
Contemporary Mathematics

Graph Coarsening and Clustering on the GPU

B. O. Fagginger Auer and R. H. Bisseling

Abstract. Agglomerative clustering is an effective greedy way to quickly gen-
erate graph clusterings of high modularity in a small amount of time. In an
effort to use the power offered by multi-core CPU and GPU hardware to solve
the clustering problem, we introduce a fine-grained shared-memory parallel
graph coarsening algorithm and use this to implement a parallel agglomera-
tive clustering heuristic on both the CPU and the GPU. This heuristic is able
to generate clusterings in very little time: a modularity 0.996 clustering is
obtained from a street network graph with 14 million vertices and 17 million
edges in 4.6 seconds on the GPU.

1. Introduction

We present a fine-grained shared-memory parallel algorithm for graph coars-
ening and apply this algorithm in the context of graph clustering to obtain a fast
greedy heuristic for maximising modularity in weighted undirected graphs. This is
a follow-up to [8], which was concerned with generating weighted graph matchings
on the GPU, in an effort to use the parallel processing power offered by multi-core
CPUs and GPUs for discrete computing tasks, such as partitioning and clustering
of graphs and hypergraphs. Just as generating graph matchings, graph coarsening
is an essential aspect of both graph partitioning [4, 9, 12] and multi-level clustering
[22] and therefore forms a logical continuation of the research done in [8].

Our contribution is a parallel greedy clustering algorithm, that scales well with
the number of available processor cores, and generates clusterings of reasonable
quality in very little time. We have tested this algorithm, see Section 5, against a
large set of clustering problems, all part of the 10th DIMACS challenge on graph
partitioning and clustering [1], such that the performance of our algorithm can
directly be compared with the state-of-the-art clustering algorithms participating
in this challenge.

An undirected graph G is a pair (V,E), with vertices V , and edges E that are
of the form {u, v} for u, v ∈ V with possibly u = v. Edges can be provided with
weights ω : E → R>0, in which case we call G a weighted undirected graph. For

2010 Mathematics Subject Classification. Primary 68R10, 68W10; Secondary 91C20, 05C70.
Key words and phrases. Graphs, GPU, shared-memory parallel, clustering.
This research was performed on hardware from NWO project NWO-M 612.071.305.

c©2012 American Mathematical Society

1

2 B. O. FAGGINGER AUER AND R. H. BISSELING

vertices v ∈ V , we denote the set of all of v’s neighbours by

Vv := {u ∈ V | {u, v} ∈ E} \ {v}.

A matching of G = (V,E) is a subset M ⊆ E of the edges of G, satisfying that any
two edges in the matching are disjoint. We call a matching M maximal if there does
not exist a matching M ′ of G with M (M ′ and we call it perfect if 2 |M | = |V |. If
G = (V,E, ω) is weighted, then the weight of a matching M of G is defined as the
sum of the weights of all edges in the matching: ω(M) :=

∑
e∈M ω(e). A matching

M of G which satisfies ω(M) ≥ ω(M ′) for every matching M ′ of G is called a
maximum-weight matching.

Clustering is concerned with partitioning the vertices of a given graph into sets
consisting of vertices related to each other, e.g. to isolate communities in graphs
representing large social networks [2, 14]. Formally, a clustering of an undirected
graph G is a collection C of subsets of V , where elements C ∈ C are called clusters,
that forms a partition of G’s vertices, i.e.

V =
⋃

C∈C
C, as a disjoint union.

Note that the number of clusters is not fixed beforehand, and that there can be
a single large cluster, or as many clusters as there are vertices, or any number of
clusters in between. A quality measure for clusterings, modularity, was introduced
in [16], which we will use to judge the quality of the generated clusterings.

Let G = (V,E, ω) be a weighted undirected graph. We define the weight ζ(v)
of a vertex v ∈ V in terms of the weights of the edges incident to this vertex as

(1.1) ζ(v) :=

∑

{u,v}∈E

ω({u, v}) if {v, v} /∈ E,∑
{u,v}∈E

u 6=v

ω({u, v}) + 2 ω({v, v}) if {v, v} ∈ E.

Then, the modularity, cf. [1], of a clustering C of G is defined by

(1.2) mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)
)2

4
(∑

e∈E

ω(e)
)2 ,

which is bounded by − 1
2 ≤ mod(C) ≤ 1, as we show in the appendix.

Finding a clustering C which maximises mod(C) is an NP-complete problem, i.e.
ascertaining whether there exists a clustering that has at least a fixed modularity
is strongly NP-complete [3, Theorem 4.4]. Hence, to find clusterings that have
maximum modularity in reasonable time, we need to resort to heuristic algorithms.
Many different clustering heuristics have been developed, for which we would like
to refer the reader to the overview in [19, Section 5] and the references contained
therein: there are heuristics based on spectral methods, maximum flow, graph
bisection, betweenness, Markov chains, and random walks. The clustering method
we present belongs to the category of greedy agglomerative heuristics [2, 5, 15, 17,
22]. Our overall approach is similar to the parallel clustering algorithm discussed
by Riedy et al. in [18] and a detailed comparison is included in Section 5.

GRAPH COARSENING AND CLUSTERING ON THE GPU 3

2. Clustering

We will now rewrite (1.2) to a more convenient form. Let C ∈ C be a cluster
and define the weight of a cluster as ζ(C) :=

∑
v∈C ζ(v), the set of all internal edges

as int(C) := {{u, v} ∈ E | u, v ∈ C}, the set of all external edges as ext(C) :=
{{u, v} ∈ E | u ∈ C, v /∈ C}, and for another cluster C ′ ∈ C, the set of all cut edges
between C and C ′ as cut(C,C ′) := {{u, v} ∈ E | u ∈ C, v ∈ C ′}. Let furthermore
Ω :=

∑
e∈E ω(e) be the sum of all edge weights.

With these definitions, we can reformulate (1.2) as (see the appendix):

(2.1) mod(C) =
1

4 Ω2

∑
C∈C

ζ(C) (2 Ω− ζ(C))− 2 Ω

∑
C′∈C
C′ 6=C

ω(cut(C,C ′))

 .

This way of looking at the modularity is useful for reformulating the agglomerative
heuristic in terms of graph coarsening, as we will see in Section 2.1.

For this purpose, we also need to determine what effect the merging of two
clusters has on the clustering’s modularity. Let C be a clustering and C,C ′ ∈ C. If
we merge C and C ′ into one cluster C∪C ′, then the clustering C′ := (C \{C,C ′})∪
{C ∪ C ′} we obtain, has modularity (see the appendix)

(2.2) mod(C′) = mod(C) +
1

2 Ω2

(
2 Ω ω(cut(C,C ′))− ζ(C) ζ(C ′)

)
,

and the new cluster has weight

(2.3) ζ(C ∪ C ′) =
∑
v∈C

ζ(v) +
∑
v∈C′

ζ(v) = ζ(C) + ζ(C ′).

