Exam: Representations of finite groups (WISB324)

Wednesday July 19 2017, 9.00-12.00 h.

- You are allowed to bring one piece of A4-paper, wich may contain formulas, theorems or whatever you want (written/printed on both sides of the paper).
- All exercise parts having a number (·) are worth 1 point, except when otherwise stated. With 20 points you have a 10 as grade for this exam. There are two bonus exercises of 1 point.
- Do not only give answers, but also prove statements, for instance by referring to a theorem in the book.

Good luck.

Let G be a finite group, V a CG-module, ⟨·, ·⟩ a complex inner product on V that is G-invariant, i.e., ⟨gv, gw⟩ = ⟨v, w⟩ for all v, w ∈ V and g ∈ G.
(a) Let U ⊂ V be a CG-submodule, show that U[⊥] is also a CG-submodule and that V = U ⊕ U[⊥].

From now on, let G be the symmetric group S_n and let $V = \mathbb{C}^n$ be the permutation module, i.e., let $e_1, e_2, \ldots e_n$ be a basis of V, the permutation representation is defined as follows:

$$\rho(\pi)(e_i) = e_{\pi(i)}$$
 for $\pi \in S_n$.

(b) Show that the character χ_V of V is equal to

 $\chi_V(g) = |\text{fix } g|, \text{ where fix } g = \{e_i | \rho(g)(e_i) = e_i\}.$

(c) Find a one-dimensional irreducible submodule U of V and calculate its character χ_U .

(d) Show that the standard inner product on V, defined by $\langle e_i, e_j \rangle = \delta_{ij}$ is S_n -invariant and find U^{\perp} .

(e) Show that $\psi(g) = \text{fix } g - 1$ is also a character of S_n .

From now on let n = 4.

(f) Give a representative of all conjugacy classes of S_4 , calculate the corresponding values for χ_U and ψ and show that ψ is irreducible.

(g) χ_U is a linear character. Find another linear character of S_4 and call this ϕ and show that $\phi\psi$ is also irreducible.

(h) Determine the character table of S_4 .

(i) Determine the symmetric and alternating characters, χ_S and χ_A for all the irreducible characters in the character table of S_4 . Show which ones are irreducible.

(j) (Bonus exercise, 1 point) Express all symmetric and alternating characters in terms of the irreducible ones.

(k) (Bonus exercise, 1 point) Give for all irreducible $\mathbb{C}S_4$ -modules W the decomposition of $W \otimes W$ as direct sum of irreducible modules.

2. Let ρ be a representation of the group G over \mathbb{C} .

(a) Show that $\delta : g \mapsto \det(\rho(g))$ for all $g \in G$ is a linear character of G.

(b) Prove that $G/\operatorname{Ker} \delta$ is abelian.

(c) Assume that $\delta(g) = -1$ for some $g \in G$. Show that G has a normal subgroup of index 2.

3. Let G be the group generated by a and b and relations $a^7 = b^3 = 1$ and $b^{-1}ab = a^2$. The subgroup generated by a is called H.

(a) Show that H is a normal subgroup of G and that G/H is abelian.

(b) Show that G has 5 conjugacy classes and give a representative of each conjugacy class.

- (c) Determine the degrees of the irreducible representations.
- (d) Give all linear characters of G.
- (e) (2 points) Give the complete character table of G.
- (f) Determine all normal subgroups of G.

(g) Let K be the subgroup generated by b, determine the non-trivial irreducible characters of K and the corresponding induced characters of G.