
A GPU Algorithm for Greedy Graph Matching

B. O. Fagginger Auer and R. H. Bisseling

Mathematics Institute, Utrecht University,
Budapestlaan 6, 3584 CD, Utrecht, the Netherlands

B.O.FaggingerAuer@uu.nl

R.H.Bisseling@uu.nl

Abstract. Greedy graph matching provides us with a fast way to coarsen
a graph during graph partitioning. Direct algorithms on the CPU which
perform such greedy matchings are simple and fast, but offer few hand-
holds for parallelisation. To remedy this, we introduce a fine-grained
shared-memory parallel algorithm for maximal greedy matching, together
with an implementation on the GPU, which is faster (speedups up to 6.8
for random matching and 5.6 for weighted matching) than the serial
CPU algorithms and produces matchings of similar (random matching)
or better (weighted matching) quality.

1 Introduction

We propose a fine-grained shared-memory parallel algorithm for generating greedy
matchings of undirected graphs. This algorithm was inspired by the parallel
graph coarsening algorithm discussed in [8, Sec. 3.2] and follows a paradigm
similar to that of the auction algorithm [4] for bipartite graphs (implemented on
the GPU in [17]), but applying to general greedy matchings in arbitrary undi-
rected graphs. The GPU has been used to accelerate solving of sparse problems,
e.g. in the CUSP library [3], which provides sparse linear algebra and graph
computations using CUDA.

Graph matchings have applications in minimising power consumption in dy-
namic wireless networks [19], heuristics for solving the travelling salesman prob-
lem [9], and organ donation [16]. Our primary interest however, will be the coars-
ening of graphs and hypergraphs (where edges may contain more than two ver-
tices). During coarsening, we first match neighbouring vertices in a (hyper)graph
and then merge matched pairs of vertices into a single vertex, which yields a
coarser version of the (hyper)graph. Repeatedly coarsening a (hyper)graph gives
a multi-level hierarchy of increasingly coarser approximations of the original (hy-
per)graph, which is useful for (hyper)graph partitioning, e.g. in the context of
sparse matrix–vector multiplication [5,18] or LU decomposition of sparse matri-
ces [1,7]. The following definitions have been set up such that they can easily be
generalised to hypergraphs.

Graphs will be denoted by G = (V,E), where V ⊆ N is the set of vertices
and E the set of edges of the graph (all e ∈ E are of the form e = {v, w} for

some v, w ∈ V). For v ∈ V , we denote the collection of neighbours of v by

Vv := {w ∈ V | ∃e ∈ E : v, w ∈ e} \ {v}.

The graph G is weighted if it is provided with a function ω : E → R>0 assigning
a weight ω(e) > 0 to each edge e ∈ E.

A matching of G is a map π : V → N such that

1. for all v ∈ V there exists at most one w ∈ V \ {v} such that π(v) = π(w)
(we match at most two vertices to each other),

2. for all v, w ∈ V , v 6= w, if π(v) = π(w), then v ∈ Vw and w ∈ Vv (we only
match neighbouring vertices).

We consider two different vertices v, w ∈ V to be matched to each other if
π(v) = π(w). If we cannot match any more vertices without breaking one of
these two conditions, we call π maximal. If G is weighted, then the weight ωπ of
π is defined as the sum of the weights of all edges included in the matching:

Mπ := {{v, w} ∈ E | π(v) = π(w), v 6= w}, ωπ :=
∑

e∈Mπ

ω(e).

2 Serial matching

We will consider simple greedy random matching, as outlined in Alg. 1. For this
algorithm we use π(v) = ∞ to indicate that the vertex v is unmatched.

Algorithm 1 Serially creates a matching of a graph G = (V,E) with V ⊆ N
by constructing π : V → N ∪ {∞}.
1: Randomise the order of the vertices in V .
2: for v ∈ V do
3: π(v)←∞;
4: for v ∈ V do
5: if π(v) =∞ then
6: w ← select(v, Vv ∩ π−1({∞}));
7: if w 6=∞ then
8: π(v)← min{v, w};
9: π(w)← min{v, w};

The function select(v,W) is defined for vertices v ∈ V and collections of
neighbours W ⊆ Vv. Should W be empty, then select(v,W) = ∞, otherwise
select(v,W) = w for some neighbour w ∈ W of v. Choosing different prescrip-
tions for selecting neighbours gives us different kinds of matchings. Here, we
consider two options for select: random matching and weighted matching.

