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PARALLEL TRIANGULAR SYSTEM SOLVING ON A MESH NETWORK
OF TRANSPUTERS*
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Abstract. A parallel algorithm is presented for triangular system solving on a distributed-memory MIMD
computer with a square mesh topology. The algorithm is based on the square grid (scattered) distribution
of matrix elements across the processors. The theoretical time complexity is 12/p q-O(n), for p processors
and an n x n matrix. Experimental timings of an implementation in occam 2 on a square mesh of p 36
transputers confirm the theoretical time model. The scaled speedup achieved for n 1200 is 24 on a 36
transputer mesh. This corresponds to a computing rate of 11.7 Mflop/s.

Key words, parallel algorithms, triangular systems, transputers

AMS(MOS) subject classifications. 65F05, 65W05

1. Introduction. This paper presents a parallel algorithm for the solution of the
lower triangular system

(1.1) Lx b

on a distributed-memory MIMD computer with a square mesh topology. The matrix
L (Lij, 0 <- i, j < n) is a dense n n unit lower triangular matrix (Lij 0 for <j, and
L, 1), and x (x, 0 =< < n) and b (b, 0-< < n) are vectors of length n.

The solution of triangular systems is an important part of scientific computing"
triangular solvers are often included in linear system solvers, and these in turn lie at
the heart ofmany scientific codes. In certain situations, the portion of overall computing
time consumed by the triangular solver may be large. Developing an efficient parallel
triangular solver for a distributed-memory MIMD computer is a particularly difficult
task, because it is very important to limit the amount of communication between the
processors and to spread the work load evenly among them.

Recently, much effort has been devoted to the development of parallel triangular
system solvers for distributed-memory MIMD computers [4], [5], [8]-[12], [15], [17].
These solvers can be divided into two classes, on the basis of their data distribution
scheme. The first class of solvers [4], [8], [10], [11], [15] assumes a row- or column-
oriented distribution of matrix elements across the processors. For a review of these
solvers and an experimental comparison on a hypercube, see Heath and Romine [8].

The second class of solvers [5], [9], [12], [17] assumes the square grid distribution
[16], defined by assigning matrix element Li to processor (imod Q, j mod Q) of a
Q x Q mesh. The algorithm described in the present paper falls into this class. The
square grid distribution was introduced by Fox et al. [5] as scattered square decomposi-
tion, and by Johnsson [9] as cyclic storage. Fox et al. [5], [17] present an algorithm
that is intended for banded triangular systems with multiple right-hand sides b.
Asymptotically (for large problems) it achieves a full speedup of Q2 on Q2 processors,
provided the number of right-hand sides is a multiple of Q. On the other hand, for a
single right-hand side it only achieves an asymptotic speedup of Q. Our algorithm
improves on this by achieving an asymptotic speedup of Q2, for a single right-hand
side. Johnsson [9] discusses the complexity of an algorithm which is similar to our
algorithm, except for the fact that his algorithm assumes a hypercube topology, and
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makes use of spanning trees to broadcast newly computed components of x. A formal
derivation of our algorithm for a completely connected network (the "QWERTY"
algorithm) has been published elsewhere [12].

In many situations, the data distribution for the triangular solve cannot be chosen
freely, because the data are already distributed as a result of previous calculations,
and the cost of redistribution would be higher than the cost of the triangular solve
itself. Our motivation in developing the algorithm described in this paper was the
desire to solve triangular systems with L and U factors in square grid distribution,
since this is the optimal distribution for the LU decomposition 1], 16]. Combining
the parallel program for the decomposition A LU with the parallel programs solving
the triangular systems Lx b and Uy x, all with the square grid distribution, yields
an efficient parallel program solving the linear system Ay b.

It turns out that our grid-oriented algorithm for triangular system solving has
good load balancing properties and a low communication overhead. A theoretical
analysis shows that the computation complexity of the algorithm is n2/Q: + 5 n floating
point operations, and that the communication complexity is 4n neighbour-to-neighbour
communications.

