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1 Introduction

The discrete Fourier transform (DFT) plays an important role in compu-
tational science. DFT applications range from solving numerical differential
equations to signal processing. (For an introduction to DFT applications, see
e.g. [1].) The widespread use of DFTs is mainly due to the existence of fast al-
gorithms, known by the general name of fast Fourier transform (FFT), which
compute the DFT of an input vector of size N in O(N log N) operations in-
stead of the O(N2) operations needed by a direct approach, i.e., by a matrix-
vector multiplication.

In 1965, Cooley and Tukey [2] published a paper describing the FFT idea (giv-
ing special attention to the so-called radix-2 FFT ). Since then, many variants
of the algorithm have appeared. For an extensive discussion of the family of
FFT algorithms, see Van Loan [3]. In recent years, after the dawn of parallel
computing, the originally sequential FFT algorithms have been modified and
adapted to the needs of parallel computation (see e.g. [3–14]).

The lack of a unified parallel computing model and the existence of many
different parallel architectures have made it rather difficult to develop efficient
and portable parallel FFTs. Recently, however, as the parallel programming
environments have become less machine dependent, examples of such algo-
rithms have appeared. Typical examples are the 6-pass (or 6-step) approach
and the related transpose approach (see e.g. [5,6,9–11]). Those algorithms re-
gard the input vector of size N = N0N1 as an N0×N1 matrix, and they carry
out the computations in a similar way as done for two-dimensional FFTs.
Those algorithms require p ≤ min(N0, N1) and hence in particular p ≤

√
N

must hold.

As the number of available processors grows and the communication speed
increases, it is important to develop parallel algorithms that can handle more
than

√
N processors. Though generalized algorithms have already been pro-

posed, they only work for very specific combinations of N and p such as
N = 2qr and p = 2(q−1)s with q, r, s integers with s ≤ r [12, Chap. 10.3] or
even s = r [13]. Furthermore, to our knowledge none of those algorithms were
implemented.

Our main aim in this paper is to present a new parallel FFT algorithm and
its implementation. Our parallel algorithm works for any p < N as long as
both N and p are powers of two, which is required because of the radix-2
framework. (A mixed-radix framework is discussed in [15].) In Section 2, we
briefly introduce the basic framework of radix-2 and radix-4 FFTs and the
bulk synchronous parallel (BSP) model. In Section 3, we derive our paral-
lel FFT algorithm by inserting suitable permutation matrices into the basic
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radix-2 decomposition of the Fourier matrix. This approach leads to a simple
distributed memory parallel FFT algorithm which is easy to implement. In
Section 4, we present a set of subroutines that can be used in the implementa-
tion of the algorithm. In Section 5, we present variants of our FFT algorithm.
We show how to modify the algorithm to accept vectors that are not in the
block distribution. We also show how to obtain a cache-friendly version of our
algorithm that takes advantage of the cache memory of a computer by break-
ing up the computations into small sections in such a way that the data stored
in the cache is completely used before new data is brought in. In Section 6, we
present results regarding the performance of our implementation and discuss
aspects such as the cache effect. In Section 7, we draw our conclusions and
discuss future work.

2 Background

2.1 The fast Fourier transform

The DFT of a complex vector z of size N is defined as the complex vector Z,
also of size N , with components

Zk =
N−1∑

j=0

zje
2πijk

N , 0 ≤ k < N. (1)

The inverse DFT, which transforms the complex vector Z back into the vector
z, is then defined by

zj =
1

N

N−1∑

k=0

Zke
−

2πijk
N , 0 ≤ k < N. (2)

Alternatively, the DFT can be seen as a matrix-vector multiplication:

Z = FN · z. (3)

The complex matrix FN is known as the N×N Fourier matrix ; it has elements
(FN)jk = wjk

N , where

wN = e
2πi
N . (4)

For simplicity, we will restrict our discussion to values of N that are powers of
two, which is a requirement of the radix-2 framework. The sequential iterative
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radix-2 FFT algorithm starts with the so-called bit reversal permutation of
the input vector (see Section 4.2), and proceeds in log2 N butterfly stages,
AK,N (numbered K = 2, 4, 8, . . . , N) as described in Algorithm 1.

Algorithm 1 Sequential radix-2 FFT algorithm.
Input y = (yin

0 , . . . , yin
N−1): Complex vector of size N ; N is a power of 2 with

N ≥ 2.
Output y← (yout

0 , . . . , yout
N−1), where yout

k =
∑N−1

j=0 yin
j exp(2πijk/N).

Step 1. Perform a bit reversal on y.
Step 2. Perform log2 N butterfly stages AK,N on y.