For random matching, select(v,W) returns the first available w ∈ W . Be-
cause we randomise vertex order, this amounts to matching vertices to random
neighbours, while providing an early exit for the selection mechanism.

For weighted matching, select(v,W) returns a neighbour w ∈ W with
ω({v, w}) = maxu∈W ω({v, u}). Here, the selection process takes longer: every
neighbour needs to be considered to find the heaviest edge originating from v.

Note that in either case Alg. 1 produces maximal matchings. This ensures
that the number of matched vertices is at least half of the maximum possible
number of matched vertices when considering all possible matchings.

Other greedy matching strategies such as dynamic minimum degree (vertices
with fewest unmatched neighbours are matched first) or Karp–Sipser [10] (ver-
tices with a single unmatched neighbour are matched first) are not considered,
because dynamically keeping track of all vertex degrees leads to serialisation.
A more in-depth discussion and comparison of such matching strategies can be
found in [11]. A distributed-memory parallel implementation of the Karp–Sipser
algorithm is presented in [13].

2.1 Matching by decreasing edge weights

We will also compare weighted matchings generated by our GPU algorithm with
weighted matchings generated by Alg. 2.

Algorithm 2 Serially creates a weighted matching of a weighted graph G =
(V,E) with V ⊆ N and weights ω : E → R>0 by constructing π : V → N∪{∞}.
1: for v ∈ V do
2: π(v)←∞;
3: for {v, w} ∈ E in order of decreasing ω({v, w}) do
4: if π(v) =∞, π(w) =∞, and v 6= w then
5: π(v)← min{v, w};
6: π(w)← min{v, w};

Alg. 2 ensures that we always match the vertices belonging to an edge with
maximum weight in the entire graph, in contrast to weighted matching by Alg.
1 where the edge with maximum weight originating from a random vertex is
matched. Because of this, Alg. 2 is 1

2 -optimal, i.e. the weight ωπ of the matching π
generated by Alg. 2 is guaranteed to be at least half of the maximum weight that
any matching of this graph can attain. A distributed-memory parallel algorithm
for weighted matching is given in [12]; this algorithm is based on locally dominant
edges and is also 1

2 -optimal.

3 Parallel matching

A problem with Alg. 1 is its serial nature: in order to prevent matching more than
two vertices to each other, we seemingly have to consider vertices one-by-one.
To be able to match vertices simultaneously, while still satisfying the matching
criteria, we propose Alg. 3, which permits us to evaluate select in parallel for
many vertices.

Algorithm 3 Creates a matching of a graph G = (V,E), with V ⊆ N, in parallel
by constructing π : V → N ∪ {blue, red,dead}.
1: for all v ∈ V parallel do
2: π(v)← blue;
3: done← false;
4: while not done do
5: {Assign vertex colours:}
6: done← true;
7: for all v ∈ V parallel do
8: if π(v) ∈ {blue, red} then
9: done← false;

10: π(v)← colour(v);
11: {Blue vertices propose to red vertices:}
12: for all v ∈ V parallel do
13: if π(v) = blue then
14: if Vv ∩ π−1({blue, red}) = ∅ then
15: σ(v)← dead;
16: else
17: σ(v)← select(v, Vv ∩ π−1({red}));
18: else
19: σ(v)←∞;
20: {Red vertices respond to blue vertices:}
21: for all v ∈ V parallel do
22: if π(v) = red then
23: if Vv ∩ π−1({blue, red}) = ∅ then
24: σ(v)← dead;
25: else
26: σ(v)← select(v, Vv ∩ π−1({blue}) ∩ σ−1({v}));
27: {Match mutual proposals:}
28: for all v ∈ V parallel do
29: if σ(v) = dead then
30: π(v)← dead;
31: else if σ(v) 6=∞ then
32: if σ(σ(v)) = v then
33: π(v)← min{v, σ(v)};

(a) Colour. (b) Propose. (c) Respond. (d) Match.

