Tentamen Voorstellingen van eindige Groepen (Exam Representations of groups)

16 June 2009, 9.00-12.00 uur

- Write your name on every exam sheet you hand in. - Write on the first page also your studentnumber and e-mailaddress. - During this exam you may consult the book "Representations and characters of groups" by James and Liebeck. • Do not only give answers to the exam problems, but also show clearly how you arrive at these answers. - You may give your answers in English or Dutch. - In case you can not answer some part of a problem, you may continue using the results formulated in this part of the problem in the subsequent parts of the same problem.

Good Luck!

Problem 1

Let G be a finite group. Let V be a $\mathbb{C} G$-module and let χ be its character. Let U be an irreducible $\mathbb{C} G$-module and let ψ be its character. Let z denote the following element of the group algebra $\mathbb{C} G$:

$$
z=\sum_{g \in G} \chi(g) g .
$$

i. Show that for every $h \in G$ we have: $\quad h z h^{-1}=z$.
ii. Define the map $\zeta: U \rightarrow U$ by $\zeta(\mathbf{u})=z \mathbf{u}$ for every $\mathbf{u} \in U$.

Show that ζ is a $\mathbb{C} G$-homomorphism.
iii. Show that there is a number $\lambda \in \mathbb{C}$ such that $\zeta(\mathbf{u})=\lambda \mathbf{u}$ for every $\mathrm{u} \in U$.
iv. Compute the number $\frac{1}{\lambda}\langle\bar{\chi}, \psi\rangle$.

Note: $\langle\bar{\chi}, \psi\rangle$ is the inner product of the characters $\bar{\chi}$ and ψ.
Hint: compute the trace of the linear map ζ in two ways.
P.T.O./ZOZ

Problem 2

In this problem the group G is given by generators a, b, c and defining relations $\quad a^{3}=1, \quad b^{3}=1, \quad c^{2}=1, \quad a b=b a, \quad c a=a^{2} c, \quad c b=b^{2} c ;$ here 1 denotes the identity element of G.

It can be shown (but you do not have to do that here) that all elements of G can be written uniquely in the form $a^{i} b^{j} c^{k}$ with $i, j \in\{0,1,2\}, k \in\{0,1\}$ and that the order of G is 18 .
i. Show that the group G has 6 conjugacy classes C_{1}, \ldots, C_{6} and give for each C_{j} all elements in that conjugacy class.
Remark: you should find $1 \in C_{1}, a \in C_{2}, b \in C_{3}, a b \in C_{4}, a^{2} b \in C_{5}$, $c \in C_{6}$.
ii. Show that there is a 1-dimensional representation of G with character χ satisfying $\chi\left(C_{j}\right)=1$ for $j=1,2,3,4,5$ and $\chi\left(C_{6}\right)=-1$.
iii. Show that G has precisely four irreducible characters of degree 2 .
iv. Consider the elements $\alpha=(123), \quad \beta=(456), \quad \gamma=(12)(45) \quad$ in the permutation group S_{6}.
Show that there is a homomorphism of groups $\varphi: G \rightarrow S_{6}$ such that $\varphi(a)=\alpha, \quad \varphi(b)=\beta, \quad \varphi(c)=\gamma$.
v. Let V be a 6 -dimensional \mathbb{C}-vector space with basis $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}$. Show that there is a representation ρ of G such that for every $g \in G$

$$
\rho(g) \mathrm{e}_{j}=\mathrm{e}_{\varphi(g)(j)} \quad \text { for } j=1, \ldots, 6
$$

Note: $\varphi(g)(j)$ is the image of j under the permutation $\varphi(g)$ of $\{1, \ldots, 6\}$. Thus ρ is the restriction to G of the standard permutation representation of S_{6}.
vi. Compute the character χ_{ρ} of the representation ρ.
vii. Show that the 1-dimensional spaces $\mathbb{C}\left(e_{1}+e_{2}+e_{3}\right)$ and $\mathbb{C}\left(e_{4}+e_{5}+e_{6}\right)$ are $\mathbb{C} G$-submodules of V and compute their characters.
viii. Let $W \subset V$ be the linear subspace spanned by the vectors
$\mathrm{v}_{1}=\mathrm{e}_{1}+\omega \mathrm{e}_{2}+\omega^{2} \mathrm{e}_{3}$ and $\mathrm{v}_{2}=\mathrm{e}_{1}+\omega^{2} \mathrm{e}_{2}+\omega \mathrm{e}_{3}$ where $\omega=e^{2 \pi i / 3} \in \mathbb{C}$.
Show that W is a $\mathbb{C} G$-submodule of V.
ix. Show that the $\mathbb{C} G$-module W is irreducible.
x. Let χ_{3} denote the character of the $\mathbb{C} G$-module W.

Compute $\chi_{3}\left(C_{j}\right)$ for $j=1, \ldots, 6$.
xi. Show that $\chi_{\rho}=2 \chi_{1}+\chi_{3}+\chi_{4}$ where χ_{1} is the trivial character, χ_{3} is the character of the $\mathbb{C} G$-module W and χ_{4} is another irreducible character.
xii. Give the character table of the group G.

Hint: From the above you already know four rows of the character table. Use the orthogonality relations to find the remaining irreducible characters