K ← 2
while K ≤ N do

for t = 0 to N −K step K do

for j = 0 to K/2− 1 do





zt+j

zt+j+K/2




←






zt+j + wj
K · zt+j+K/2

zt+j − wj
K · zt+j+K/2






K ← 2 ·K

Each butterfly stage consists of (K/2)·(N/K) pairwise butterfly computations.
These operations cost one complex multiplication and two additions, or 10 real
floating point operations (flops), per pair. The total flop count of the radix-2
FFT is therefore

CFFT−2(N) = 10 · K
2
· N
K
· log2 N = 5N log2 N.

Following Van Loan’s matrix approach [3], Algorithm 1 can be described as
a sequence of sparse matrix-vector multiplications which corresponds to the
following decomposition of the Fourier matrix 1

FN = AN,N · · ·A8,NA4,NA2,NPN , (5)

where PN is the N ×N permutation matrix corresponding to the bit reversal
permutation (step 1 of Algorithm 1), and the N×N matrices AK,N correspond
to the butterfly stages (step 2). The block structure of the butterfly stages
leads to block-diagonal matrices of the form

AK,N = IN/K ⊗BK , (6)

1 Actually, the matrix decomposition corresponding to the algorithm of Cooley and
Tukey [2] is FN = PN ÃN,N · · · Ã8,N Ã4,N Ã2,N , where ÃK,N = P−1

N AK,NPN .
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which is shorthand for a block-diagonal matrix diag(BK , . . . , BK) with N/K
copies of the K×K matrix BK on the diagonal. The symbol ⊗ represents the
direct (or Kronecker) product of two matrices, which is formally defined at
the end of this subsection. The matrix BK is known as the K ×K 2-butterfly
matrix which corresponds to the inner loop of step 2 of Algorithm 1. This
matrix can be written as

BK =






IK/2 ΩK/2

IK/2 −ΩK/2




 . (7)

Here, the matrix IK/2 is the K/2 × K/2 identity matrix and ΩK/2 is the
K/2×K/2 diagonal matrix

ΩK/2 = diag(w0
K , w1

K , . . . , w
K/2−1
K ). (8)

Later on, we will also need generalized versions of AK,N :

Aα
K,N = IN/K ⊗Bα

K , (9)

where Bα
K is the generalized K ×K 2-butterfly matrix [6,16,17]

Bα
K =






IK/2 Ωα
K/2

IK/2 −Ωα
K/2




 , (10)

which has the same form as the original BK , but with the weights wj
K in (8)

replaced by wj+α
K , where α can be any real number.

In practice, often a radix-4 FFT is used. A radix-4 algorithm can be derived
completely analogously to the radix-2 algorithm, yielding a similar matrix
decomposition. The algorithm starts with a reversal of pairs of bits instead
of a reversal of single bits, and proceeds in log4 N 4-butterfly stages which
involve quadruples of vector components instead of pairs. Since 34 flops are
performed per quadruple, this brings the flop count down to

CFFT−4(N) = 34 · K
4
· N
K
· log4 N = 4.25N log2 N.

The resulting algorithm has the disadvantage that either it must be assumed
that N is a power of four, or special precautions must be taken which compli-
cate the algorithm.
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We take a slightly different approach: wherever possible we take pairs of stages
AK,NAK/2,N together and perform them as one operation. Our K × K 4-
butterfly matrix has the form

DK = BK(I2 ⊗BK/2) =













IK/4 Λ2
K/4 ΛK/4 Λ3

K/4

IK/4 −Λ2
K/4 iΛK/4 −iΛ3

K/4

IK/4 Λ2
K/4 −ΛK/4 −Λ3

K/4

IK/4 −Λ2
K/4 −iΛK/4 iΛ3

K/4













, (11)

where ΛK/4 is the K/4×K/4 diagonal matrix

ΛK/4 = diag(w0
K , w1

K , . . . , w
K/4−1
K ). (12)

This matrix is a symmetrically permuted version of the radix-4 butterfly ma-
trix [3]. 2 This approach gives the efficiency of a radix-4 FFT algorithm, and
the flexibility of treating a parallel FFT within the radix-2 framework. For
example, if we wish to permute the data sometime during the computation,
for reasons of data locality, this can happen after any stage, and not only after
an even number of stages.

An algorithm for the inverse FFT is obtained using the following property:

F−1
N =

1

N
F̄N =

1

N
ĀN,N · · · Ā4,N Ā2,NPN . (13)

The backward algorithm is basically the same as the forward one, the only
difference being that the powers of wK are replaced by their conjugates and
that the final result is rescaled.

Now, we define the direct product of two matrices and give some properties
that will be used in the course of this paper.

Definition 1 (Direct product) Let A be a q× r matrix and B be an m×n
matrix. Then the direct product (or Kronecker product) of A and B is the
qm× rn matrix defined by

A⊗ B =










a0,0B · · · a0,r−1B
...

. . .
...

aq−1,0B · · · aq−1,r−1B










.

