Tentamen Voorstellingen van eindige Groepen (Exam Representations of groups)

6 juli 2007, 9.00-12.00 uur

- Write your name on every exam sheet you hand in. - Write on the first page also your studentnumber and e-mailaddress (for informing you about the result of this exam). • During this exam you may consult the book "Representations and characters of groups" by James and Liebeck. - Do not only give answers to the exam problems, but also show clearly by which arguments you arrive at these answers. • In case you can not answer some part of a problem, you may continue using the results formulated in this part of the problem in the subsequent parts of the same problem.

Good Luck!

Problem 1

In this problem the group G is given by generators and relations. The generators are a and b, subject to the relations $a^{7}=1, b^{6}=1$ (the unit element of the group), $b^{-1} a b=a^{3}$. The subgroup generated by a is called H.
a. Show that H is a normal subgroup of G and that G / H is an abelian group.
b. List all conjugacy classes of G by giving one element in each conjugacy class.
c. Determine the degrees (=dimensions) of the irreducible characters of G.
d. Give the complete character table of G.
e. Let ψ be a non-trivial character of the subgroup H. Compute the induced character $\psi \uparrow_{H}^{G}$ and show that this is an irreducible character of G.

Problem 2

As usual S_{4} is the group of permutations of the set $\{1,2,3,4\}$. In this problem we investigate the following two representations of S_{4}.

For the first representation we take the 4 -dimensional vector space U with basis $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}$ and define the representation $\pi: S_{4} \rightarrow \mathrm{GL}(U)$ by $\pi(s)\left(\mathrm{e}_{i}\right)=\mathrm{e}_{s(i)}$ for $s \in S_{4}$.

For the second representation we take the 6 -dimensional complex vector space V with basis consisting of vectors $E_{\{i, j\}}$ labeled with the 2-element subsets $\{i, j\}$ of $\{1,2,3,4\}$ (note that the notation means that $\{i, j\}$ and $\{j, i\}$ are the same sets and also that $i \neq j)$. We define the representation $\rho: S_{4} \rightarrow \operatorname{GL}(V)$ by $\rho(s)\left(E_{\{i, j\}}\right)=E_{\{s(i), s(j)\}}$ for $s \in S_{4}$.
a. List all conjugacy classes of S_{4} by giving one element in each conjugacy class.
b. Compute the character of the representation π; call this character ψ.
c. Compute the character of the representation ρ; call this character χ.
d. How many irreducible characters are there in the decomposition of ψ into irreducibles?
e. Compute $\langle\chi, \psi\rangle$.
f. Give an argument, which does NOT use the character table of S_{4}, to show that $\chi-\psi$ is a character of S_{4}.

Problem 3

In this problem G is a finite group and $|G|$ denotes the order of G.
We fix an irreducible character χ of G and consider the element $\mathrm{X}=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) g$ in the group algebra $\mathbb{C} G$.
We let U be a (left) $\mathbb{C} G$-module and denote its character by ψ. Moreover we define the \mathbb{C}-linear map $\xi: U \rightarrow U$ by $\xi(v)=\mathrm{X} v$ for all $v \in U$.
a. Compute the trace (=spoor) of the \mathbb{C}-linear map ξ in terms of the characters χ and ψ.
b. Prove that $h^{-1} \mathrm{X} h=\mathrm{X}$ holds for every $h \in G$.
c. Prove that ξ is a $\mathbb{C} G$-homomorphism.
d. Now assume that U is an irreducible (left) $\mathbb{C} G$-module.
(a) Prove that there is a $\lambda \in \mathbb{C}$ such that $\xi(v)=\lambda v$ for all $v \in U$.
(b) Prove $\lambda=0$ if $\psi \neq \chi$.
(c) Compute λ if $\psi=\chi$.
e. Prove that $\xi(\xi(v))=\frac{1}{\chi(1)} \xi(v)$ for every $v \in U$.
f. Prove that the relation $\mathrm{X}^{2}=\frac{1}{\chi(1)} \mathrm{X}$ holds in the group algebra $\mathbb{C} G$. Hint: Look at the decomposition of $\mathbb{C} G$ into irreducible $\mathbb{C} G$-modules.