Fig. 1. Illustration of one iteration of Alg. 3’s main loop: (a) we colour all vertices
blue or red; (b) let the blue vertices propose to the red vertices; (c) let the red vertices
respond to one of these proposals; (d) and match the mutual proposals.

For this algorithm π(v) ∈ {blue, red,dead} indicates that v has not been
matched. The function colour(v) determines for vertices v ∈ V whether they
are put into the blue or the red group. The for all . . . parallel do construct
indicates a for-loop where each iteration can be executed completely indepen-
dently. These for-loops make Alg. 3 suitable for a GPU implementation, where
each independent loop iteration (corresponding to a vertex) is mapped to a dif-
ferent GPU thread. Furthermore, π and σ can be kept on the GPU during the
iterations of Alg. 3, such that communication between the CPU and GPU is
limited to only the start and the end of the matching process.

Alg. 3 starts by marking all vertices v ∈ V as blue (line 2), such that
they are unmatched. Then, we enter the main loop (line 4) and colour each
unmatched vertex blue or red (line 10, this is irrespective of the current colour
of the vertex). All blue vertices propose to red neighbours, chosen by select
(line 17). Vertices without unmatched neighbours are flagged as being dead.
Red vertices then consider proposals made to them by their neighbours, and
respond to one of them, chosen by select (line 26). Here, data thrashing due to
parallel reads and writes to σ is avoided by only checking whether σ(w) = v for
neighbours w ∈ Vv with π(w) = blue. After this, we match all vertices that have
compatible proposals and responses (line 28). Vertices that were flagged as dead
receive a special matching value (dead) so that they are no longer considered
for matching in subsequent iterations. We restart the main loop and reassign
unmatched vertices to either the blue or red group. The main loop is repeated
until we obtain a maximal matching.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20M
at

ch
ed

 v
er

tic
es

/to
ta

l n
r.

 o
f v

er
tic

es
 (

%
)

Number of iterations

Saturation of matching size

ecology2 (1,997,996)
ecology1 (1,998,000)

G3_circuit (3,037,674)
thermal2 (3,676,134)

kkt_power (6,482,320)
af_shell9 (8,542,010)

ldoor (22,785,136)
af_shell10 (25,582,130)

audikw1 (38,354,076)
nlpkkt120 (46,651,696)

cage15 (47,022,346)

Fig. 2. The ratio between the number of matched vertices and the total number of
vertices, as a function of the number of iterations of the while-loop at line 4 of Alg. 3.
The number after each graph name indicates the number of edges.

The effect of iterating the main loop of Alg. 3 can be seen in Fig. 2. Here
we observe that the number of unmatched vertices decreases rapidly as the
number of iterations increases, stabilising when the matching is maximal. Note
that the matching is maximal when all vertices are either matched or dead.

Therefore, we keep track of a ‘done’ flag in Alg. 3, which becomes true when
π−1({blue, red}) = ∅. Because we only need to store a fixed value in ‘done’ at
line 9, we can do this directly in parallel without having to resort to atomic oper-
ations (an atomic compare-and-swap halved performance during experiments).

3.1 Vertex labelling

It is important that the function colour finds different blue and red groups
every iteration, because otherwise we can get stuck in situations where a non-
maximal matching is not enlarged. A direct way to define this function is to
determine the blue and red groups by randomly assigning each vertex to the
blue group with probability p and to the red group with probability 1− p, i.e.

colour(v) =
{

blue with probability p ∈ [0, 1],
red otherwise. (1)

Intuitively, we should ensure that the blue and red groups are approximately
of equal size (by picking p = 1

2 , similar to [8, Sec. 3.2]) so that all unmatched
vertices have a good chance of possessing a neighbour of a different colour and
are therefore able to propose or respond in the current iteration. This leads to a
large number of matched or dead vertices, which will speed up later iterations.

Let us make this more precise by considering random matching in a random
graph G with vertices V = {1, . . . , n}, where an edge between two vertices
v, w ∈ V exists with probability P ({v, w} ∈ E) = d for a fixed density parameter
d ∈ [0, 1]. During a single iteration of Alg. 3 we match a number of vertices
equal to twice the number N of red vertices that receive a proposal from a blue
neighbour, i.e.

