Solutions to home work problems for WISB324

1. Let, as usual, $\mathbb{C} G$ be the group algebra of a finite group G.
(a) Show that for every $\mathbb{C} G$-homomorphism $\phi: \mathbb{C} G \rightarrow \mathbb{C} G$ there exists $w \in \mathbb{C} G$ such that $\phi(r)=r w($ hint: take $w=\phi(e))$.
Solution: Let us write $r=\sum_{g \in G} \lambda_{g} g$. Then, using the fact that ϕ is a linear map and a $\mathbb{C} G$-homomorphism,

$$
\left.\phi(r)=\phi(r e)=\phi\left(\left(\sum_{g \in G} \lambda_{g} g\right) e\right)=\left(\sum_{g \in G} \lambda_{g} g\right)\right) \phi(e)=r w .
$$

(b) Let $W \subset \mathbb{C} G$ be an irreducible $\mathbb{C} G$-submodule of $\mathbb{C} G$. Let $w \in W$ be a non-zero element. Show that $W=\{r w \mid r \in \mathbb{C} G\}$.
Solution: The set $U:=\{r w \mid r \in \mathbb{C} G\}$ is a $\mathbb{C} G$-submodule of W. It is also non-trivial since $w \in U$ and w is non-trivial. Because W is irreducible the only remaining possibility is $U=W$.
2. Define the group

$$
G=\left\langle a, b \mid a^{5}=b^{4}=e, b^{-1} a b=a^{-1}\right\rangle .
$$

(a) Show that b^{2} commutes with all elements of G.

Solution: Notice that

$$
b^{-2} a b^{2}=b^{-1}\left(b^{-1} a b\right) b=b^{-1} a^{-1} b=a .
$$

Hence b^{2} commutes with a. Since b^{2} also commutes with b the result follows.
(b) Determine all conjugacy classes of G.

Solution: Two classes are given by $\{e\}$ and $\left\{b^{2}\right\}$. The conjugacy class of a^{k} is given by $\left\{a^{k}, b^{-1} a^{k} b\right\}=\left\{a^{k}, a^{-k}\right\}$ for all integers k. This gives us the conjugacy classes $\left\{a, a^{4}\right\}$ and $\left\{a^{2}, a^{3}\right\}$. Since b^{2} is in the center of G we get the additional classes $\left\{b^{2} a, b^{2} a^{4}\right\}$ and $\left\{b^{2} a^{2}, b^{2} a^{3}\right\}$.
Notice that $a b a^{-1}=b a^{-1} a^{-1}=b a^{-2}$. By induction we get $a^{k} b a^{-k}=b a^{-2 k}$. Since a has odd order 5 we see that the conjugation class of b is $\left\{b a^{r} \mid r=0,1,2,3,4\right\}$. Similarly the class of b^{-1} is $\left\{b^{-1} a^{r} \mid r=0,1,2,3,4\right\}$.
(c) Determine all one-dimensional representations of G.

Solution: The one-dimensional representations are obtained by assigning a complex number α to a and a complex number β to b such that $\alpha^{5}=\beta^{4}=1$ and $\alpha=\alpha^{-1}$ (the group relations). We necessarily get $\alpha=1$ and $\beta=i^{k}$ for some $k=0,1,2,3$.
(d) Determine the dimensions of all irreducible representations.

Solution: The order of the group is 20 . Let A, B, C, D be the number of irreducible representations of dimensions $4,3,2,1$ respectively. Then $20=4^{2} A+3^{2} B+2^{2} C+$ $1^{2} D$. Moreover, there are 8 irreducible representations, so $A+B+C+D=8$. We have already seen that $D=4$. The equations now reduce to $20=16 A+9 B+4 C+4$ and $A+B+C+4=8$. One quickly sees that the only solution is $A=B=0$ and $C=4$.
(e) Determine all higher dimensional (i.e. dim>1) representations of G. Give the matrix images (up to conjugation) of a, b for these representations.
Solution: We must associate to $a, b 2 \times 2$-matrices A, B such that $A^{5}=B^{4}=I_{4}$ and $B^{-1} A B=A^{-1}$. Let $\zeta=e^{2 \pi i / 5}$ and choose $A=\left(\begin{array}{cc}\zeta^{k} & 0 \\ 0 & \zeta^{-k}\end{array}\right)$ (inspired by the dihedral case, e.g. Exercise 3.5) with $k=1,2,3,4$. Choose $B=\left(\begin{array}{cc}0 & \beta \\ \beta & 0\end{array}\right)$. The condition $B^{4}=I_{4}$ implies that $\beta^{4}=1$, hence $\beta=i^{l}, l=0,1,2,3$. We automatically get $B^{-1} A B=A^{-1}$. Hence these choices give us a representation. We need to find 4 inequivalent ones among them. The choices $k=1,2$ give us two different values of the trace of A. The choices $l=0,1$ gives us two different trace values of B^{2}. These choices give us the 4 representations.
3. Define the vector space

$$
V=\left\{\sum_{1 \leq i<j \leq 4} a_{i j} x_{i} x_{j} \mid a_{i j} \in \mathbb{C}\right\} \subset \mathbb{C}\left[x_{1}, \ldots, x_{4}\right] .
$$

Define the representation ρ of S_{4} on V by $\sigma: x_{i} x_{j} \mapsto x_{\sigma(i)} x_{\sigma(j)}$ for all i, j.
(a) Determine the characters of ρ.