2. Outline of the algorithm. The purpose of this section is to establish the notation,
state the assumptions, and present an outline of the parallel triangular system solving
algorithm. The algorithm consists of the parallel composition ofp Q2 processes (s, t),
0=<s, t< Q, each executing on one processor, denoted by (s, t). To simplify the
exposition of the algorithm, it is assumed that n mod Q 0. Each processor has a local
memory. The processors use a square mesh communication network without wrap-
around links to pass messages between them. Two processors, (s, t) and (s’, t’), 0_-< s,
s’, t, t’< Q, are therefore able to communicate if and only if s- s’l+lt-t’[ 1. The
communication mechanism may be either synchronous or asynchronous. The only
assumption made is that message order is preserved between pairs of communicating
processors. To simplify the following program text, it is assumed that communications
are safeguarded against the crossing of mesh boundaries. For example, a processor
(s, t) with s 0 executes the statement "send y to process (s 1, t)" as "skip." Similarly,
it executes the statement "receive y from process (s-1, t)" as "y := 0."

The vector denotes the unique solution of (1.1). It satisfies

i--1

(2.1) i--- bi- Lij,j, 0 <--_ < n,
j=0

because L is unit lower triangular. The matrix L is distributed across the processes
according to the square grid distribution, which assigns element Lij, 0<= i, j < n to
process (s, t)= (imod Q, j mod Q). Define an n x Q matrix , whose elements are the
partial sums

i--1

(2.2) i, Lijxj, 0 <= < n, 0 <= < Q.
j=0

j mod Q

Because of the square grid distribution of L, process (s, t) can compute the partial
sums ]/it with 0 =< < n and mod Q s locally without any communication of matrix
elements Lij, and hence only with the communication of values .

A variable vector x is manipulated by the program until it contains the solution
R. The distinction between the variable vector x and the constant vector enables us
to make assertions about computed or communicated values, such as xi xi. It is
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convenient to distribute the vectors x and b in the same way as the diagonal of L, i.e.,
elements xi and bi are assigned to process (i rood Q, rood Q). An n x Q variable matrix
w is used as working space to compute }. This matrix is distributed in the obvious
way, by assigning wit to process (i rood Q, t). The distribution of L, w, b, and x is
illustrated in Fig. 1.

The constants and are used only in assertions; they do not occur in the
program text itself. The matrix L and the vector b are constants which are known at
the start of the program, so that they can be used both in the program text and in
assertions.

The following program consists of the parallel composition of Q2 processes (s, t),
each of which executes an initialisation, followed by a loop of nQ steps, numbered
k 0, Q, 2Q, , n Q. Each step consists of four phases, lettered (a)-(d). In step k
of the program the values k, k+l,""", k+O-1 are computed. To achieve this, every
process (s, t) keeps two process invariants [6] true. The main process invariant is the
logical expression Pl[s, t],

(2.3)
Pl[S, t]=-- Vii(0_--< < k ^ rood Q s ^ s t)xi i] ^

O<-k<-_n^kmod Q=O.

At the start of the computation, i.e., for k 0, and also for s # t, the invariant is trivially
true. On the other hand, the truth of all process invariants Pl[S, s], 0 _-< s < Q, for k n
implies the successful termination of the program. An additional invariant PE[S, t]

O0 O
10 tl 12 "t3 k\\k\\k\\lx3\’" t0 "11

20 ?_1 2?_ 23 20 ’21 2__2

I \ \rk \ 1\ \\

\l\\lX
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3 32 33[xxX(33’xx 30 3 3. 33

10 t.1

20 21 22

FIG. 1. Matrix view of the distribution of data elements across the processors. The elements of the lower
triangular part of L and the elements of w, b, and x are represented by cells. Each element is assigned to a

processor (s, t), 0 <-_ s, < Q 4. The order of L is n 16. The number of processors is p 16. The shaded
elements of L, w, and b are used in phases (a)-(c) of step k=4 to compute the shaded elements of x. These
elements in turn, together with the hatched elements of L, are used in phase (d) to update the hatched elements

ofw.
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gives the relevant information about the current status of w,

(2.4) P_[s,t]=-Vi (k<-_i<n^imod Q=s)w,
j=0

mod Q

In step k, variable
Such sums w, are needed only for _-> k.