2.1. Agglomerative heuristic. Equations (2.1), (2.2), and (2.3) suggest an
agglomerative heuristic to generate a clustering [15, 18, 22]. Let G = (V,E, ω, ζ)
be a weighted undirected graph, provided with edge weights ω and vertex weights ζ
as defined by (1.1), for which we want to calculate a clustering C of high modularity.

We start out with a clustering where each vertex of the original graph is a
separate cluster, and then progressively merge these clusters to increase the modu-
larity of the clustering. This process is illustrated in Figure 1. The decision which
pairs of clusters to merge is based on (2.2): we generate a weighted matching in
the graph with as vertices all the current clusters and the sets {C,C ′} for which
cut(C,C ′) 6= ∅ as edges. The weight of such an edge {C,C ′} is then given by (2.2),
such that a maximum-weight matching will result in pairwise mergings of clusters
for which the increase of the modularity is maximal.

We do this formally by, starting with G, constructing a sequence of weighted
graphs Gi = (V i, Ei, ωi, ζi) with surjective maps πi : V i → V i+1,

G = G0 π0

→ G1 π1

→ G2 π2

→ . . .

These graphs Gi correspond to clusterings Ci for G in the following way:

Ci := {{v ∈ V | (πi−1 ◦ · · · ◦ π0)(v) = u} | u ∈ V i}, i = 0, 1, 2, . . .

Each vertex of the graph Gi will correspond to precisely one cluster in C: all vertices
of G that were merged together into a single vertex in Gi via π0, . . . , πi−1, are
considered as a single cluster. (In particular for G0 = G each vertex of the original
graph is a separate cluster.)

4 B. O. FAGGINGER AUER AND R. H. BISSELING

(a) G0 (b) G11 (c) G21

(d) G26 (e) G33 (f) Best clustering (G21).

Figure 1. Clustering of netherlands into 506 clusters with mod-
ularity 0.995.

From (2.3) we know that weights ζ(·) of merged clusters should be summed,
while for calculating the modularity, (2.1), and the change in modularity due to
merging, (2.2), we only need the total edge weight ω(cut(·, ·)) of the collection of
edges between two clusters, not of individual edges. Hence, when merging two
clusters, we can safely merge the edges in Gi that are mapped to a single edge in
Gi+1 by πi, provided we sum their edge weights. This means that the merging
of clusters in Gi to obtain Gi+1 corresponds precisely to coarsening the graph
Gi to Gi+1. Furthermore, weighted matching in the graph of all current clusters
corresponds to a weighted matching in Gi where we consider edges {ui, vi} ∈ Ei to
have weight 2 Ω ωi({ui, vi})− ζi(ui) ζi(vi) during matching. This entire procedure
is outlined in Algorithm 1, where we use a map µ : V → N to indicate matchings
M ⊆ E by letting µ(u) = µ(v) ⇐⇒ {u, v} ∈M for vertices u, v ∈ V .

3. Coarsening

Graph coarsening is the merging of vertices in a graph to obtain a coarser
version of the graph. Doing this recursively, we obtain a sequence of increasingly
coarser approximations of the original graph. Such a multilevel view of the graph
is useful for graph partitioning [4, 9, 12], but can also be used for clustering [22].

Let G = (V,E, ω, ζ) be an undirected graph with edge weights ω and vertex
weights ζ. A coarsening of G is a map π : V → V ′ together with a graph G′ =
(V ′, E′, ω′, ζ ′) satisfying the following properties:

GRAPH COARSENING AND CLUSTERING ON THE GPU 5

Algorithm 1 Agglomerative clustering heuristic for a weighted undirected graph
G = (V,E, ω, ζ) with ζ given by (1.1). Produces a clustering C of G.

1: modbest ← −∞
2: G0 = (V 0, E0, ω0, ζ0)← G
3: i← 0
4: C0 ← {{v} | v ∈ V }
5: while |V i| > 1 do
6: if mod(G, Ci) ≥ modbest then
7: modbest ← mod(G, Ci)
8: Cbest ← Ci

9: µ←match clusters(Gi)
10: (πi, Gi+1)← coarsen(Gi, µ)
11: Ci+1 ← {{v ∈ V | (πi ◦ · · · ◦ π0)(v) = u} | u ∈ V i+1}
12: i← i + 1
13: return Cbest

(1) π(V) = V ′,
(2) π(E) = {{π(u), π(v)} | {u, v} ∈ E} = E′,
(3) for v′ ∈ V ′,

(3.1) ζ ′(v′) =
∑
v∈V

π(v)=v′

ζ(v),

(4) and for e′ ∈ E′,

(3.2) ω′(e′) =
∑

{u,v}∈E

{π(u),π(v)}=e′

ω({u, v}).

Let µ : V → N be a map indicating the desired coarsening, such that vertices
u and v should be merged into a single vertex precisely when µ(u) = µ(v). Then
we call a coarsening π compatible with µ if for all u, v ∈ V it holds that π(u) = π(v)
if and only if µ(u) = µ(v). The task of the coarsening algorithm is, given G and µ,
to generate a graph coarsening π, G′ that is compatible with µ.

As noted at the end of Section 2.1, the map µ can correspond to a matching M ,
by letting µ(u) = µ(v) if and only if the edge {u, v} ∈M . This ensures that we do
not coarsen the graph too aggressively, only permitting a vertex to be merged with
at most one other vertex during coarsening. Such a coarsening approach is also
used in hypergraph partitioning [20]. For our coarsening algorithm, however, it is
not required that µ is derived from a matching: any map µ : V → N is permitted.

3.1. Star-like graphs. The reason for permitting a general µ (i.e. where
more than two vertices are contracted to a single vertex during coarsening), instead
of a map µ arising from graph matchings is that the recursive coarsening process
can get stuck on star-like graphs [6, Section 4.3].

In Figure 2(a), we see a star graph in which a maximum matching is indicated.
Coarsening this graph by merging the two matched vertices will yield a graph with
only one vertex less. In general, with a k-pointed star, coarsening by matching will
reduce the total number of vertices from k + 1 to k, requiring k coarsening steps to
reduce the star to a single vertex. This is slow compared to a graph for which we can

6 B. O. FAGGINGER AUER AND R. H. BISSELING

(a) (b) (c) (d)

Figure 2. Merging vertices in star-like graphs: by matching in
(a), by merging vertices with the same neighbours in (b), and by
merging more than two vertices in (c). In (d) we see a star-like
graph with a centre clique of 3 vertices and 4 satellites.

find a perfect matching at each step of the coarsening, where the total number of
vertices is halved at each step and we require only log2 k coarsening steps to reduce
the graph to a single vertex. Hence, star graphs increase the number of coarsening
iterations at line 5 of Algorithm 1 we need to perform, which increases running
time and has an adverse effect on parallelisation, because of the few matches that
can actually be made in each iteration.