2 In verifying this, note that Van Loan defines the weights to be wK = exp(−2πi
K ).
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As one would expect, the direct product is associative, but it is not commuta-
tive. Lemma 2 summarizes some direct product properties that follow directly
from the definition. (See [3,18] for other useful properties).

Lemma 2 (Properties of the direct product) The following holds.

(1) (A⊗B)(C ⊗D) = (AC)⊗ (BD), provided the products AC and BD are
defined.

(2) (Im ⊗ In) = Imn.
(3) If A and B are square matrices of order m and n, respectively,

then (A⊗ In)(Im ⊗ B) = (A⊗ B) = (Im ⊗B)(A⊗ In).
(4) If A and B are square matrices of order n such that AB = BA,

then (Im ⊗ A)(Im ⊗B) = (Im ⊗ B)(Im ⊗A).

2.2 The bulk synchronous parallel model

The BSP model [19] is a parallel programming model which gives a simple and
effective way to produce portable parallel algorithms. It does not depend on
a specific computer architecture, and it provides a simple cost function that
enables us to choose between algorithms without actually having to imple-
ment them. In the BSP model, a computer consists of a set of p processors,
each with its own memory, connected by a communication network that allows
processors to access the private memories of other processors. Accessing local
memory (the processor’s own memory) is faster than accessing remote memory
(memory owned by other processors), but access time is considered to be in-
dependent from the computer architecture. In this model, algorithms consist
of a sequence of supersteps and synchronization barriers. The use of super-
steps and synchronization barriers imposes a sequential structure on parallel
algorithms, and this greatly simplifies the design process.

The variant of the BSP model that we use is a single program multiple data
(SPMD) model, i.e., each one of the p processors executes a copy of the same
program, though each has its own data. The program distinguishes between
the processors through a parameter s (the processor identification number).
Special cases are treated using “if” statements. In our model, a superstep is
either a computation superstep, or a communication superstep. A computation
superstep is a sequence of local computations carried out on data already
available locally before the start of the superstep. A communication superstep
consists of communication of data between processors. To ensure the correct
execution of the algorithm, global synchronization barriers (i.e., places of the
algorithm where all processors must synchronize with each other) precede
and/or follow a communication superstep.
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A BSP computer can be characterized by four global parameters:

• p, the number of processors;
• v, the single-processor computing velocity in flop/s;
• g, the communication time per data element sent or received, measured in

flop time units;
• l, the synchronization time, also measured in flop time units.

Algorithms can be analyzed by using the parameters p, g, and l. The parameter
v is used to estimate the total execution time after the cost function has
been computed. The flop count of a computation superstep is simply the
maximum amount of work (in flops) of any processor. The flop count of a
communication superstep is hg+l or hg+2l (depending on the number of global
synchronizations), where h is the maximum number of data elements sent or
received by any processor. The cost function of an algorithm can be obtained
by adding the flops of the separate supersteps. This yields an expression of
the form a + bg + cl. For further details and some basic techniques, see [20].
BSPlib [21] is a standard library defined in May 1997 which enables parallel
programming in BSP style. The Paderborn University BSP (PUB) library [22]
is another library for BSP programming; it provides the extra feature of subset
synchronization.

2.3 Parallel radix-2 FFTs

Since the introduction of parallel computers, and even before that, methods for
parallelizing FFT algorithms have been proposed [23]. The earliest methods
produced parallel algorithms with a communication cost of O(log p(N

p
g + l)),

see e.g. [7,8,14]. Such methods appeared as a direct consequence of the divide-
and-conquer structure of the radix-2 FFT algorithm. Chu and George [7] dis-
cuss several parallel algorithms of this type. Restricting the vector size to
powers of two, they present a common framework in which all the algorithms
they discuss are reorderings of one another in the following sense.

Each butterfly stage K of an FFT of size N performs pairwise operations that
combine elements j and j + K/2 from the vector being transformed using the
weight wj mod K

K . Writing j in its binary representation j = (jm−1, . . . , j0)2,
where m = log2 N , we observe that elements j and j + K/2 differ only in bit

log2 K − 1 and that wj mod K
K = w

(jlog2 K−1,...,j0)2
K . If the ordering of the vector is

changed, so that original element j is stored as element l, the butterfly stages
must be modified to carry out the same operations. If the new ordering can
be represented using a permutation of the original bits, it is easy to know
which elements to combine and which weights to use. For example, if N = 16
a possible reordering of the input vector could be l = (j0, j2, j1, j3)2, where
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j = (j3, j2, j1, j0)2. The butterfly stage corresponding to K = 16 should then
combine elements l = (j0, j2, j1, 0)2 with l + 1 = (j0, j2, j1, 1)2 using weights

w
(j2,j1,j0)2
16 .