An outline of the algorithm is given by the following program text which records
the status change caused by each phase, but which hides the details of the phase itself.
For each phase, an annotated program text is given in 3. For the sake of brevity,
only the changes of the status are recorded in the comments between the four phases;
comments which remain valid are not repeated. For example, in the program text
below, {P[s, t] ^ P:[s, t]} is valid prior to phase (a) and it will still be valid prior to
phase (b). The program text is"

PROGRAM TEXT OF THE PARALLEL TRIANGULAR SYSTEM SOLVER.

process (s, t)"
for all s, t: 0 =< s, < 0 par do process (s, t)
begin

for r := 0 to n-0 step Q do Wr/s,t
fork:=Oto n-Qstep Qdo
begin

{PI[ s, t] ^ P2[ s, t] for k}
phase (a);

{Wright’-- k+s,q V S > t}t<=q<Q

phase (b);
{Pl[s, t] for k := k + Q}
{y :k+t v s < t}
phase (c);
{Y k+,}
phase (d)

end.

:=0;

end
{PI[S, t] ^ Pz[s, t] for k := k + Q}

The main loop of the program achieves the aim of the computation" at the start
of the first step, k 0, P[s, t] is trivially true, and P2[s, t] is true after the initialisation
w:=0. At the end of the last step, k=n-Q, the assertion {Pl[S, t]^P2[s, t] for
k:=k+Q} implies P[s,t] for k=n-Q+Q=n. Since this holds for all s and t, it
follows that all components of have been computed. It remains to be shown (see
3) that the phases of step k establish P1[$, t] ^ P[s, t] for k := k + Q, starting from

PI[S, t] ^ P:[s, t] for k.
In phase (a), the processes in the right upper corner of the mesh (s =< t) cooperate

in computing Wright -,t-<--q<O ’k+s,q for any of these processes. Phase (a) consists of Q
independent fan-ins from right to left. In phase (b), the processes in the left lower
corner (s > t) cooperate in computing weft Yo<=q<=t k+,q for any of these processes
and Wleft YO<=q<t k+,q for the diagonal processes (s t). Each diagonal process uses
its Wlft and Wright to compute one new component of R. This is expressed by the
comment {Pl[S, t] for k:= k+Q}. During this phase, the Q newly computed com-
ponents of are communicated downwards from the diagonal. This is expressed by
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the comment {y k+t V S < t}. Phase (c) takes care of the communication of the newly
computed components of in the upward direction from the diagonal. Finally, in
phase (d) the working space w is updated. As each process possesses all the necessary
values (k/t and part of the L-values), this phase does not require any communications.
The use of data elements in these phases is illustrated in Fig. 1.

3. Phases of the algorithm. This section presents and verifies the four phases of
one step of the algorithm. Each step has been divided into phases in such a way that
no communication between processes in different phases is necessary. Therefore, each
phase can be verified as a separate parallel program, which consists of the parallel
composition of Q2 processes. For each phase a precondition and a postcondition [6] is
stated. The precondition of a phase equals the postcondition of the previous phase.
To verify a phase it is necessary to check whether its postcondition follows from its
precondition and from the execution of its program.

A phase is verified by usi’-g assertions in the process text. Similarly to the
Gries-Owicki theory 13], [ 14], m assertion is made about the value of every communi-
cated item. These values are expressed in global constants (such as and ) which
do not depend upon local process variables. The processes are first checked in isolation,
as a sequential program, by assuming that assertions about received values are true.
The aim of this check is to show that the values computed and sent by any process
are indeed the asserted ones. Since the processes are parametrised by s and t, this
check involves only a single process text. (There is no need to check Q2 different
processes.) After this check, it should be verified that send and receive assertions of
different processes match, and that no deadlock occurs; this verification is omitted for
the sake of brevity. The communication pattern of the phases is illustrated in Fig. 2.

The program text of phase (a) is:

ANNOTATED PROGRAM TEXT OF PHASE (a) OF STEP k.

{PI[s, t] ^ P[s, t]}
if s- then
begin

Wright from process (s, / 1); /Wright--receive

{ Wk+s,t k+s,t} Wright :-- Wright -- Wk+s,, I Wright

end;
if s < then send Wright to process (s, t- 1)

{Wright-- k+s,q V S " t}t<q<Q

2 lk+s,q}
t<q<O

t<=q<O

The verification of this phase is mainly the verification of the assertion {Wk+s.t lk/s,t}
for processes (s, t) with s <_- t. The precondition ofphase (a) implies P2[s, t]. Substituting
i= k + s in the definition (2.4) of P2[s, t] and in (2.2) gives

k-1 k+s-1

(3.1) Wk+s,t 2 Lk+,: 2 Lk+,:. ’k+,,t,
=0 =0

mod Q mod Q

since there are no indices j with k -<j < k + s andj rood Q t, for s _-< and k mod Q 0.
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FAN- tN