A way to remedy this problem is to identify vertices with the same neighbours
and match these pairwise, see Figure 2(b) [7, 10]. When maximising clustering
modularity however, this is not a good idea: for clusters C,C ′ ∈ C without any
edges between them, cut(C,C ′) = ∅, merging C and C ′ will change the modularity
by −1

2 Ω2 ζ(C) ζ(C ′) ≤ 0.
Because of this, we will use the strategy from Figure 2(c), and merge multiple

outlying vertices, referred to as satellites from now on, to the centre of the star
simultaneously. To do so, however, we need to be able to identify star centres and
satellites in the graph.

As the defining characteristic of the centre of a star is its high degree, we will
use the vertex degrees to measure to what extent a vertex is a centre or a satellite.
We propose, for vertices v ∈ V , to let

(3.3) cp(v) :=
deg(v)2∑

u∈Vv

deg(u)
,

be the centre potential of v. Here, the degree of a vertex v ∈ V is defined as
deg(v) := |Vv|. Note that for satellites the centre potential will be small, because a
satellite’s degree is low, while the centre to which it is connected has a high degree.
On the other hand, a star centre will have a high centre potential because of its
high degree. Let us make this a little more precise.

For a regular graph where deg(v) = k for all v ∈ V , the centre potential will
equal cp(v) = k2/k2 = 1 for all vertices v ∈ V . Now consider a star-like graph,
consisting of a clique of l vertices in the centre which are surrounded by k satellites
that are connected to every vertex in the clique, but not to other satellites (Figure
2(d) has l = 3 and k = 4), with 0 < l < k. In such a graph, deg(v) = l for satellites

GRAPH COARSENING AND CLUSTERING ON THE GPU 7

v and deg(u) = l − 1 + k for vertices u in the centre clique. Hence, for satellites v

cp(v) =
l2

l (l − 1 + k)
≤ l

l − 1 + l + 1
=

1
2
,

while for centre vertices u

cp(u) =
(l − 1 + k)2

(l − 1) (l − 1 + k) + k l
= 1 +

(
k − 1

2 l − 1 + (l−1)2

k

)
≥ 4

3
.

If we fix l > 0 and let the number of satellites k →∞, we see that

cp(v)→ 0 and cp(u)→∞.

Hence, the centre potential seems to be a good indicator for determining
whether vertices v are satellites, cp(v) ≤ 1

2 , or centres, cp(v) ≥ 4
3 .

In Algorithm 1, we will therefore, after line 9, use cp(v) to identify all satellites
in the graph and merge these with the neighbouring non-satellite vertex that will
yield the highest increase of modularity as indicated by (2.2). This will both provide
greedy modularity maximisation, and stop star-like graphs from slowing down the
algorithm.

4. Parallel implementation

In this section, we will demonstrate how the different parts of the clustering
algorithm can be implemented in a style that is suitable for the GPU.

To make the description of the algorithm more explicit, we will need to deviate
from some of the graph definitions of the introduction. First of all, we consider
arrays in memory as ordered lists, and suppose that the vertices of the graph
G = (V,E, ω, ζ) to be coarsened are given by V = (1, 2, . . . , |V |). We index such
lists with parentheses, e.g. V (2) = 2, and denote their length by |V |. Instead of
storing the edges E and edge weights ω of a graph explicitly, we will store for each
vertex v ∈ V the set of all its neighbours Vv, and include the edge weights ω in this
list. We will refer to these sets as extended neighbour lists and denote them by V ω

v

for v ∈ V .
Let us consider a small example: a graph with 3 vertices and edges {1, 2} and

{1, 3} with edge weights ω({1, 2}) = 4 and ω({1, 3}) = 5. Then for the parallel
coarsening algorithm we consider this graph as V = (1, 2, 3), together with V ω

1 =
((2, 4), (3, 5)) (since there are two edges originating from vertex 1, one going to
vertex 2, and one going to vertex 3), V ω

2 = ((1, 4)) (as ω({1, 2}) = 4), and V ω
3 =

((1, 5)) (as ω({1, 3}) = 5).
In memory, such neighbour lists are stored as an array of indices and weights

(in the small example, ((2, 4), (3, 5), (1, 4), (1, 5))), with for each vertex a range in
this array (in the small example range (1, 2) for vertex 1, (3, 3) for 2, and (4, 4)
for 3). Note that we can extract all edges together with their weights ω directly
from the extended neighbour lists. Hence, (V,E, ω, ζ) and (V, {V ω

v | v ∈ V }, ζ) are
equivalent descriptions of G.

We will now discuss the parallel coarsening algorithm described by Algorithm
2, in which the parallel * functions are slight adaptations of those available in
the Thrust template library [11]. The for . . . parallel do construct indicates a
for-loop of which each iteration can be executed in parallel, independent of all other
iterations.

8 B. O. FAGGINGER AUER AND R. H. BISSELING

Algorithm 2 Parallel coarsening algorithm on the GPU. Given a graph G with
V = (1, 2, . . . , |V |) and a map µ : V → N, this algorithm creates a graph coarsening
π, G′ compatible with µ.
1: ρ← V
2: (ρ, µ)← parallel sort by key(ρ, µ)
3: µ← parallel adjacent not equal(µ)
4: π−1 ← parallel copy index if nonzero(µ)
5: V ′ ← (1, 2, . . . , |π−1|)
6: append(π−1, |V |+ 1)
7: µ← parallel inclusive scan(µ)
8: π ← parallel scatter(ρ, µ)
9: for v′ ∈ V ′ parallel do {Sum vertex weights.}

10: ζ ′(v′)← 0
11: for i = π−1(v′) to π−1(v′ + 1)− 1 do
12: ζ ′(v′)← ζ ′(v′) + ζ(ρ(i))
13: for v′ ∈ V ′ parallel do {Copy neighbours.}
14: V ′ω′

v′ ← ∅
15: for i = π−1(v′) to π−1(v′ + 1)− 1 do
16: for (u, ω) ∈ V ω

ρ(i) do

17: append(V ′ω′

v′ , (π(u), ω))
18: for v′ ∈ V ′ parallel do {Compress neighbours.}
19: V ′ω′

v′ ← compress neighbours(V ′ω′

v′)

We start with an undirected weighted graph G with vertices V = (1, 2, . . . , |V |),
vertex weights ζ, and edges E with edge weights ω encoded in the extended neigh-
bour lists as discussed above. A given map µ : V → N indicates which vertices
should be merged to form the coarse graph.