In the parallel scenario, any group of log2 p bits can be used to represent the
processor number, while the remaining log2(N/p) bits are used to represent
the local index. If the bit corresponding to the current butterfly stage is one
of the log2(N/p) bits that represent the local index, then that stage is local,
otherwise communication is needed.

Swarztrauber [14] carries out a similar discussion. He starts with a more gen-
eral formulation of the problem, where N is not restricted to powers of two,
but when discussing the distributed memory framework, he only considers
FFTs on a hypercube, restricting both p and N to powers of two. A disad-
vantage of the algorithms discussed in [7,8,14] is that reorderings are carried
out by means of exchanging one bit at a time. Since there are log2 p bits in
the processor part, log2 p communication supersteps are needed, each of cost
O(N

p
g + l). A less expensive approach is to exchange all the processor bits with

a group of local bits corresponding to butterfly stages that have already been
performed. Since the communication cost of the permutation that exchanges
many bits is of the same order O(N

p
g + l) as the cost for exchanging one bit,

the reduction in the communication cost is huge.

The basic idea for such algorithms already appears in the original paper by
Cooley and Tukey [2]. In their derivation of the FFT algorithm, they start by
considering the case where N can be decomposed as N = N0N1, and rewrite
(1) as

Zk1,k0 =
N1−1∑

j1=0





N0−1∑

j0=0

zj0,j1w
j0k0N1

N



 w
j1(k1N0+k0)
N , 0 ≤ k1 < N1, 0 ≤ k0 < N0,(14)

where Zk1,k0 = Zk1N0+k0 = Zk, and zj0,j1 = zj0N1+j1 = zj . Since wj0k0N1

N = wj0k0

N0
,

the inner sum of (14) corresponds to a DFT of size N0, which in turn can be
computed by the same procedure as before if N0 is not prime. The outer
sum is similar to a DFT of size N1. They remark that this procedure can
be applied to any possible factorization of N , N = N0 . . . NH−1 and that, if
N is composite enough, real gains (over the O(N2) direct approach) can be
achieved. Afterwards they derive the radix-2 algorithm by choosing N to be
a power of two. If instead of decomposing N into its prime factors, we stop
at a higher level, we obtain a decomposition of the FFT into a sequence of
shorter FFTs that, in the parallel case, can be spread over the processors. This
is what happens in our FFT algorithm presented in the next section and in
algorithms based on the 6-pass approach and the related transpose approach
(see e.g. [5,6,9–11]).
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3 The parallel algorithm

3.1 Group-cyclic distribution family and the parallel FFT

Since our parallel FFT algorithm is based on the radix-2 decomposition (5)
of the Fourier matrix, N must be a power of two. For practical reasons N/p
must be integer and therefore p must also be a power of two. We also assume
that N > p. Our parallel FFT algorithm makes use of the data distributions
defined below.

Definition 3 (Cyclic distribution in r groups, Cr(p, N)) Let r, p, and N
be integers with 1 ≤ r ≤ p ≤ N , such that r divides p and N . Let f be a vec-
tor of size N to be distributed over p processors organized in r groups. Define
M = N/r to be the size of the subvector of a group and u = p/r to be the
number of processors in a group. We say that f is cyclically distributed in r
groups (or r-cyclically distributed) over p processors if, for all j, the element
fj has local index j′ = (j mod M) div u, and is stored in processor s0 + s1,
where s0 = (j div M) · u is the number of the first processor in the group (i.e.,
the processor offset) and s1 = (j mod M) mod u is the processor identification
within the group.

We use the name group-cyclic distribution family to designate all the r-cyclic
distributions generated by the same N and p. This family includes the well-
known cyclic distribution C1(p, N) and block distribution Cp(p, N) as extreme
cases.

The parallel FFT algorithm works as follows. A total of H = ⌈log2 N/ log2(N/p)⌉ =
⌈logN

p
N⌉ phases is performed. (The number of phases is the largest integer

H for which (N/p)H−1 < N .) In phase 0, the algorithm uses the block dis-
tribution to perform the first log2(N/p) butterfly stages, i.e., those involving
butterflies with K ≤ N/p (which we call short distance butterflies). After-
wards, in each intermediate phase 1 ≤ J < H − 1 the r-cyclic distribution
is used, with r = p/(N/p)J , to perform a group of log2(N/p) butterfly stages
with (N/p)J < K ≤ (N/p)J+1 (the medium distance butterflies). Finally, in
phase H−1, the cyclic distribution is used to perform the remaining butterfly
stages, i.e., those involving butterflies with K > (N/p)H−1 (the long distance
butterflies).