-12

(b) WAVEFRONT

(c) FAN-OUT (d) UPDATE

FIG. 2. Mesh view of the four phases ofone step of the triangular system solving algorithm: (a) horizontal

fan-in ofpartial sums i,; (b) wavefront computation ofi values; (c) verticalfan-out of,i values; (d) update
ofpartial sums w,. Each square represents a processor (s, t), 0 <= s, < Q 4. The processors are connected in

a square mesh. Communications are shown by arrows. The communications performed first in a phase are

represented by a single arrow; those performed next by a double arrow, and so on. Computations are shown by
shading or hatching ofprocessors, in correspondence with Fig. 1.

The program text of phase (b) is:

ANNOTATED PROGRAM TEXT OF PHASE (b) OF STEP k.

{Pl[S, t]Ae2[s, /] A (Wright-- k+s,qVS>t)}
if s > then
begin

par begin
receive y from process (s-1, t); {y Yk+t}

receive Wlert from process (s, t- 1)
L O<-q<t

par end;
par begin

{Y :k+,} send y to process (s + 1, t);
begin

end;

end
par end

{ Wk+s,t 31- Lk+s,k+ty lk+s,t} Wleft :’- Wleft -" Wk+s, -" Lk+s,k+ty"

{Wleft= k+s,q} send Wleft to process (s, t+ l)
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if s then
begin

Xk+ :’ bk+ Wright

receive weft from process (s, t- 1); /Wleft
Xk+s :-" Xk+s- Wleft; {Xk+s k+s}
y := Xk+s;

{Y k+,} send y to process (s + 1, t)
end
{Pl[S, t] for k := k + Q}
{y k+t v s < t}

2 k+s,q}

In the algorithmic notation above, statements between par begin and par end are
performed in parallel, and those between begin and end are executed in sequence.
Nesting of begin-end pairs is done with the conventional scope rules. For processes
(s, t) with s > the current value of Wk+s,t is not necessarily equal to k+s,t (in contrast
to the case s _-< t), but

k-1 k+s-1

wk+s,, Lk+,j.j Lk+s,j.j Lk+s,k+t.k+t
j=0 =0

(3.2) jmod Q:t jmodO=t

k+s,t- Lk+s,k+tk+t.
This equation follows from P.[s, t], because in this case there is exactly one index j,
j k + t, such that k =<j < k + s and j rood O t. Processes (s, t) with s can subtract
the values of their local variables weft and Wright from bk+s, to obtain k+s and thereby
to establish PI[S, t] for k := k + O. This follows from

Wleft + Wright E )k+s,q + E k+s,q E ]k+s,q
O<=q<s s<-q<Q O<q<Q

(3.3) k+s-1 k+s-1

O<-q<O j=0 j=0
j mod Q q

The program text of phase (c) is"

ANNOTATED PROGRAM TEXT OF PHASE (C) OF STEP k.

{Y k+t V S < t}
if s < then receive y from process (s + 1, t); {y k+t}
if s <_- then send y to process (s- 1, t)
{Y=k+,}
The program text of phase (d) is:

ANNOTATEO PROGRAM TEXT OF PHASE (d) oF STEP k.

{P2[s, t] ^ y kWt}
for r := k + Q to n Q step Q do Wr+s,t := Wr+s,t +
{P2[s, t] for k:= k+Q}

Comparing the invariant P2[s, t] for k and k + Q, (2.4), and substituting r+ s gives
k+Q-L k-1

w,.+s,t (for k + Q) L,.+s,.:j , L,.+s,j:. + Lr+s,k+ t:k+t
=0 =0

(3.4) jmodQ:t mod Q:t

Wr+s,t(for k)+ Lr+s,k+t:k+t,
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since there is exactly one index j,j=k+t, with k<=j<k+Q and j mod Q= t.
This shows that the loop of phase (d) indeed establishes the invariant P2[s, t] for
incremented k.

