem 3

In this problem G is a finite group and |G| denotes the order of G. We fix an irreducible character χ of G and consider the element $\mathsf{X} = \frac{1}{|G|} \sum_{g \in G} \chi(g^{-1})g$ in the group algebra $\mathbb{C}G$. We let U be a (left) $\mathbb{C}G$ -module and denote its character by ψ . Moreover we define the \mathbb{C} -linear map $\xi : U \to U$ by $\xi(v) = \mathsf{X}v$ for all $v \in U$.

- a. Compute the trace (=spoor) of the \mathbb{C} -linear map ξ in terms of the characters χ and ψ .
- b. Prove that $h^{-1}Xh = X$ holds for every $h \in G$.
- c. Prove that ξ is a $\mathbb{C}G$ -homomorphism.
- d. Now assume that U is an irreducible (left) $\mathbb{C}G$ -module.
 - (a) Prove that there is a $\lambda \in \mathbb{C}$ such that $\xi(v) = \lambda v$ for all $v \in U$.
 - (b) Prove $\lambda = 0$ if $\psi \neq \chi$.
 - (c) Compute λ if $\psi = \chi$.
- e. Prove that $\xi(\xi(v)) = \frac{1}{\chi(1)}\xi(v)$ for every $v \in U$.
- f. Prove that the relation $X^2 = \frac{1}{\chi(1)}X$ holds in the group algebra $\mathbb{C}G$. *Hint:* Look at the decomposition of $\mathbb{C}G$ into irreducible $\mathbb{C}G$ -modules.

END