Home work problems for WISB324

The material up to chapter 14 are relevant for a number of these problems and the statement from Ch 15 that the number of non-equivalent irreducible representations equals the number of conjugacy classes of the group.

1. Let, as usual, $\mathbb{C} G$ be the group algebra of a finite group G.
(a) Show that for every $\mathbb{C} G$-homomorphism $\phi: \mathbb{C} G \rightarrow \mathbb{C} G$ there exists $w \in \mathbb{C} G$ such that $\phi(r)=r w($ hint: take $w=\phi(e))$.
(b) Let $W \subset \mathbb{C} G$ be an irreducible $\mathbb{C} G$-submodule of $\mathbb{C} G$. Let $w \in W$ be a non-zero element. Show that $W=\{r w \mid r \in \mathbb{C} G\}$.
2. Define the group

$$
G=\left\langle a, b \mid a^{5}=b^{4}=e, b^{-1} a b=a^{-1}\right\rangle .
$$

(a) Show that b^{2} commutes with all elements of G.
(b) Determine all conjugacy classes of G.
(c) Determine all one-dimensional representations of G.
(d) Determine the dimensions of all irreducible representations
(e) Determine all higher dimensional (i.e. $\operatorname{dim}>1$) representations of G. Give the matrix images (up to conjugation) of a, b for these representations.
3. Define the vector space

$$
V=\left\{\sum_{1 \leq i<j \leq 4} a_{i j} x_{i} x_{j} \mid a_{i j} \in \mathbb{C}\right\} \subset \mathbb{C}\left[x_{1}, \ldots, x_{4}\right]
$$

Define the representation ρ of S_{4} on V by $\sigma: x_{i} x_{j} \mapsto x_{\sigma(i)} x_{\sigma(j)}$ for all i, j.
(a) Determine the characters of ρ.
(b) Determine the irreducible representations that compose ρ (hint: use the character table of S_{4}, to be completed on Monday May 27, or consult p351 of the book).
(c) Determine a basis for each of the irreducible subrepresentations of ρ.
4. Consider the representation ρ of S_{5} on \mathbb{C}^{5} given by

$$
\sigma \mathbf{e}_{i} \mapsto \mathbf{e}_{\sigma(i)}
$$

for all i, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{5}$ is the standaard basis of \mathbb{C}^{5}. Show that ρ is a direct sum of the trivial representation and an irreducible one.