4. Theoretical time analysis. The aim of this section is to derive a simple theoretical
model that accurately predicts the performance of the parallel triangular system solving
algorithm. To simplify the analysis it is assumed that there are synchronisation barriers
between the different steps k of the algorithm, and between the different phases (a)-(d)
of each step. This means that processes are assumed to wait until all other processes
are ready before proceeding to the next step or phase. However, in the actual program
the separate steps or phases may overlap to some extent. The predicted time is therefore
an upper bound on the actual time. The time unit is the time needed to perform a flop,
a floating point operation. The time, measured in flop units, needed to transfer one
real value to a neighbouring process is assumed to be a constant a, which is the
communication-to-computation ratio. It is assumed that each process is able to compute
and communicate with all the neighbouring processes in parallel. (This assumption
reflects the architecture of the transputer.) In the following analysis we neglect the
time needed to evaluate conditionals, because these can be removed from the main
loop of the algorithm. We also neglect any other overhead, such as indexing and
addressing.

Phase (a) consists of Q simultaneous fan-ins (see Fig. 2(a)). The longest fan-in
is from process (0, Q-1) to process (0, 0), and involves Q-1 communications and
Q- 1 additions. The time ta of this phase is

(4.1) ta (Q- 1)(a + 1).

Phase (b) starts with the simultaneous subtraction of Wright from bk+s by all diagonal
processes, in one time unit. This is followed by a wavefront-like flow of data from
process (0, 0), through all processes (s, t) with s => t, to process (Q- 1, Q- 1) (see Fig.
2(b)). Process (0, 0) initiates the data flow at time 1 by sending k to process (1, 0);
this communication terminates at time a + 1. Process (1, 0) then sends k to process
(2, 0), finishing at time 2a + 1. Parallel to this, process (1, 0) also performs two flops
to compute weft and then sends the result to process (1, 1); this operation is completed
at time 2a +3. Continuing the analysis in the same manner for the other processes
(s, t) with s >-t, it turns out that the last process, (Q-1, Q-1), finishes at time
(Q-1)(2a + 4)- 1, for Q > 1. The time of phase (b) is therefore

(4.2) tb Q 1)(2a + 4) 1.

Note that processes which have to receive values are always ready to do this. However,
processes which have to send values often do this after some delay, because they must
perform a number of flops first. For horizontal communication (from (s, t) to (s, + 1))
the delay is three flops if > 0, and two flops if 0. For vertical communication there
is only a delay, of one flop, if s > 0. Phase (c) consists of Q simultaneous fan-outs.
The time of phase (c) is

(4.3) t=(Q-1)a.

Phase (d) contains the bulk of the computations, and no communications, with

(4.4) td
2(n-k-Q)

Q
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The total time required by the parallel algorithm for p Q2 processes is

n2 n
(4.5)

P
+(4a + 5)n-(4a +7)

x/-fi
/,/2

_-<--+ (4ce + 5)n.
P

This is a simple upper bound which is sharp for p >> 1. The time of the best sequential
algorithm is

(4.6) Tseq __/,/2_ n,

An efficiency of 50 percent or more is achieved if Tpar2Tseq/P, i.e., if p<-pl/2
n/(4a+5).

The algorithm can be generalised to solve triangular systems with multiple right-
hand sides. Exploitation of pipelining increases the efficiency in this case. The algorithm
for nb right-hand .sides has n/Q steps k, each of which consists of nb times phase (a),
followed by nb times phase (b), and so on. The complexity of nb consecutive executions
of phase (a) is (rib- 1)a higher than the complexity of one execution, assuming that
flops are overlapped with subsequent communications. The same holds for phases (b)
and (c). The complexity of nb consecutive executions of phase (d) is simply nb times
the complexity ofone execution. A simple upper bound can be obtained as above, giving

l’lbn2 n
(4.7) Tpar(nb)<=

P +(4ce+5)n+3(nb--1)ce--p.
In the multiple right-hand side case, the lower-order terms are roughly a factor of
min (rib, v/-fi) less important (relative to the first term) than in the single right-hand
side case. This means that efficiency loss is reduced by the same factor.

5. Experimental results. The algorithm has been implemented in the parallel
programming language occam 2 [3] and executes on a square mesh of INMOS T800-20
transputers. Timing results were obtained for meshes of p 1, 4, 9, 16, 25, and 36
processors, and for matrices of order up to n 1200. Each transputer possesses a local
memory of 256 Kbyte, which allows the storage of a 200 x 200 matrix per processor.
The maximum speed of each communication link is 20 Mbit/s. The time we measured
for the communication of a data packet is /comm(l) 2.3 + 2.2/s, where is the length
of the message in 32-bit words. This means that the communication of a single word
to a neighbouring processor takes tcomm(1)=4.5 IAS. All computations were done in
single precision (32 bits). All times were measured by an internal timer calibrated with
a wall clock. All results were obtained for single right-hand side systems.