Figure 1 illustrates the use of the group-cyclic distribution family in our paral-
lel FFT. The same operations are illustrated in two ways: (A) using the logical
view, and (B) using the storage view. The logical view emphasizes the logical
sequence of the elements in the vector while the storage view emphasizes the
way the elements are actually stored. For the block distribution, both views

10



2716 17 25 10 18 26 11 198 1240 3 3112 1320 2128 29 14 22 30 159 4 5 6 72 23
28242016128

0 4 81 2 3 5 6 7 1210 11 13 15 16 20 24 2817 18 19 21 22 23 25 26 27 29 30 31

0 4 8 12 16 20 24 28
1 5 9 2 6 3 70 4 8 12 10 1113 14 15 3119 2716 17 1820 2124 28 25 29 22 26 30

9

40

282420161284
14

0

23

(A)
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Phase 2: Long distance butterflies

Phase 0: Short distance butterflies

Phase 1: Medium distance butterflies

proc. 6proc. 5 proc. 7proc. 4proc. 0 proc. 1 proc. 2 proc. 3

(B) Phase 0: Short distance butterflies

Phase 1: Medium distance butterflies

Phase 2: Long distance butterflies

.

Fig. 1. Butterfly operations using the group-cyclic distribution family
Cr(p,N) = Cr(8, 32). (A) Logical view, (B) storage view. The short distance but-
terflies (A2,32 and A4,32) are performed using the C8(8, 32) distribution (block dis-
tribution). The medium distance butterflies (A8,32 and A16,32) are performed using
the C2(8, 32) distribution. The long distance butterflies (A32,32) are performed using
the C1(8, 32) distribution (cyclic distribution). For clarity, not all butterfly pairs are
shown.

are the same.

Our algorithm has only O(logN/ log(N/p)) communication supersteps, each
of cost O(N

p
g + l), which is a significant improvement over the O(log p) com-

munication supersteps, also of cost O(N
p
g + l), of the algorithms discussed in

the previous section. McColl [13] outlined a parallel FFT algorithm which is a
special case of the FFT algorithm we present here. His algorithm only works
for N = (N/p)H . Furthermore, his algorithm sends the indices corresponding
to the weights together with the components of the data vector, increasing the
communication costs unnecessarily.

3.2 Permutations and permutation matrices

Let u, v, and N be positive integers such that u divides v and v divides N .
We define the following permutation:
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γu,v,N : {0, . . . , N − 1}→{0, . . . , N − 1}

j = j0 ·M + j1 · u + j2 7→ l = j0 ·M + j2 ·
N

v
+ j1, (15)

where M = N
v
u, j0 = j div M , j1 = (j mod M) div u, and j2 = j mod u. Note

that γ−1
u,v,N = γN

v
, N

u
,N and that γ1,v,N = γu,N,N is the identity permutation. Per-

muting a vector of size N by γu,v,N can be achieved by dividing the vector into
v/u subvectors of size M and then performing a (perfect) shuffle permutation
σu,M :

σu,M : {0, . . . , M − 1}→{0, . . . , M − 1}

j 7→ k = (j mod u) · M
u

+ j div u, (16)

on each of the subvectors. This relation can be expressed by

γu,v,N(j) = (j div M) ·M + σu,M(j mod M), (17)

which implies that γu,u,N = σu,N . The shuffle permutations σp,N and σN
p

,N can

be used to permute a vector of size N distributed over p processors from block
to cyclic distribution and vice-versa.

In the case that p divides N , redistributing a vector of size N from block dis-
tribution to r-cyclic distribution over p processors is equivalent to permuting
it by γu,p,N , where u = p/r. Using matrix notation, this permutation can be
expressed by the N ×N permutation matrix:

(Γu,p,N)lj =







1, if l = γu,p,N(j),

0, otherwise.
(18)

We also define Su,N = Γu,u,N .

Multiplying a vector y by Γu,p,N results in a vector with components (Γu,p,Ny)l =
yγ−1

u,p,N
(l), for all l; in other words, this multiplication corresponds to redistribut-

ing the vector from block distribution to cyclic distribution in r = p/u groups.
Note that Γu,p,N = Ir ⊗ Su, N

p
u, cf. (17). The matrix corresponding to the in-

verse permutation γ−1
u,p,N is Γ−1

u,p,N = ΓT
u,p,N = ΓN

p
, N

u
,N . From now on, we use the

abbreviations Γu and γu to denote Γu,p,N and γu,p,N , respectively. We restrict
the use of subscripts p and N to cases where they are not obvious from the
context.
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3.3 Decomposition of the Fourier matrix

To obtain the parallel FFT algorithm, we modify the original radix-2 decom-
position of the Fourier matrix (5) by inserting identity permutation matrices
IN = Γ−1

u Γu corresponding to the changes of distribution, and regrouping the
matrices in the resulting decomposition. In the case that 1 < p ≤

√
N and

hence H = 2, this is done as follows:

FN = Γ−1
p Γp ·AN,N · Γ−1

p Γp · · ·Γ−1
p Γp · A2N

p
,N · Γ−1

p Γp · AN
p

,N . . . A2,NPN

= Γ−1
p (ΓpAN,NΓ−1

p ) · · · (ΓpA2N
p

,NΓ−1
p )Γp · AN

p
,N . . . A2,NPN . (19)

