Home work problems for WISB324

The material up to chapter 14 are relevant for a number of these problems and the statement from Ch 15 that the number of non-equivalent irreducible representations equals the number of conjugacy classes of the group.

- 1. Let, as usual, $\mathbb{C}G$ be the group algebra of a finite group G.
 - (a) Show that for every $\mathbb{C}G$ -homomorphism $\phi : \mathbb{C}G \to \mathbb{C}G$ there exists $w \in \mathbb{C}G$ such that $\phi(r) = rw$ (hint: take $w = \phi(e)$).
 - (b) Let $W \subset \mathbb{C}G$ be an irreducible $\mathbb{C}G$ -submodule of $\mathbb{C}G$. Let $w \in W$ be a non-zero element. Show that $W = \{rw | r \in \mathbb{C}G\}$.
- 2. Define the group

$$G = \langle a, b | a^5 = b^4 = e, b^{-1}ab = a^{-1} \rangle.$$

- (a) Show that b^2 commutes with all elements of G.
- (b) Determine all conjugacy classes of G.
- (c) Determine all one-dimensional representations of G.
- (d) Determine the dimensions of all irreducible representations
- (e) Determine all higher dimensional (i.e. $\dim > 1$) representations of G. Give the matrix images (up to conjugation) of a, b for these representations.
- 3. Define the vector space

$$V = \left\{ \sum_{1 \le i < j \le 4} a_{ij} x_i x_j \, \middle| \, a_{ij} \in \mathbb{C} \right\} \subset \mathbb{C}[x_1, \dots, x_4].$$

Define the representation ρ of S_4 on V by $\sigma : x_i x_j \mapsto x_{\sigma(i)} x_{\sigma(j)}$ for all i, j.

- (a) Determine the characters of ρ .
- (b) Determine the irreducible representations that compose ρ (hint: use the character table of S_4 , to be completed on Monday May 27, or consult p351 of the book).
- (c) Determine a basis for each of the irreducible subrepresentations of ρ .
- 4. Consider the representation ρ of S_5 on \mathbb{C}^5 given by

$$\sigma \mathbf{e}_i \mapsto \mathbf{e}_{\sigma(i)}$$

for all *i*, where $\mathbf{e}_1, \ldots, \mathbf{e}_5$ is the standaard basis of \mathbb{C}^5 . Show that ρ is a direct sum of the trivial representation and an irreducible one.