Algorithm 2 starts by creating an ordered list ρ of all the vertices V , and sorting
ρ according to µ. The function parallel sort by key(a, b) sorts both a and b such
that i ≤ j → b(a(i)) ≤ b(a(j)) for 1 ≤ i, j ≤ |a|, and does so in parallel. Consider
for example a graph with 12 vertices and a given µ:

ρ 1 2 3 4 5 6 7 8 9 10 11 12
µ 9 2 3 22 9 9 22 2 3 3 2 4

Then applying parallel sort by key will yield
ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 2 2 2 3 3 3 4 9 9 9 22 22

We then apply the function parallel adjacent not equal(a) which sets a(1) to 1,
and for 1 < i ≤ |a| sets a(i) to 1 if a(i) 6= a(i− 1) and to 0 otherwise. This yields

ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 1 0 0 1 0 0 1 1 0 0 1 0

Now we know where each group of vertices of G that needs to be merged together
starts. We will store these numbers in the ‘inverse’ of the projection map π, such
that we know, for each coarse vertex v′, what vertices v in the original graph are
coarsened to v′. The function parallel copy index if nonzero(a) picks out the
indices 1 ≤ i ≤ |a| for which a(i) 6= 0 and stores these consecutively in a list, π−1

in this case, in parallel.

GRAPH COARSENING AND CLUSTERING ON THE GPU 9

ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 1 0 0 1 0 0 1 1 0 0 1 0
π−1 1 4 7 8 11

This gives us the number of vertices in the coarse graph as |π−1| = 5, so V ′ =
(1, 2, . . . , |π−1|). To make sure we get a valid range for the last vertex in G′, at line
6 we append |V |+1 to π−1. Now, we want to create the map π : V → V ′ relating the
vertices of our original graph to the vertices of the coarse graph. We do this by re-
enumerating µ using an inclusive scan. The function parallel inclusive scan(a)
keeps a running sum s, initialised as 0, and updates for 1 ≤ i ≤ |a| the value
s← s + a(i), storing a(i)← s.

ρ 2 8 11 3 9 10 12 1 5 6 4 7
µ 1 1 1 2 2 2 3 4 4 4 5 5
π−1 1 4 7 8 11 13

From these lists, we can see that vertices 3, 9, 10 ∈ V are mapped to the vertex
2 ∈ V ′ (so, we should have π(3) = π(9) = π(10) = 2), and from 2 ∈ V ′ we can
recover 3, 9, 10 ∈ V by looking at values of ρ in the range π−1(2), . . . , π−1(2+1)−1.
From the construction of ρ and µ we know that we should have that π(ρ(i)) = µ(i)
for our map π : V → V ′. Note that ρ(i) is the original vertex in V and µ(i) is the
current vertex in V ′. Hence, we use the c = parallel scatter(a, b) function, which
sets c(a(i))← b(i) for 1 ≤ i ≤ |a| in parallel, to obtain π. Now we know both how
to go from the original to the coarse graph (π), and from the coarse to the original
graph (π−1 and ρ). This permits us to construct the extended neighbour lists of
the coarse graph.

Let us look at this from the perspective of a single vertex v′ ∈ V ′ in the coarse
graph. All vertices v in the fine graph that are mapped to v′ by π are given by
ρ(π−1(v′)), . . . , ρ(π−1(v′ + 1) − 1). All vertex weights (line 9) ζ(v) of these v are
summed to satisfy (3.1). By considering all extended neighbour lists V ω

v (line 13),
we can construct the extended neighbour list V ′ω′

v′ of v′. Every element in the
neighbour list is a pair (u, ω) ∈ V ω

v . In the coarse graph, π(u) will be a neighbour
of v′ in G′, so we add (π(u), ω) to the extended neighbour list V ′ω′

v′ of v′.
After copying all the neighbours, we compress the neighbour lists of each vertex

in the coarse graph by first sorting elements (u′, ω) ∈ V ′ω′

v′ of the extended neighbour
list by u′, and then merging ranges ((u′, ω1), (u′, ω2), . . . , (u′, ωk)) in V ′ω′

v′ to a single
element (u′, ω1 + ω2 + . . . + ωk) with compress neighbours. This ensures that
we satisfy (3.2).

Afterwards, we have V ′, {V ′ω′

v′ | v′ ∈ V ′}, and ζ ′, together with a map π : V →
V ′ compatible with the given µ.

4.1. Parallelisation of the remainder of Algorithm 1. Now that we know
how to coarsen the graph in parallel in Algorithm 1 by using Algorithm 2, we will
also look at parallelising the other parts of the algorithm. We generate matchings
µ on the GPU using the algorithm from [8], where we perform weighted matching
with edge weight 2 Ω ω({u, v})− ζ(u) ζ(v) (cf. (2.2)), for each edge {u, v} ∈ E.

Satellites can be marked and merged in parallel as described by Algorithm 3,
where the matching algorithm indicates that a vertex has not been matched to any
other vertex by using a special value for µ, such that the validity of |µ−1({µ(v)})| =
1 can be checked very quickly. Note that in this case the gain of merging a satellite

10 B. O. FAGGINGER AUER AND R. H. BISSELING

Algorithm 3 Algorithm for marking and merging unmatched satellites in a given
graph G = (V,E, ω, ζ), extending a map µ : V → N.

1: for v ∈ V parallel do {Mark unmatched satellites.}
2: if |µ−1({µ(v)})| = 1 and cp(v) ≤ 1

2 then
3: σ(v)← true
4: else
5: σ(v)← false
6: for v ∈ V parallel do {Merge unmatched satellites.}
7: if σ(v) then
8: ubest ←∞
9: wbest ← −∞

10: for u ∈ Vv do
11: w ← 2 Ω ω({u, v})− ζ(u) ζ(v)
12: if w > wbest and not σ(u) then
13: wbest ← w
14: ubest ← u
15: if ubest 6=∞ then
16: µ(v)← µ(ubest)

with a non-satellite as described by (2.2) is only an approximation, since we can
merge several satellites simultaneously in parallel.

In Algorithm 1 (line 11), we can also keep track of clusters in parallel. We
create a clustering map κ : V → N that indicates the cluster index of each
vertex of the original graph, such that for i = 0, 1, . . ., our clustering will be
Ci = {{v ∈ V | κi(v) = k} | k ∈ N} (i.e. vertices u and v belong to the same
cluster precisely when κi(u) = κi(v)). Initially we assign all vertices to a different
cluster by letting κ0(v)← v for all v ∈ V . After coarsening, the clustering is then
updated at line 11 by setting κi+1(v) ← πi(κi(v)). We do this in parallel using
c← parallel gather(a, b), which sets c(i)← b(a(i)) for 1 ≤ i ≤ |a|.

