Exam: Representations of finite groups (WISB324)

Wednesday June 28 2017, 9.00-12.00 h.

- You are allowed to bring one piece of A4-paper, wich may contain formulas, theorems or whatever you want (written/printed on both sides of the paper).
- All exercise parts having a number (\cdot) are worth 1 point, except when otherwise stated. With 20 points you have a 10 as grade for this exam. There is one bonus exercise of 2 points.
- Do not only give answers, but also prove statements, for instance by referring to a theorem in the book.

Good luck.

1. Consider the group D_{2n} for n odd and n > 2 with generators a and b and relations $a^n = 1, b^2 = 1$ and $bab = a^{n-1}$. We define a representation ρ on the vector space of complex polynomials in n variables $\mathbb{C}[x_1, x_2, \cdots x_n]$ by defining that $\rho(a)(x_j) = x_{j+1(\mod n)}$ and $\rho(b)(x_j) = x_{n-j+1}$. We extend this to monomials as follows:

$$\rho(g)(x_{i_1}x_{i_2}\cdots x_{i_k}) = \rho(g)(x_{i_1})\rho(g)(x_{i_2})\cdots \rho(g)(x_{i_k}).$$

(a) Show that this indeed defines a representation of D_{2n} .

(b) Show that

$$V_m = \{ p \in \mathbb{C}[x_1, x_2, \cdots x_n] | p \text{ homogeneous of degree } m \}$$

is a $\mathbb{C}D_{2n}$ -module.

(c) Show that V_m is not irreducible.

(d) (Bonus exercise, 2 points) Decompose V_1 into a direct sum of irreducible $\mathbb{C}D_{2n}$ -submodules.

- 2. Let G be a group ψ a non-trivial linear character and χ the only irreducible character of degree n > 1.
 - (a) Prove that $\psi \chi$ is also an irreducible character and that $\psi \chi = \chi$.
 - (b) Prove that $\chi(g) = 0$ if $\psi(g) \neq 1$.
- 3. Let G be a group with generators a and b and relations $a^7 = 1$, $b^6 = 1$ and $b^{-1}ab = a^3$. The subgroup generated by a is denoted by H.
 - (a) Show that H is a normal subgroup of G and that G/H is abelian.
 - (b) List all conjugacy classes of G by giving one element in each conjugacy class.
 - (c) Determine the degrees of the irreducible characters of G.
 - (d) (2 points) Determine the complete character table of G.
 - (e) Determine all normal subgroups of G.

(f) Let χ be a non-trivial character of the subgroup H. Compute the induced character $\chi \uparrow G$ and show that this is an irreducible character.

4. Let G be a finite group with character χ. We call χ real if χ(g) ∈ ℝ for all g ∈ G.
(a) Prove that all characters of G are real if and only if all irreducible characters of G are real.

Let p > 2 be a prime number and assume that C_p is a normal subgroup of G such that |G| = mp and gcd(m, p - 1) = 1.

(b) Prove $|Aut C_p| = p - 1$.

Let $a \in G$ and define the automorphism $\rho_a : C_p \to C_p$ by $\rho_a(x) = axa^{-1}$ for $x \in C_p$.

- (c) Show that $\rho_a \rho_b = \rho_{ab}$ and prove that $\rho_a^m = 1$.
- (d) Prove that $\rho_a = 1$.
- (e) Let ϕ be a character of C_p . Prove that the induced character $\phi \uparrow G$ staisfies

$$\phi \uparrow G(x) = \begin{cases} m\phi(x) & \text{if } x \in C_p, \\ 0 & \text{if } x \notin C_p. \end{cases}$$

- (f) Prove that not all characters of G are real.
- 5. (2 points) Let G be a group and H a subgroup. Let χ be a character of G and ψ a character of H. Prove Frobenius Reciprocity Theorem by elementary calculations, using the definitions of or formulas for the induced and resticted characters. Frobenius Reciprocity Theorem states that

$$\langle \psi, \chi \downarrow H \rangle_H = \langle \psi \uparrow G, \chi \rangle_G.$$