By defining

Âk,u,p,N = Γu,p,NAku,NΓ−1
u,p,N (20)

and using the fact that Γ1 is the identity matrix, we can rewrite (19) as

FN = Γ−1
p · ÂN

p
,p,p,N · · · Â2 N

p2 ,p,p,N
︸ ︷︷ ︸

phase 1

·ΓpΓ
−1
1 · ÂN

p
,1,p,N · · · Â2,1,p,N

︸ ︷︷ ︸

phase 0

·Γ1PN . (21)

From now on, we denote Âk,u,p,N by Âk,u, reserving the indices p and N for
situations where they are not obvious from the context and for stand-alone
definitions. In the general case, not restricted to p ≤

√
N , we arrive at the

following decomposition of the Fourier matrix:

FN = Γ−1
p ÂN

p
,p . . . Â

2
(N/p)H−1

p
,p

︸ ︷︷ ︸

phase H−1

Γp · Γ−1
(N

p
)H−2 ÂN

p
,(N

p
)H−2 . . . Â2,(N

p
)H−2

︸ ︷︷ ︸

phase H−2

·

Γ(N
p

)H−2 · · ·Γ−1
N
p

ÂN
p

, N
p

. . . Â2, N
p

︸ ︷︷ ︸

phase 1

ΓN
p
· Γ−1

1 ÂN
p

,1 . . . Â2,1
︸ ︷︷ ︸

phase 0

Γ1 · PN .(22)

The matrices Âk,u are block diagonal matrices with block size N
p
:

Âk,u,p,N = Ir ⊗ diag(A
0/u
k,n , A

1/u
k,n , . . . , A

(u−1)/u
k,n ), (23)

where r = p/u, n = N/p, and Aα
k,n was defined previously, cf. (9). We shall

formally state this as Corollary 5 which follows from Theorem 4. Figure 2
exemplifies the structure of the matrix Âk,u.
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Fig. 2. (A) Structure of the N×N matrix Âk,u = Ir⊗diag(A
0/u
k,n , A

1/u
k,n , . . . , A

(u−1)/u
k,n ).

Example with N = 128, p = 8, r = 2, k = 8, and hence u = 4 and n = 16.

(For clarity, the Aα
k,n are depicted as Aα

k ) (B) Matrix diag(A
0/u
k,n , A

1/u
k,n , . . . , A

(u−1)/u
k,n ).

(C) Matrices B
s1/u
k , with s1 = 0, . . . , u− 1.

Theorem 4 Let u, M , and k be powers of two such that 2 ≤ k ≤M/u. Define
n = M/u. Then

Su,MAku,MS−1
u,M = diag(A

0/u
k,n , A

1/u
k,n , . . . , A

(u−1)/u
k,n ).

PROOF. See Appendix A. 2

Corollary 5 Let r, p, and N be powers of two with 1 ≤ r ≤ p < N . Define
u = p/r and n = N/p. Let k be a power of two with 2 ≤ k ≤ n. Then

Âk,u,p,N = Ir ⊗ diag(A
0/u
k,n , A

1/u
k,n , . . . , A

(u−1)/u
k,n ).

PROOF. Define M = N/r. Then

Âk,u,p,N =Γu,p,NAku,NΓ−1
u,p,N = (Ir ⊗ Su,M)(Ir ⊗Aku,M)(Ir ⊗ S−1

u,M)
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= Ir ⊗ (Su,MAku,MS−1
u,M) = Ir ⊗ diag(A

0/u
k,n , A

1/u
k,n , . . . , A

(u−1)/u
k,n ).

2

Starting from the Fourier matrix decomposition (22), it is easy to develop a
parallel (BSP) FFT algorithm. Since all the matrices Âk,u are block diagonal

matrices with block size equal to N/p, every multiplication Âk,u ·y can be han-
dled locally, provided that the vector y is in the block distribution. This prop-
erty guarantees that matrix decomposition (22) separates computation and
communication completely: each generalized butterfly phase (ÂN

p
,u . . . Â2,u) ·y

is a computation superstep, whereas each permutation Γu · y is a communi-
cation superstep. In the next section we give a complete description of the
resulting parallel algorithm.

4 Implementation of the parallel algorithm

We describe our parallel algorithms with a high level of detail. As a result, they
are ready to be implemented, though not necessarily completely optimized.
The following list introduces the terminology used in describing our parallel
algorithms.