N =
∑
v∈V

P (π(v) = red) P (v is proposed to | π(v) = red)

=
∑
v∈V

P (π(v) = red)

1−
∏

w∈V \{v}

(1− P (w proposes to v | π(v) = red))

=
∑
v∈V

P (π(v) = red)

1−
∏

w∈V \{v}

(
1− P (π(w) = blue) P ({v, w} ∈ E)

nr. of red neighb. of w

) .

We now approximate the number of red neighbours of w by its average 1+(1−
p) (d (n− 1)− 1) (since v is already a red neighbour of w). This gives

N ≈ N∗ := n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n− 1)− 1)

)n−1
)

.

The approximate expected fraction of matched vertices in a large random graph
for a single iteration of Alg. 3 then equals

lim
n→∞

2 N∗

n
= 2 (1− p)

(
1− e−

p
1−p

)
. (2)

This function is maximal for p ∈ [0, 1] satisfying 1− p = e−
p

1−p (2− p), yielding
p ≈ 0.53406, independent of the density d. Therefore, this choice of p yields the
largest number of matched vertices per iteration, and hence the shortest running
time of Alg. 3, regardless of the edge density of the random graph. Because of
this, we expect such a p also to work well for non-random graphs, which we
confirmed experimentally for ecology1 in Fig. 3.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100F
ra

ct
io

n
of

 m
ax

im
um

 v
al

ue
 (

%
)

Fraction of vertices that are blue (%)

Influence of relative blue/red group size

Matching weight
Matching size
Matching time

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100F
ra

ct
io

n
of

 m
at

ch
ed

 v
er

tic
es

 (
%

)

Fraction of vertices that are blue (%)

Influence of relative blue/red group size

Observed
Equation (2)

Fig. 3. The effect of the probability p from eq. (1) (left) on the absolute matching size,
weight, and time required to generate the matching, rescaled to a range of 100%, and
(right) on the observed and theoretical, eq. (2), fraction of matched vertices during the
first iteration of Alg. 3 for the matrix ecology1.

3.2 Random vertex assignment

To evaluate eq. (1) in parallel on the GPU we use the MD5 message digest
algorithm [15]. This algorithm calculates a 128-bit value, the MD5 hash, of a
given sequence of bits, such that small changes in this sequence in general result
in a completely different MD5 hash. A sequence of bits is converted to an MD5
hash by padding the sequence such that its number of bits is a multiple of 512,
and then adding the contribution of each 512-bit chunk of the padded sequence
to the hash.

To employ the MD5 algorithm as a random number generator we generate
a single random number r on the CPU, which we pass to the GPU as a pa-
rameter for all threads (we again create a GPU thread for each vertex v ∈ V).
Then, we create for each 32-bit vertex number v a 512-bit array consisting of
{v, r v, . . . , r15 v} and calculate the hash of this array, which we normalise to
obtain a pseudorandom number in [0, 1] for eq. (1). Changing either v or r will
result in a different array and therefore a completely different hash. By generat-
ing different values r, we can therefore create completely different assignments
of the unmatched vertices of the graph, for each iteration of Alg. 3.

To improve performance we only use the first quarter of the MD5 algo-
rithm, which did not reduce the quality of the matchings during experiments.
This makes Alg. 4 fast and parallel, requires only a small amount of thread-
independent storage (we do not store {v, r v, . . . , r15 v} explicitly), and yields
reproducible vertex colourings.

Algorithm 4 Implementation of colourr(v) for Alg. 3, based on [15, Sec. 3.4].
Here v ∈ N is a vertex, r ∈ N is a parameter, p ∈ [0, 1] (eq. (1)), and K and R
are MD5 constants and shift amounts, kept in constant GPU memory.
1: Initialise hash as h0, h1, h2, h3.
2: Let a0 ← h0, a1 ← h1, a2 ← h2, a3 ← h3.
3: for i = 0 to 15 do
4: a4 ← (a1 and a2) or ((not a1) and a3);
5: a5 ← a3, a3 ← a2, a2 ← a1;
6: a1 ← a1 + rol(a0 + a4 + K(i) + v, R(i)); (bitwise rotate left)
7: a0 ← a5;
8: Add a0, . . . , a3 to h0, . . . , h3.
9: v ← r v;

10: if (h0 + h1 + h2 + h3) mod 232 < p 232 then
11: return blue;
12: else
13: return red;