Note that unlike [17, 22], we do not employ a local refinement strategy such
as Kernighan–Lin [13] to improve the quality of the obtained clustering from Algo-
rithm 1, because such an algorithm does not lend itself well to parallelisation. This
is primarily caused by the fact that exchanging a single vertex between two clusters
changes the total weight of both clusters, leading to a change in the modularity gain
of all vertices in both the clusters. A parallel implementation of the Kernighan–Lin
algorithm for clustering is therefore even more difficult than for graph partitioning
[9, 12], where exchanging vertices only affects the vertex’s neighbours. Remedying
this is an interesting avenue for further research.

To further improve the performance of Algorithm 1, we make use of two ad-
ditional observations. We found during our clustering experiments that the mod-
ularity would first increase as the coarsening progressed and then would decrease
after a peak value was obtained, as is also visible in [16, Figure 6 and 9]. Hence, we
stop Algorithm 1 after the current modularity drops below 95% (to permit small
fluctuations) of the highest modularity encountered thus far.

The second optimisation makes use of the fact that we do not perform un-
coarsening steps in Algorithm 1 (although with the data generated by Algorithm 2
this is certainly possible), which makes it unnecessary to store the entire hierarchy

GRAPH COARSENING AND CLUSTERING ON THE GPU 11

G0, G1, G2, . . . in memory. Therefore, we only store two graphs, G0 and G1, and
coarsen G0 to G1 as before, but then we coarsen G1 to G0, instead of a new graph
G2, and alternate between G0 and G1 as we coarsen the graph further.

5. Results

Algorithm 1 was implemented using NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) language together with the Thrust template library [11] on the
GPU and using Intel’s Threading Building Blocks (TBB) library on the CPU. The
experiments were performed on a computer equipped with two quad-core 2.4 GHz
Intel Xeon E5620 processors with hyperthreading (we use 16 threads), 24 GiB RAM,
and an NVIDIA Tesla C2075 with 5375 MiB global memory. All source code for
the algorithms, together with the scripts required to generate the benchmark data,
have been released under the GNU General Public Licence and are freely available
from https://github.com/BasFaggingerAuer/Multicore-Clustering. It is im-
portant to note that the clustering times listed in Table 1, 2, and Figure 3 do
include data transfer times from CPU to GPU, but not data transfer from hard
disk to CPU memory. On average, 5.5% of the total running time is spent on
CPU–GPU data transfer. The recorded time and modularity are averaged over 16
runs, because of the use of random numbers in the matching algorithm [8]. These
are generated using the TEA-4 algorithm [21] to improve performance.

The modularity of the clusterings generated by the CPU implementation is
generally a little higher (e.g. eu-2005) than those generated by the GPU. The
difference between both algorithms is caused by the matching stage of Algorithm 1.
For the GPU implementation, we always generate a maximal matching to coarsen
the graph as much as possible, even if including some edges ({u, v} ∈ E for which
2 Ω ω({u, v}) − ζ(u) ζ(v) < 0) will decrease the modularity. This yields a fast
algorithm, but has an adverse effect on the obtained modularity. For the CPU
implementation, we only include edges {u, v} ∈ E which satisfy 2Ω ω({u, v}) −
ζ(u) ζ(v) ≥ 0 in the matching, such that the modularity can only be increased by
each matching stage. This yields higher modularity clusterings, but will slow down
the algorithm if only a few modularity-increasing edges are available (if there are
none, we perform a single matching round where we consider all edges).

Comparing Table 1 with modularities from [17, Table 1] for karate (0.412),
jazz (0.444), email (0.572), and PGPgiantcompo (0.880), we see that Algorithm
1 generates clusterings of lesser modularity. We attribute this to the absence of a
local refinement strategy in Algorithm 1, as noted in Section 4.1. The modularity
of the clusterings of irregular graphs from the kronecker/ categories is an order of
magnitude smaller than those of graphs from other categories. We are uncertain
about what causes this behaviour.

Algorithm 1 is fast: for the road central graph with 14 million vertices and 17
million edges, the GPU generates a clustering with modularity 0.996 in 4.6 seconds,
while for uk-2002, with 19 million vertices and 262 million edges, the CPU generates
a clustering with modularity 0.974 in 30 seconds. In particular, for clustering of
nearly regular graphs (i.e. where the ratio

(
maxv∈V deg(v)

)
/
(
minv∈V deg(v)

)
is

small) such as street networks, the high bandwidth of the GPU enables us to find
high-quality clusterings in very little time (Table 2). Furthermore, Figure 3(a)
suggests that in practice, Algorithm 1 scales linearly with the number of edges of
the graph, while Figure 3(b) shows that the parallel performance of the algorithm

https://github.com/BasFaggingerAuer/Multicore-Clustering

12 B. O. FAGGINGER AUER AND R. H. BISSELING

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
lu

s
te

ri
n
g
 t
im

e
 (

s
)

Number of graph edges |E|

Clustering time

3*10
-7

 |E|
CUDA

TBB

(a)

 10

 20

 30

 40

 50

 60

 70
 80
 90

 100

 1 2 4 8 16

R
e
la

ti
v
e
 c

lu
s
te

ri
n
g
 t
im

e
 (

%
)

Number of CPU threads

Clustering time scaling

linear
2

15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

(b)

Figure 3. In (a), we show the clustering time required by Al-
gorithm 1 for graphs from the 10th DIMACS challenge [1] test
set (categories clustering/, streets/, coauthor/, kronecker/,
matrix/, random/, delaunay/, walshaw/, dyn-frames/, and
redistrict/), for both the CUDA and TBB implementations and
show that, for large graphs, clustering time scales almost linearly
with the number of edges. In (b), we show the parallel scaling
of the TBB implementation of Algorithm 1 as a function of the
number of threads, normalised to the time required by a single-
threaded run for graphs rgg n 2 k s0 with 2k vertices, from the
random/ category. We compare this to ideal, linear, scaling. The
test system has 8 cores and up to 16 threads with hyperthreading.

scales reasonably with the number of available cores, increasingly so as the size
of the graph increases. Note that with dual quad-core processors, we have eight
physical cores available, which explains the smaller increase in performance when
the number of threads is extended beyond eight via hyperthreading.

From Figure 3(a), we see that while the GPU performs well for large, |E| ≥ 106,
nearly regular graphs, the CPU handles small and irregular graphs better. This
can be explained by the GPU setup time that becomes dominant for small graphs,
and by the fact that for large irregular graphs, vertices with a higher-than-average
degree keep one of the threads occupied, while the threads treating the other, low-
degree, vertices are already done, leading to a low GPU occupancy (i.e. where
only a single of the 32 threads in a warp is still doing actual work). On the CPU,
varying vertex degrees are a much smaller problem because threads are not launched
in warps: they can immediately start working on a new vertex, without having to
wait for other threads to finish. This results in better performance for the CPU on
irregular graphs.