Table 1 shows the time Tp(n) of triangular system solving for an n x n matrix on
a square mesh of p transputers. Table 1 shows that the time Tp(n) is a monotonously
decreasing function ofp, for a fixed matrix order n. Asymptotically the function reaches
a lower bound (- 1.8 ms for n 50). The simple theoretical model (4.5) explains this
behaviour: the term n2/p decreases with p, and the term (4a + 5)n stays constant. This
implies that all p <-_ n 2 processors available can be used to speed up the computations.
There is no need to estimate a possible optimal number of processors.

n-o { 2(n-k-Q)}rpar ’, (Q- 1)(4a +5)-1+
k mod Q=0
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TABLE
Timings (in ms) of the solution of an n x n unit lower triangular system on a

network ofp transputers.

p=l p=l
n (seq) (par) p =4 p =9 p 16 p 25 p 36

50 5.3 5.8 2.3 1.9 1.9 1.8 1.8
100 20.6 21.6 7.1 5.2 4.3 4.0 3.9
200 80.9 83.8 24.5 14.8 11.3 9.8 9.3
300 52.1 28.8 20.9 17.4 15.4
400 89.6 47.7 32.9 26.3 23.1
600 97.9 64.5 49.3 41.2
800 106 78.7 64.4
1000 115 91.4
1200 123

Figure 3 is a graph of the timings Tp (n), with each curve representing the timings
for various matrix orders n and for a fixed number of processors p. The form of the
curves is parabolic. The curves with large p have a visible linear component which
dominates at small values of n, but which is overtaken by the quadratic component at
larger values. This agrees with the qualitative behaviour predicted by the theoretical
model.

A quantitative test on the validity of the theoretical model was done as follows.
The simple model (4.5) predicts an overall time of

n2

(5.1) Tp n tflop + fln,
P

TIME (MILLISECONDS)
/ P
/ TIMINGS OF PARALLEL TRIANGULAR SYSTEM SOLVING

P:16 / /
P:25

O0 L P=9 /0 1
P=I P 4

8O

4O

 o;o
MATRIX SIZE N

FIG. 3. Timings oftriangular system solving on a square mesh ofT800-20 transputers. Each curve represents
the solution times Tp (n) for unit lower triangular matrices of various orders n and for a fixed number of
processors p. The timings of the sequential program are marked by a square; those of the parallel program by
a circle.
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where tflop is the time needed to perform one flop, and/3 is, in the first approximation,
a constant which does not depend upon p and n. The experimental timing data were
used in a least-squares fit to determine tflop 1.89 Is and/3 38.0 Is. These empirical
constants were inserted into (5.1), and the resulting times were compared with the
experimental times. In most cases the difference between model and experiment was
less than 5 percent. The notable exceptions are the cases where both p and n are small,
so that O(n/x/-fi) terms are significant compared to O(n) terms and also compared to
O(n2/p) terms, and hence cannot be neglected as in the derivation of (4.5). The
maximum relative error (for n 50 and p- 4) was 32 percent. A least-squares fit to a
more refined model which included three terms, hElp, n, and n/v, gave an error of
typically less than 1 percent, and maximally 9 percent.

Figure 4 shows the efficiency of parallel triangular system solving. Each curve
shows the efficiency Ep(n) for various matrix orders n and for a fixed number of
processors p. Our measure of efficiency is