Solution: The conjugay classes of S_{4} are the classes of the cycle types (1), (12), (123), (1234) and (12)(34). For any $\sigma \in S_{4}$ the trace of $\rho(\sigma)$ is the number of monomials $x_{i} x_{j}$ that are fixed under σ. We get the table

$$
\begin{array}{cccccc}
\text { class } & (1) & (12) & (123) & (1234) & (12)(34) \\
\hline \chi & 6 & 2 & 0 & 0 & 2
\end{array}
$$

(b) Determine the irreducible representations that compose ρ.

Solution: Some linear algebra using the character table show that $\chi=\chi_{\text {triv }}+\chi_{\Delta}+$ $\chi_{\text {rmtetr }}$.
(c) Determine a basis for each of the irreducible subrepresentations of ρ.

Solution: It is clear that the sum $\sum_{i<j} x_{i} x_{j}$ is a basis for the trivial representation. Using a variation of this idea we see that the polynomials $x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{3}+$ $x_{2} x_{4}, x_{1} x_{4}+x_{2} x_{3}$ (sums $x_{i} x_{j}+x_{k} x_{l}$ with all indices i, j, k, l distinct) are permuted by the action of S_{4}. So the space U_{1} spanned by them is a $\mathbb{C} S_{4}$-submodule. The sum of the basiselements is again the trivial representation. Recall the permutation
representation of S_{3} on the space spanned by $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$. The sum gives the trivial representation and $\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{1}-\mathbf{e}_{3}$ span the two-dimensional triangle representation. Analogously, replacing $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ by $x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{3}+x_{2} x_{4}, x_{1} x_{4}+x_{2} x_{3}$ we see that $x_{1} x_{2}+x_{3} x_{4}-x_{1} x_{3}-x_{2} x_{4}$ and $x_{1} x_{2}+x_{3} x_{4}-x_{1} x_{4}-x_{2} x_{3}$ span the two-dimensional representation.
In a similar vein we see that the space generated by the polynomials $x_{1} x_{2}-$ $x_{3} x_{4}, x_{1} x_{3}-x_{2} x_{4}, x_{1} x_{4}-x_{2} x_{3}$ span a three-dimensional representation U_{2}. Notice also that $U_{1} \oplus U_{2}=V$, so U_{2} must be the tetrahedral $\mathbb{C} S_{4}$-submodule that we found above.
4. Consider the representation ρ of S_{5} on \mathbb{C}^{5} given by

$$
\sigma: \mathbf{e}_{i} \mapsto \mathbf{e}_{\sigma(i)}
$$

for all i, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{5}$ is the standaard basis of \mathbb{C}^{5}. Show that ρ is a direct sum of the trivial representation and an irreducible one.
Solution: Clearly $\sum_{i=1}^{5} \mathbf{e}_{i}$ is a basis of the $\mathbb{C} S_{5}$-module with trivial character. Denote it by U_{1}. The submodule $\left\{x_{1} \mathbf{e}_{1}+\cdots+x_{5} \mathbf{e}_{5} \mid x_{1}+\cdots+x_{5}=0\right\}$ is a dimension $4 \mathbb{C} S_{5^{-}}$ submodule. Denote it by U_{2}. Then $\mathbb{C}^{5}=U_{1} \oplus U_{2}$. We must show that U_{2} is irreducible. To do so we determine the character of U_{2}. It is the character of the permutation representation ρ minus the character of the trivial representation. The trace of $\rho(\sigma)$ equals the number of \mathbf{e}_{i} fixed by σ. Let us put this in a table. The top row contains the cycle types. The second row the number of elements in the corresponding conjugacy class, then the character of ρ and in the last line the character of ρ minus the trivial character, which we denote by χ.

class	(1)	(12)	(123)	(1234)	(12345)	$(12)(34)$	$(12)(345)$
size	1	10	20	30	24	15	20
$\operatorname{trace}(\rho)$	5	3	2	1	0	1	0
χ	4	2	1	0	-1	0	-1

Now compute
$\langle\chi, \chi\rangle=\frac{1}{120}\left(1 \times 4^{2}+10 \times 2^{2}+20 \times 1^{2}+30 \times 0^{2}+24 \times(-1)^{2}+15 \times 0^{2}+20 \times(-1)^{2}\right)=1$.
Hence χ is an irreducible character.