4 Results

For graph coarsening, it is important to randomise the ordering of the vertices
of the graph to ensure that we do not get stuck in star graphs [14, Sec. 5.3].
Therefore, we randomly permute all vertices on the CPU after the graph has
been read from disk (as was also done in the experiments in [11]), where we
use the same permutation for benchmarking the serial and parallel algorithms.
Randomisation of the vertices will decrease performance, because it prevents
coalesced reading on the GPU when looping over vertex neighbours. As we are
interested in the performance of the greedy matching process itself, permuting
the graph and I/O transfer have not been included in the recorded timings. CPU
to GPU transfer takes up, on average, 39% of the time.

The actual implementation of Alg. 3 was done with both NVIDIA’s Compute
Unified Device Architecture (CUDA) library version 3.1.2 and Intel’s Threading
Building Blocks (TBB) library version 3.0 in C++, compiled with g++ ver-
sion 4.1.2 using O3 optimisation flags. For the CUDA implementation, static
graph data (i.e. neighbour ranges, indices, and edge weights) were placed in one-
dimensional textures to improve cache use. Dynamic data (i.e. π and σ) were
placed in one-dimensional arrays, such that using a one-dimensional thread dis-
tribution (one thread per vertex and a CUDA block size of 256) gives us coalesced
data writing everywhere in the algorithm. For more implementation details, we
would like to refer the reader to the source code of the discussed algorithms,
which is freely available at http://www.staff.science.uu.nl/∼faggi101/.

For weighted matching, we use 425 symmetric matrices from the University
of Florida sparse matrix collection [6], where the edge weights are set to the
absolute value of the corresponding matrix entry. For random matching this
set is augmented with the graphs from the 10th DIMACS challenge on graph

partitioning [2], which do not possess edge weights. This gives us a large, unbiased
test set of matrices arising from real-world applications.

 10

 20

 30

 40

 50

 60
 70
 80
 90

 100

 1 2 4 8 16

R
el

at
iv

e
m

at
ch

in
g

tim
e

(%
)

Number of CPU threads

Matching time scaling

ecology2 (1,997,996)
ecology1 (1,998,000)

G3_circuit (3,037,674)
thermal2 (3,676,134)

kkt_power (6,482,320)
af_shell9 (8,542,010)

ldoor (22,785,136)
af_shell10 (25,582,130)

audikw1 (38,354,076)
nlpkkt120 (46,651,696)

cage15 (47,022,346)
ideal scaling

Fig. 4. Scaling of the random matching time of Alg. 3 with the number of TBB threads,
on a dual quad-core CPU with hyperthreading (8 physical cores) in a log-log plot. The
matching time is relative to the matching time required by Alg. 3 on a single core.

The experiments were performed on a computer equipped with two quad-core
2.4 GHz Intel Xeon E5620 processors with hyperthreading, 24 GiB RAM, and an
NVIDIA Tesla C2050 with 2687 MiB global memory. We measured the scaling
of the TBB implementation of Alg. 3 with respect to the number of threads
used by the CPU in Fig. 4 and compared both the CUDA and TBB (using 16
threads) implementations to the serial matching algorithms (Alg. 1 and Alg. 2)
in Fig. 5. Fig. 5 shows the ratios of the average (over 32 random permutations
of the graph vertices) matching size, time, and weight, together with error bars
of one standard deviation. From these results, we observe the following:

• Alg. 3 scales well as we increase the used number of threads. The test system
possesses 8 physical cores, but up to 16 threads with hyperthreading, which
explains good speedups up to 8 threads and smaller speedups thereafter.

• The quality of the generated random matchings by Alg. 3 is comparable to
that of the serial algorithm: for both CUDA and TBB the average matching
size ratio is more than 99%.

• Weighted matching with Alg. 3, for both CUDA and TBB, yields higher
quality matchings than Alg. 1 (average matching weight ratio 115%), but
lower quality matchings than Alg. 2 (ratio of 85%). This is not surprising,
since Alg. 2 always picks the globally heaviest edge, whereas Alg. 1 and Alg.
3 pick heavy edges locally. Furthermore, Alg. 1 does this one-sidedly, whereas
Alg. 3 performs a two-sided comparison (both proposers and responders pick
the heaviest neighbour), which leads to an increase in matching weight.