• Supersteps. Each superstep is numbered textually and labeled according
to its type: (Comp ) computation superstep, (Comm ) communication super-
step, (CpCm ) subroutine containing both computation and communication
supersteps. Global synchronizations are explicitly indicated by the keyword
Synchronize.
• Indexing. All the indices of vectors are global. This means that vector

elements have a unique index which is independent of the processor that
owns it. This property enables us to describe variables and gain access to
vectors in an unambiguous manner, even though the vector is distributed
and each processor has only part of it.
• Communication. Communication between processors is indicated using

gj ← Put(pid, n, fi).

This operation puts n elements of vector f , starting from element i, into
processor pid and stores them there in vector g starting from element j.
Subscripts are not needed when the first element of the vector is 0 or when
communicating scalars. When communicating more than one element, we
use boldface to emphasize that we are dealing with a vector and not a scalar.
All puts are assumed to be buffered, so that they are safely carried out, even
if f and g happen to be the same.
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Algorithm 2 is a direct implementation of the matrix decomposition (22). Note
that to obtain the normalized inverse transform, the output vector must be
divided by N . The subroutines used in the FFT algorithm are described in
the following subsections.

Algorithm 2 Parallel fast Fourier transform.
Call BSP FFT(s, p, sign, N,y).

Input y = (yin
0 , . . . , yin

N−1): Complex vector of size N , block distributed over
p processors; p and N are powers of two with p < N ; s is the processor
identification number with 0 ≤ s < p; sign is the transform direction.

Output y← (yout
0 , . . . , yout

N−1), where yout
k =

∑N−1
j=0 yin

j exp(sign · 2πijk/N).

1CpCm Parallel bit reversal permutation: y← PN · y.
BSP BitRev(s, p, N,y)

2Comp Phase 0, short distance butterflies: y← (AN
p

,N . . . A2,N) · y.

BTFLY(0, sign, N
p
, 4,ysN

p
)

3CpCm Permutation to the r-cyclic distribution: y← Γp/r · y,
with r = max(1, p/(N/p)).
BSP BlockToCyclic(s− s mod N

p
, s mod N

p
, min(p, N

p
), N

p
,y(s−s mod N

p
)N
p
)

H ← ⌈logN
p

N⌉
for J = 1 to H − 2 do

4Comp Phase J , medium distance butterflies: y← (ÂN
p

,(N
p

)J . . . Â2,(N
p

)J ) · y.

BTFLY( s mod (N/p)J

(N/p)J , sign, N
p
, 4,ysN

p
)

5Comm Permutation to the r-cyclic distribution: y← (Γ p
r
Γ−1

(N
p

)J ) · y,

with r = max(1, p/(N/p)J+1).
BSP CyclicToCyclic(s, p, N, (N/p)J , min(p, (N/p)J+1),y)

6Comp Phase H − 1, long distance butterflies: y← (ÂN
p

,p . . . Â
2

(N/p)H−1

p
,p
) · y.

BTFLY( s
p
, sign, N

p
, 4 (N/p)H−1

p
,ysN

p
)

7CpCm Permutation to block distribution: y← Γ−1
p · y.

BSP CyclicToBlock(0, s, p, N
p
,y)

4.1 Generalized butterflies

The sequential subroutine BTFLY, which multiplies the input vector by Aα
n,n . . . Aα

k0,nAα
k0/2,n

is described in Algorithm 3.

Algorithm 3 Sequential generalized butterfly operations.
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Call BTFLY(α, sign, n, k0,y).

Input α: Butterfly parameter, used to compute the correct weights; 0 ≤ α <
1.
k0: Smaller 4-butterfly size; k0 is a power of two with 4 ≤ k0 ≤ 2n.
y = (y0, . . . , yn−1): Complex vector of size n; n is a power of two with
n ≥ 2.

Output y← Aα
n,n . . . Aα

k0,nAα
k0/2,ny for forward (sign = 1), and

y← Āα
n,n . . . Āα

k0,nĀα
k0/2,ny for backward (sign = −1).

Step 1. Perform pairs of butterfly stages Aα
k,nA

α
k/2,n.

k ← k0

while k ≤ n do

for t = 0 to n− k step k do

Perform 4-butterfly Dα
k = Bα

k (I2 ⊗Bα
k/2).

for j = 0 to k/4− 1 do

a← yt+j + w
sign·2(j+α)
k · yt+j+k/4

b← yt+j − w
sign·2(j+α)
k · yt+j+k/4

c← w
sign·(j+α)
k · yt+j+k/2 + w

sign·3(j+α)
k · yt+j+3k/4

d← w
sign·(j+α)
k · yt+j+k/2 − w

sign·3(j+α)
k · yt+j+3k/4

yt+j ← a + c
yt+j+k/4 ← b + sign · di
yt+j+k/2 ← a− c
yt+j+3k/4 ← b− sign · di

k ← 4 · k
Step 2. Perform the last butterfly stage Aα

n,n.
if k = 2n then

for j = 0 to n/2− 1 do

a← wsign·(j+α)
n · yj+n/2

yj+n/2 ← yj − a
yj ← yj + a

If the needed weights are stored in a lookup table, the cost of Algorithm 3 is

CBTFLY(n, k0) =
17

4
n · log2

4n

k0

+
3

4
n ·

(

log2

4n

k0

mod 2
)