The most costly per-vertex operation is compress neighbours, used during
coarsening. We therefore expect the GPU to spend more time on coarsening than
on matching for irregular graphs. For the regular graph asia (GPU 3.4× faster),
the GPU (CPU) spends 68% (52%) of the total time on matching and 16% (41%) on
coarsening. For the irregular graph eu-2005 (CPU 4.7× faster), the GPU (CPU)

GRAPH COARSENING AND CLUSTERING ON THE GPU 13

G |V | |E| mod1 t1 %1 mod2 t2
karate 34 78 0.363 0.020 13 0.387 0.004
dolphins 62 159 0.453 0.027 7 0.485 0.007
chesapeake 39 170 0.186 0.024 7 0.220 0.005
lesmis 77 254 0.444 0.023 8 0.528 0.006
adjnoun 112 425 0.247 0.032 5 0.253 0.009
polbooks 105 441 0.437 0.034 6 0.472 0.008
football 115 613 0.412 0.033 5 0.455 0.009
c...metabolic 453 2,025 0.374 0.055 3 0.394 0.013
celegansneural 297 2,148 0.390 0.055 3 0.441 0.011
jazz 198 2,742 0.314 0.048 4 0.372 0.010
netscience 1,589 2,742 0.948 0.060 4 0.955 0.040
email 1,133 5,451 0.440 0.078 2 0.479 0.021
power 4,941 6,594 0.918 0.066 3 0.925 0.033
hep-th 8,361 15,751 0.795 0.093 2 0.809 0.070
polblogs 1,490 16,715 0.330 0.129 1 0.396 0.039
PGPgiantcompo 10,680 24,316 0.809 0.095 3 0.842 0.040
cond-mat 16,726 47,594 0.788 0.122 2 0.798 0.083
as-22july06 22,963 48,436 0.607 0.184 1 0.629 0.036
cond-mat-2003 31,163 120,029 0.674 0.195 2 0.690 0.103
astro-ph 16,706 121,251 0.588 0.219 1 0.611 0.085
cond-mat-2005 40,421 175,691 0.624 0.248 2 0.639 0.113
pr...Attachment 100,000 499,985 0.214 1.177 0 0.216 0.217
smallworld 100,000 499,998 0.636 0.468 2 0.663 0.175
G n pin pout 100,000 501,198 0.241 0.851 1 0.246 0.231
caida...Level 192,244 609,066 0.768 0.506 2 0.791 0.198
cnr-2000 325,557 2,738,969 0.828 2.075 1 0.904 0.342
in-2004 1,382,908 13,591,473 0.946 4.403 3 0.974 1.722
eu-2005 862,664 16,138,468 0.816 8.874 1 0.890 1.854
road central 14,081,816 16,933,413 0.996 4.562 11 0.996 13.058
road usa 23,947,347 28,854,312 - -.- - 0.997 20.227
uk-2002 18,520,486 261,787,258 - -.- - 0.974 29.958

Table 1. For graphs G = (V,E), this table lists the average mod-
ularities mod1,2, (1.2), of clusterings of G generated in an average
time of t1,2 seconds by the CUDA1 and TBB2 implementations of
Algorithm 1. The ‘%1’ column indicates the percentage of time
spent on CPU–GPU data transfer. A ‘-’ indicates that the test
system ran out of memory. Results are averaged over 16 runs.
This table lists graphs from the clustering/ category of the 10th
DIMACS challenge [1].

spends 29% (39%) on matching and 70% (57%) on coarsening, so coarsening indeed
becomes the bottleneck for the GPU when the graph is irregular.

The effectiveness of merging unmatched satellites can also be illustrated using
these graphs: for asia the number of coarsenings performed in Algorithm 1 is
reduced from 47 to 37 (1.1× speedup), while for eu-2005 it is reduced from 10,343
to 25 (55× speedup), with similar modularities. This explains the good speedup of

14 B. O. FAGGINGER AUER AND R. H. BISSELING

G |V | |E| mod1 t1 %1 mod2 t2
luxembourg 114,599 119,666 0.986 0.125 6 0.987 0.138
belgium 1,441,295 1,549,970 0.992 0.440 10 0.993 1.106
netherlands 2,216,688 2,441,238 0.994 0.615 13 0.995 1.716
italy 6,686,493 7,013,978 0.997 1.539 13 0.997 5.256
great-britain 7,733,822 8,156,517 0.997 1.793 13 0.997 5.995
germany 11,548,845 12,369,181 0.997 2.818 14 0.997 9.572
asia 11,950,757 12,711,603 0.998 2.693 15 0.998 9.325
europe 50,912,018 54,054,660 - -.- - 0.999 45.205
coA...Citeseer 227,320 814,134 0.837 0.420 3 0.848 0.225
coA...DBLP 299,067 977,676 0.748 0.592 3 0.761 0.279
cit...Citeseer 268,495 1,156,647 0.643 0.894 2 0.682 0.315
coP...DBLP 540,486 15,245,729 0.640 6.427 1 0.666 2.277
coP...Citeseer 434,102 16,036,720 0.746 6.490 2 0.774 2.272
kron...logn18 262,144 10,582,686 0.025 13.598 0 0.025 2.315
kron...logn19 524,288 21,780,787 0.023 28.752 0 0.023 5.007
kron...logn20 1,048,576 44,619,402 - -.- - 0.022 10.878
kron...logn21 2,097,152 91,040,932 - -.- - 0.020 23.792
333SP 3,712,815 11,108,633 0.983 2.712 7 0.984 4.117
ldoor 952,203 22,785,136 0.945 6.717 2 0.950 2.956
audikw1 943,695 38,354,076 - -.- - 0.857 4.878
cage15 5,154,859 47,022,346 - -.- - 0.682 13.758
memplus 17,758 54,196 0.635 0.160 1 0.652 0.043
rgg n 2 20 s0 1,048,576 6,891,620 0.974 1.614 5 0.977 1.383
rgg n 2 21 s0 2,097,152 14,487,995 0.978 3.346 4 0.980 2.760
rgg n 2 22 s0 4,194,304 30,359,198 - -.- - 0.983 5.799
rgg n 2 23 s0 8,388,608 63,501,393 - -.- - 0.986 12.035
rgg n 2 24 s0 16,777,216 132,557,200 - -.- - 0.988 25.139

Table 2. Continuation of Table 1: remaining graphs of the DI-
MACS clustering challenge instances. From top to bottom, we list
graphs from the streets/, coauthor/, kronecker/, numerical/,
matrix/, walshaw/, and random/ categories.

our algorithm over [18] in Table 3 for eu-2005, while we do not obtain a speedup
for belgium.