 80

 85

 90

 95

 100

 105

 110

 115

 120

101 102 103 104 105 106 107 108

M
at

ch
in

g
si

ze
 r

el
. t

o
A

lg
. 1

 (
%

)

Number of graph edges

Matching size for random parallel matching (vs. Alg. 1)

CUDA
TBB

(a)

 0

 1

 2

 3

 4

 5

 6

 7

101 102 103 104 105 106 107 108

S
pe

ed
up

 r
el

. t
o

A
lg

. 1

Number of graph edges

Speedup for random parallel matching (vs. Alg. 1)

CUDA
TBB

(b)

 0

 50

 100

 150

 200

 250

101 102 103 104 105 106 107 108

M
at

ch
in

g
w

ei
gh

t r
el

. t
o

A
lg

. 1
 (

%
)

Number of graph edges

Matching weight for weighted parallel matching (vs. Alg. 1)

CUDA
TBB

(c)

 0

 1

 2

 3

 4

 5

 6

101 102 103 104 105 106 107 108

S
pe

ed
up

 r
el

. t
o

A
lg

. 1

Number of graph edges

Speedup for weighted parallel matching (vs. Alg. 1)

CUDA
TBB

(d)

 0

 50

 100

 150

 200

 250

101 102 103 104 105 106 107 108

M
at

ch
in

g
w

ei
gh

t r
el

. t
o

A
lg

. 2
 (

%
)

Number of graph edges

Matching weight for weighted parallel matching (vs. Alg. 2)

CUDA
TBB

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

101 102 103 104 105 106 107 108

S
pe

ed
up

 r
el

. t
o

A
lg

. 2

Number of graph edges

Speedup for weighted parallel matching (vs. Alg. 2)

CUDA
TBB

(f)

Fig. 5. Comparison between the serial matching algorithms (Alg. 1 and Alg. 2) and
Alg. 3 implemented in CUDA on the GPU and in TBB on a multi-core CPU.

• In Fig. 5 we see that Alg. 3 does not obtain the same speedup for all graphs.
This is related to the ratio of the maximum and minimum degree of the
vertices of the graph, (maxv∈V |Vv|) / (minw∈V |Vw|). When this ratio is large,
vertices with high degree will keep a small number of CUDA threads occupied
for a long time, while the other kernels have already finished, leading to a
low occupancy of the GPU and decreased performance.

• The speedups increase as the graphs become larger. For CUDA, Alg. 3
reaches speedups up to 6.8, 5.6, and 37 compared to random matching with
Alg. 1 and weighted matching with Alg. 1 and Alg. 2. However, for TBB we
only reach speedups up to 1.1, 0.7, and 13.

Most of the time in Alg. 3 is spent loading and storing data, instead of
performing calculations. This is confirmed by the NVIDIA CUDA profiler for
random matching of ecology1, where the instruction-to-byte ratios are equal to
2.36 and 1.31 (according to the profiler, they should be close to 4.06) for propos-
ing and responding to proposals in Alg. 3: this makes the algorithm bandwidth
limited. Non-coalesced memory access due to randomisation is reflected in a
low texture-cache hit rate, which is 35% for proposing, and 3% for respond-
ing, but we do utilize 70% and 82%, respectively, of the maximum available
global memory bandwidth. This explains the fact that the GPU, with its much
larger bandwidth (144 GB/s for a Tesla C2050’s global memory vs. 17 GB/s for
DDR3 RAM), performs better than the CPU TBB implementation, and that for
weighted matching (where the edge weights also need to be read) the speedups
are smaller, because memory traffic is increased. We therefore expect perfor-
mance to be increased further when select involves a more compute-intensive
assessment of each of the vertex’s neighbours.

5 Conclusion

We have described a fine-grained shared-memory parallel algorithm for greedy
graph matching (Alg. 3) and created a GPU implementation of this algorithm to
compare it with serial greedy matching on the CPU (Alg. 1 and 2). For random
matching, Alg. 3 provides maximal matchings of similar quality as Alg. 1, it
is slower for smaller graphs (< 105 edges), but becomes increasingly faster as
the number of edges increases (up to a speedup factor of 6.8). For weighted
matching of large graphs, Alg. 3 offers both better performance (speedups up
to 5.6) and better quality than Alg. 1, while compared to Alg. 2 we sacrifice
matching quality for a much better performance (speedups up to 37). Alg. 3
performs much better on the GPU than on the multi-core CPU because of the
GPU’s superior memory bandwidth. These results were obtained for a large set
of graphs arising from real-world applications.

