Exam: Representations of finite groups (WISB324)

Wednesday July 19 2017, 9.00-12.00 h.

- You are allowed to bring one piece of $A 4$-paper, wich may contain formulas, theorems or whatever you want (written/printed on both sides of the paper).
- All exercise parts having a number (\cdot) are worth 1 point, except when otherwise stated. With 20 points you have a 10 as grade for this exam. There are two bonus exercises of 1 point.
- Do not only give answers, but also prove statements, for instance by referring to a theorem in the book.

Good luck.

1. Let G be a finite group, V a $\mathbb{C} G$-module, $\langle\cdot, \cdot\rangle$ a complex inner product on V that is G-invariant, i.e., $\langle g v, g w\rangle=\langle v, w\rangle$ for all $v, w \in V$ and $g \in G$.
(a) Let $U \subset V$ be a $\mathbb{C} G$-submodule, show that U^{\perp} is also a $\mathbb{C} G$-submodule and that $V=U \oplus U^{\perp}$.

From now on, let G be the symmetric group S_{n} and let $V=\mathbb{C}^{n}$ be the permutation module, i.e., let $e_{1}, e_{2}, \ldots e_{n}$ be a basis of V, the permutation representation is defined as follows:

$$
\rho(\pi)\left(e_{j}\right)=e_{\pi(j)} \text { for } \pi \in S_{n} .
$$

(b) Show that the character χ_{V} of V is equal to

$$
\chi_{V}(g)=\mid \text { fix } g \mid, \text { where fix } g=\left\{e_{j} \mid \rho(g)\left(e_{j}\right)=e_{j}\right\} .
$$

(c) Find a one-dimensional irreducible submodule U of V and calculate its character χ_{U}.
(d) Show that the standard inner product on V, defined by $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$ is $S_{n^{-}}$ invariant and find U^{\perp}.
(e) Show that $\psi(g)=$ fix $g-1$ is also a character of S_{n}.

From now on let $n=4$.
(f) Give a representative of all conjugacy classes of S_{4}, calculate the corresponding values for χ_{U} and ψ and show that ψ is irreducible.
(g) χ_{U} is a linear character. Find another linear character of S_{4} and call this ϕ and show that $\phi \psi$ is also irreducible.
(h) Determine the character table of S_{4}.
(i) Determine the symmetric and alternating characters, χ_{S} and χ_{A} for all the irreducible characters in the character table of S_{4}. Show which ones are irreducible.
(j) (Bonus exercise, 1 point) Express all symmetric and alternating characters in terms of the irreducible ones.
(k) (Bonus exercise, 1 point) Give for all irreducible $\mathbb{C} S_{4}$-modules W the decomposition of $W \otimes W$ as direct sum of irreducible modules.
2. Let ρ be a representation of the group G over \mathbb{C}.
(a) Show that $\delta: g \mapsto \operatorname{det}(\rho(g))$ for all $g \in G$ is a linear character of G .
(b) Prove that $G / \operatorname{Ker} \delta$ is abelian.
(c) Assume that $\delta(g)=-1$ for some $g \in G$. Show that G has a normal subgroup of index 2.
3. Let G be the group generated by a and b and relations $a^{7}=b^{3}=1$ and $b^{-1} a b=a^{2}$. The subgroup generated by a is called H.
(a) Show that H is a normal subgroup of G and that G / H is abelian.
(b) Show that G has 5 conjugacy classes and give a representative of each conjugacy class.
(c) Determine the degrees of the irreducible representations.
(d) Give all linear characters of G.
(e) (2 points) Give the complete character table of G.
(f) Determine all normal subgroups of G.
(g) Let K be the subgroup generated by b, determine the non-trivial irreducible characters of K and the corresponding induced characters of G.