In the remainder of this section, we will compare our method to the existing
clustering heuristic developed by Riedy et al. [18]. We use the same global greedy
matching and coarsening scheme (Algorithm 1) to obtain clusters as [18]. However,
our algorithm is different in the following respects. Stopping criterion: in [18] clus-
ters are only merged if this results in an increase in modularity and if no such edges
exist, the algorithm is terminated. We permit merges that decrease modularity
to avoid getting stuck in a local maximum and continue coarsening as long as the
modularity is within 95% of the highest encountered modularity so far. Matching:
in [18] a 1

2 -approximation algorithm is used to generate matchings, while we use
the randomised matching algorithm from [8]. Coarsening: in addition to merging
matched edges, we propose a centre potential to treat star-like subgraphs efficiently,
which is not done in [18]. Data storage: [18] uses a clever bucketing approach to

GRAPH COARSENING AND CLUSTERING ON THE GPU 15

G mod1 t1 mod2 t2 modO tO modX tX
caida...Level 0.764 0.531 0.792 0.185 0.540 0.188 0.540 3.764
in-2004 0.955 4.554 0.976 1.887 0.475 55.986 0.488 294.420
eu-2005 0.829 9.072 0.886 1.981 0.420 90.012 0.425 1074.488
uk-2002 - -.- 0.974 31.121 0.473 181.346 0.478 772.359
uk-2007-05 - -.- - -.- 0.476 496.390 0.480 36229.531
belgium.osm 0.992 0.447 0.993 1.187 0.660 0.562 0.643 10.571
coP...DBLP 0.641 6.612 0.668 2.367 0.496 1.545 0.501 9.492
kron...logn20 0.021 59.144 0.022 13.897 0.001 538.060 0.001 8657.181
333SP 0.983 2.712 0.985 4.321 0.515 1.822 0.512 27.790
ldoor 0.944 6.799 0.950 3.071 0.542 1.348 0.611 10.510
audikw1 0.847 15.341 0.858 5.180 0.560 1.635 0.558 9.957
cage15 0.640 32.804 0.677 14.308 0.513 4.846 0.512 48.747
memplus 0.635 0.175 0.654 0.038 0.519 0.034 0.520 0.903
rgg n 2 17 s0 0.958 0.247 0.963 0.174 0.619 0.102 0.619 1.949

Table 3. Comparison between Algorithm 1 and the algorithm
from [18], using raw, single-run results for large graphs from the
10th DIMACS modularity Pareto benchmark, http://www.cc.
gatech.edu/dimacs10/results/. Here, ·1 and ·2 refer to our
CUDA and TBB implementations, while ·O and ·X refer to the
OpenMP and Cray XMT implementations of the algorithm from
[18]. Timings have been recorded on different test systems.

only store each edge once as a triplet, while we use adjacency lists (Section 4). A
direct comparison of the performance of the DIMACS versions of both algorithms
is given in Table 3. We outperform the algorithm from [18] in terms of quality. A
fair comparison of computation times is hard because of the different test systems
that have been used: we (t1 and t2) used two quad-core 2.4 GHz Intel Xeon E5620
processors with a Tesla C2050, while the algorithm from [18] used four ten-core 2.4
GHz Intel Xeon E7-8870 processors (tO) and a Cray XMT2 (tX).

6. Conclusion

In this paper we have presented a fine-grained shared-memory parallel algo-
rithm for graph coarsening, Algorithm 2, suitable for both multi-core CPUs and
GPUs. Through a greedy agglomerative clustering heuristic, Algorithm 1, we try
to find graph clusterings of high modularity to measure the performance of this
coarsening method. Our parallel clustering algorithm scales well for large graphs
if the number of threads is increased, Figure 3(b), and can generate clusterings of
reasonable quality in very little time, requiring 4.6 seconds to generate a modularity
0.996 clustering of a graph with 14 million vertices and 17 million edges.

An interesting direction for future research would be the development of a local
refinement method for clustering, that scales well with the number of available
processing cores, and can be implemented efficiently on GPUs. This would greatly
benefit the quality of the generated clusterings.

http://www.cc.gatech.edu/dimacs10/results/
http://www.cc.gatech.edu/dimacs10/results/

16 B. O. FAGGINGER AUER AND R. H. BISSELING

Acknowledgements

We would like to thank Fredrik Manne for his insights in parallel matching and
coarsening, and the Little Green Machine project, http://littlegreenmachine.
org/, for permitting us to use their hardware under project NWO-M 612.071.305.

References

1. D. A. Bader, P. Sanders, D. Wagner, H. Meyerhenke, B. Hendrickson, D. S. Johnson, C. Wal-
shaw, and T. G. Mattson, 10th DIMACS implementation challenge - graph partitioning and
graph clustering, 2012.

2. H. Bisgin, N. Agarwal, and X. Xu, Does similarity breed connection? - an investigation in
Blogcatalog and Last.fm communities., Proc of. SocialCom/PASSAT’10, 2010, pp. 570–575.

3. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner,
On modularity clustering, IEEE Trans. Knowledge and Data Engineering 20 (2008), no. 2,
172–188.

4. T. Bui and C. Jones, A heuristic for reducing fill-in in sparse matrix factorization, Proc.
Sixth SIAM Conference on Parallel Processing for Scientific Computing (Philadelphia, PA,
USA), SIAM, 1993, pp. 445–452.

5. A. Clauset, M. E. J. Newman, and C. Moore, Finding community structure in very large
networks, Phys. Rev. E 70 (2004), 066111.

6. T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM TOMS 38
(2011), no. 1, 1:1–1:25.

7. I. S. Duff and J. K. Reid, Exploiting zeros on the diagonal in the direct solution of indefinite
sparse symmetric linear systems, ACM TOMS 22 (1996), 227–257.

8. B. O. Fagginger Auer and R. H. Bisseling, A GPU algorithm for greedy graph matching, Proc.
FMC II, LNCS, vol. 7174, Springer Berlin / Heidelberg, 2012, pp. 108–119.

9. B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, Proc. Super-
computing ’95 (New York, NY, USA), ACM, 1995.

10. B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection
ordering, SIAM J. Sci. Comput. 20 (1998), no. 2, 468–489.

11. J. Hoberock and N. Bell, Thrust: A parallel template library, 2010, Version 1.3.0.
12. G. Karypis and V. Kumar, Analysis of multilevel graph partitioning, Proc. Supercomputing

’95 (New York, NY, USA), ACM, 1995, p. 29.
13. B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell

System Technical Journal 49 (1970), 291–307.
14. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Statistical properties of community

structure in large social and information networks, Proc. WWW ’08 (New York, NY, USA),
ACM, 2008, pp. 695–704.