(5.2) Ep(n)
pRseq, max,

where Rp(n)= n2/Tv(n) is the rate in flop/s at which the computation proceeds and
Rseq, is the maximum speed that can be obtained for the problem of triangular
system solving by a sequential algorithm on a single transputer with 256 Kbyte memory.
This rate Rseq, 0.49 Mflop/s is obtained for n 200. The efficiency ofthe sequential
algorithm is defined as Eseq(n)--Rseq(n)/Rseq, Note that the sequential efficiency
can be less than unity. The maximum rate achieved on p 36 transputers (for n 1200)
is 11.7 Mflop/s. The results in Fig. 4 show that for p_-< 36 an efficiency of at least 65
percent can be achieved, if n is large enough. The performance of the algorithm
decreases steadily with increasing p, reflecting the fact that the constant communication
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FIG. 4. Efficiency of triangular system solving on a square mesh of T800-20 transputers. Each curve
represents the efficiencies Ep n) for unit lower triangular matrices of various orders n and for a fixed number
ofprocessors p. The efficiencies of the sequential program are marked by a square; those of the parallel program
by a circle. The efficiency Ep n is defined as the ratio between the solution rate inflop/s ofthe parallel algorithm
on p transputers, and p times the maximum sequential rate that can be obtained in triangular system solving
on a single transputer with 256 Kbyte memory.
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time becomes more important relative to the decreasing computing time. The figure
shows that 36 transputers achieve an efficiency of 50 percent for n >-_ nl/2- 650, which
is close to the value nil2 p/tnop 724 obtained from (5.1).

An alternative performance measure for parallel algorithms on distributed-memory
computers is the scaled speedup [7], defined as the ratio between the parallel and the
sequential computing rate, for a fixed problem size per processor. In our case the scaled
speedup is

Rp(n)
(5.3) S,( n Rseq( n/v/-)

The scaled speedup achieved for n 1200 and p 36 is about 24.

6. Conclusions. We have presented an efficient algorithm for parallel triangular
system solving on a square mesh of processors. The algorithm is simple to use, since
no knowledge of the optimal number of processors is required: using all processors
available will solve the problem in the shortest time. The time complexity of the
algorithm is n2/p + O(n), so that full efficiency is achieved asymptotically (for n ).
Even for small n an efficiency of more than 50 percent can be achieved, provided the
time of a single communication and the time of a single floating point operation are
of the same order of magnitude. This condition is met by our transputer network,
which has a communication-to-computation ratio a tcomm(1)/tnop4.5/1.89 2.4,
and for instance by the Caltech/JPL Mark II hypercube, which has a ratio a 4.7 for
64-bit words [5, eq. (20.14)]. (Note that any measured value of a is problem-dependent,
because different floating point operations have different computing times, and also
because floating point operations may have varying amounts ofindexing and addressing
operations associated with them.)

The messages of our algorithm are short: each message contains only one real
number, in the case of a single right-hand side. Furthermore, the messages are not
pipelined, since only one out of Q- 1 communication links is active at any one time,
in each horizontal or vertical chain of processors. Therefore, messages cannot be
combined to amortise communication startup time. Unfortunately, architectures such
as the present Intel and Ncube hypercubes have high communication startup times,
and hence a high communication-to-computation ratio a. For example, the Intel iPSC/2
has a ratio a 59 [2, Table 4]. Our algorithm is inefficient on such machines. In the
case of multiple right-hand sides the situation is better, because messages belonging
to different right-hand sides can be combined into larger messages, and these in turn
can be pipelined.

The present study was performed on a square mesh, since this network has sufficient
connectivity for parallel linear algebra algorithms such as LU decomposition and
triangular system solving, and since it is trivially embedded in many other topologies
such as a square torus, a hypercube of even dimension, and a fully connected network.
On networks with a richer topology the algorithm can be.executed without modification,
or with adjustments to exploit the additional connectivity. The gains that can be
obtained from richer connectivity are limited: in the best case, for a fully connected
network, the communication complexity is reduced by a factor of two, from 4an to
2an 12]. This is also the communication complexity for a hypercube of even dimen-
sion [9].

An interesting extension of the present work is the generalisation of the triangular
system solving algorithm for a square Q x Q mesh to an algorithm for a rectangular
M x N mesh, using the corresponding rectangular grid distribution 1]. Under mild
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constraints (M_-> N and M mod N 0) on the mesh dimensions it is easy to derive a
generalised algorithm which has n/M steps, each with phases similar to the phases
of the original algorithm. The generalised algorithm has the same complexity n2/p+
O(n) as the original algorithm. The particular choice M =p and N 1 leads to a new
so-called immediate-update row-wrapped (ji-r) algorithm [15], which differs from
the ji-r algorithm of [15], for instance, because its communication complexity is
independent of the number of processors.

In conclusion, a grid-based parallel algorithm has been presented for triangular
system solving that can be used in combination with grid-based LU decomposition
algorithms. Experiments on a square mesh of transputers have shown that the algorithm
can be implemented efficiently on a distributed-memory MIMD computer with a low
communication-to-computation ratio.
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