We are interested in applying this algorithm in the context of (hyper)graph
coarsening [18] and anticipate that there, with more complicated ways for ver-
tices to select desired neighbours to be matched to, the ability of Alg. 3 to
perform many of these selections in parallel will lead to higher speedups.

Acknowledgements

We would like to thank Albert-Jan Yzelman and Jaap Eldering for their help in
refining the algorithm, Vianney Govers for extensive technical support, and the
Little Green Machine project, http://littlegreenmachine.org/, for enabling
us to run our benchmarks on their hardware under project NWO-M 612.071.305.

References

1. Aykanat, C., Pinar, A., Çatalyürek, U.V.: Permuting sparse rectangular matrices
into block-diagonal form. SIAM J. Sci. Comput. 25(6), 1860–1879 (2004)

2. Bader, D.A., Sanders, P., Wagner, D., Meyerhenke, H., Hendrickson, B., Johnson,
D.S., Walshaw, C.: 10th DIMACS implementation challenge - graph partitioning
and graph clustering (2011), http://www.cc.gatech.edu/dimacs10/index.shtml

3. Bell, N., Garland, M.: Cusp: Generic parallel algorithms for sparse matrix and
graph computations (2010), http://cusp-library.googlecode.com, version 0.1.0

4. Bertsekas, D.P.: A distributed asynchronous relaxation algorithm for the assign-
ment problem. In: 24th IEEE CDC. vol. 24, pp. 1703–1704 (1985)

5. Çatalyürek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Par. Dist. Syst. 10(7),
673–693 (1999)

6. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
TOMS 38(1) (2011)

7. Grigori, L., Boman, E.G., Donfack, S., Davis, T.A.: Hypergraph-based unsymmet-
ric nested dissection ordering for sparse LU factorization. SIAM J. Sci. Comput.
32(6), 3426–3446 (2010)

8. Her, J.H., Pellegrini, F.: Efficient and scalable parallel graph partitioning (2010),
Parallel Computing (to appear)

9. Kahng, A.B., Reda, S.: Match twice and stitch: a new TSP tour construction
heuristic. Operations Research Letters 32(6), 499–509 (2004)

10. Karp, R.M., Sipser, M.: Maximum matchings in sparse random graphs. In: Proc.
22nd FOCS. pp. 364–375 (1981)

11. Langguth, J., Manne, F., Sanders, P.: Heuristic initialization for bipartite matching
problems. J. Exp. Algorithmics 15(1.3), 1.1–1.22 (2010)

12. Manne, F., Bisseling, R.H.: A parallel approximation algorithm for the weighted
maximum matching problem. In: PPAM 2007. LNCS, vol. 4967, pp. 708–717 (2008)

13. Patwary, M.A., Bisseling, R.H., Manne, F.: Parallel greedy graph matching using
an edge partitioning approach. In: Proc. HLPP 2010. pp. 45–54. ACM (2010)

14. Preis, R.: Analyses and design of efficient graph partitioning methods. HNI-
Verlagsschriftenreihe, Heinz Nixdorf Inst, Univ. Paderborn (2001)

15. Rivest, R.L.: The MD5 message-digest algorithm (1992), Internet RFC 1321
16. Segev, D.L., Gentry, S.E., Warren, D.S., Reeb, B., Montgomery, R.A.: Kidney

paired donation and optimizing the use of live donor organs. JAMA 293(15), 1883–
1890 (2005)

17. Vasconcelos, C.N., Rosenhahn, B.: Bipartite graph matching computation on GPU.
In: Proc. EMMCVPR 2009. pp. 42–55. Springer-Verlag, Berlin, Heidelberg (2009)

18. Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev. 47(1), 67–95 (2005)

19. Xing, G., Lu, C., Zhang, Y., Huang, Q., Pless, R.: Minimum power configuration
for wireless communication in sensor networks. ACM Trans. Sen. Netw. 3(2) (2007)