15. M. E. J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev.
E 69 (2004), 066133.

16. M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks,
Phys. Rev. E 69 (2004), 026113.

17. M. Ovelgönne, A. Geyer-Schulz, and M. Stein, Randomized greedy modularity optimization
for group detection in huge social networks, Proc. SNA-KDD ’10 (Washington, DC, USA),
ACM, 2010.

18. E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, Parallel community detection for
massive graphs, Proc. PPAM11 (Torun, Poland), LNCS, vol. 7203, Springer, 2012, pp. 286–
296.

19. S. E. Schaeffer, Graph clustering, Computer Science Review 1 (2007), no. 1, 27–64.
20. B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel

sparse matrix-vector multiplication, SIAM Rev. 47 (2005), no. 1, 67–95.
21. F. Zafar, M. Olano, and A. Curtis, GPU random numbers via the tiny encryption algorithm,

Proc. HPG10 (Saarbrucken, Germany), Eurographics Association, 2010, pp. 133–141.
22. Z. Zhu, C. Wang, L. Ma, Y. Pan, and Z. Ding, Scalable community discovery of large networks,

Proc. WAIM ’08, 2008, pp. 381–388.

http://littlegreenmachine.org/
http://littlegreenmachine.org/

GRAPH COARSENING AND CLUSTERING ON THE GPU 17

7. Appendix

7.1. Reformulating modularity. Our first observation is that for every clus-
ter C ∈ C, by (1.1):

(7.1) ζ(C) = 2 ω(int(C)) + ω(ext(C)).

Now we rewrite (1.2) using the definitions we gave before:

mod(C) =

∑
C∈C

ω(int(C))

Ω
−

∑
C∈C

ζ(C)2

4 Ω2

=
1

4 Ω2

∑
C∈C

(
4 Ω ω(int(C))− ζ(C)2

)
(7.1)
=

1
4 Ω2

∑
C∈C

(
4 Ω

[
1
2

ζ(C)− 1
2

ω(ext(C))
]
− ζ(C)2

)
.

Therefore, we arrive at the following expression,

(7.2) mod(C) =
1

4 Ω2

∑
C∈C

(
ζ(C) (2 Ω− ζ(C))− 2 Ω ω(ext(C))

)
.

As

ext(C) = {{u, v} ∈ E | u ∈ C, v /∈ C} =
⋃

C′∈C
C′ 6=C

cut(C,C ′),

as a disjoint union, we find (2.1).

7.2. Merging clusters. Let C,C ′ ∈ C be a pair of different clusters, set
C ′′ = C ∪ C ′ and let C′ := (C \ {C,C ′}) ∪ {C ′′} be the clustering obtained by
merging C and C ′.

Then ζ(C ′′) = ζ(C) + ζ(C ′) by (2.3). Furthermore, as cut(C,C ′) = ext(C) ∩
ext(C ′), we have that

(7.3) ω(ext(C ′′)) = ω(ext(C)) + ω(ext(C ′))− 2 ω(cut(C,C ′)).

Using this, together with (7.2), we find that

4 Ω2(mod(C′)−mod(C)) = −ζ(C) (2 Ω− ζ(C)) + 2 Ω ω(ext(C))

− ζ(C ′) (2 Ω− ζ(C ′)) + 2 Ω ω(ext(C ′))

+ ζ(C ′′) (2 Ω− ζ(C ′′))− 2 Ω ω(ext(C ′′))
(7.3)
= −ζ(C) (2 Ω− ζ(C)) + 2 Ω ω(ext(C))

− ζ(C ′) (2 Ω− ζ(C ′)) + 2 Ω ω(ext(C ′))

+ (ζ(C) + ζ(C ′)) (2 Ω− (ζ(C) + ζ(C ′)))

− 2 Ω
[
ω(ext(C)) + ω(ext(C ′))− 2 ω(cut(C,C ′))

]
= 4Ω ω(cut(C,C ′))− 2 ζ(C) ζ(C ′).

So merging clusters C and C ′ from C to obtain a clustering C′, leads to a change
in modularity given by (2.2).

18 B. O. FAGGINGER AUER AND R. H. BISSELING

7.3. Proof of the modularity bounds. Here, we contribute a generalisation
of [3, Lemma 3.1] (where the bounds are established for unweighted graphs) to the
weighted case. Let G = (V,E, ω) be a weighted graph and C a clustering of G, we
will show that

−1
2
≤ mod(C) ≤ 1.

From (1.2),

mod(C) ≤

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
− 0 ≤

∑
{u,v}∈E

u,v∈V

ω({u, v})

∑
e∈E

ω(e)
= 1,

which shows one of the inequalities. For the other inequality, note that for every
C ∈ C we have 0 ≤ ω(int(C)) ≤ Ω− ω(ext(C)), and therefore

mod(C) =
1

4 Ω2

∑
C∈C

(
4 Ω ω(int(C))− ζ(C)2

)
(7.1)
=

1
4 Ω2

∑
C∈C

(
4 Ω ω(int(C))− 4 ω(int(C))2 − 4 ω(int(C))ω(ext(C))

− ω(ext(C))2
)

=
1

4 Ω2

∑
C∈C

(
4 ω(int(C)) [Ω− ω(ext(C))− ω(int(C))]− ω(ext(C))2

)
≥ 1

4 Ω2

∑
C∈C

(
0− ω(ext(C))2

)
= −

∑
C∈C

(
ω(ext(C))

2 Ω

)2

.

Enumerate C = {C1, . . . , Ck} and define xi := ω(ext(Ci))
2 Ω for 1 ≤ i ≤ k to obtain

a vector x ∈ Rk. Note that 0 ≤ xi ≤ 1
2 (as 0 ≤ ω(ext(Ci)) ≤ Ω) for 1 ≤

i ≤ k, and because every external edge connects precisely two clusters, we have∑k
i=1 ω(ext(Ci)) ≤ 2 Ω, so

∑k
i=1 xi ≤ 1. By the above, we know that

mod(C) ≥ −‖x‖22,

hence we need to find an upper bound on ‖x‖22, for x ∈ [0, 1
2]k satisfying

∑k
i=1 xi ≤

1. For all k ≥ 2, this upper bound equals ‖(1
2 , 1

2 , 0, . . . , 0)‖22 = 1
2 , so mod(C) ≥ −1

2 .
The proof is completed by noting that for a single cluster, mod({V }) = 0 ≥ −1

2 .

Mathematics Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht,
the Netherlands

E-mail address: B.O.FaggingerAuer@uu.nl

Mathematics Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht,
the Netherlands

E-mail address: R.H.Bisseling@uu.nl

	1. Introduction
	2. Clustering
	3. Coarsening
	4. Parallel implementation
	5. Results
	6. Conclusion
	Acknowledgements
	References
	7. Appendix