. (24)

The FFT algorithm computes the desired (short, medium, or long distance)
butterfly stages corresponding to phase J , 0 ≤ J < H , by defining the input
parameter α = (s mod u)/u, where u = min(p, (N/p)J), and performing the
generalized butterfly stages on the local part of the vector y (i.e., the subvector
ysN

p
of size N/p that starts at element sN/p).
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The total computation cost of our parallel FFT, Algorithm 2, is obtained by
adding the costs CBTFLY(N

p
, 4) of phases J = 0 to H−2, where H = ⌈logN

p
N⌉,

and CBTFLY(N
p
, 4 (N/p)H−1

p
) of the last phase H − 1. (If H = logN

p
N , then

(N/p)H−1 = p, and the cost of the last phase is also CBTFLY(N
p
, 4).) This gives

a total cost of

CFFT,par,Comp(N, p) =
17

4

N

p
log2 N +

3

4

N

p
[(log2

N

p
mod 2)⌊logN

p
N⌋

+(log2 N mod log2

N

p
) mod 2], (25)

where the second term corresponds to the extra cost we have to pay for per-
forming 2-butterflies. The communication and synchronization costs of our
parallel FFT are discussed in Section 4.5 after we discuss the parallel permu-
tation subroutines.

4.2 Parallel bit reversal

The bit reversal matrix PN is defined by

(PN)jk =







1, if j = revN(k),

0, otherwise.
(26)

Here, revN is the bit reversal permutation

revN : {0, . . . , N − 1}→{0, . . . , N − 1}

j =
m−1∑

l=0

bl2
l 7→ k =

m−1∑

l=0

bm−l−12
l, (27)

where m = log2 N and (bm−1 . . . b0)2 is the binary representation of j. Note
that rev−1

N = revN , which means that P−1
N = PN .

The bit reversal permutation has the following very useful property.

Lemma 6 Let u = 2q and N = 2m, with q ≤ m. Then

revN (j) = revN
u
(j div u) +

N

u
· revu(j mod u), 0 ≤ j < N.

PROOF. Straightforward. 2
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Corollary 7 Let u ≤ N be powers of two. Then PN = (Iu⊗PN
u
)(Pu⊗IN

u
)Su,N .

PROOF. The matrix (Iu ⊗ PN
u
)(Pu ⊗ IN

u
)Su,N corresponds to a sequence of

three permutations:

(1) j → l = σu,N (j) = j mod u · N
u

+ j div u;
(2) l → t = revu(l div N

u
) · N

u
+ l mod N

u
= revu(j mod u) · N

u
+ j div u;

(3) t→ k = t div N
u
·N

u
+revN

u
(t mod N

u
) = revu(j mod u)·N

u
+revN

u
(j div u) =

revN(j).

2

Let y be a vector of size N = 2m block distributed over p = 2q processors.
Suppose that we want to permute it by a bit reversal permutation, i.e., perform
y← PN ·y. Applying Corollary 7 with u = p, it is possible to split the parallel
bit reversal permutation into two parts as shown in Algorithm 4. The first
part sends the elements to the final destination processors, but with the local
indices still in the original order:

j → t = revp(j mod p)
︸ ︷︷ ︸

Proc(t)

·N
p

+ j div p
︸ ︷︷ ︸

t′

.

Having as a basis the block distribution, we use from now on Proc(k) = k div N
p

to denote the processor in which element k is stored, and k′ = k mod N
p

to
denote the local index of the element. The second part permutes the local
indices t′:

t′ → k′ = revN
p
(t′).

Algorithm 4 Parallel bit reversal.
Call BSP BitRev(s, p, N,y).

Input y = (y0, . . . , yN−1): Complex vector of size N , block distributed over p
processors; p and N are powers of two with p < N ; s is the processor
identification number with 0 ≤ s < p.

Output y← PNy.

1Comm Global permutation: y← (Pp ⊗ IN
p
)Sp,N · y.

for j = sN
p

to sN
p

+ N
p
− 1 do

dest← revp(j mod p)
xdest·N

p
+j div p ← Put(dest, 1, yj)
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Synchronize

2Comp Local bit reversal: y← (Ip ⊗ PN
p
) · y.

for t′ = 0 to N
p
− 1 do

ys N
p

+rev N
p

(t′) ← xs N
p

+t′

If we combine the local bit reversal (superstep 2 of Algorithm 4) with the short
distance butterfly phase (superstep 2 of Algorithm 2), we obtain a complete
local sequential FFT. This means that we can easily replace the two supersteps
by any optimized FFT subroutine we can lay our hands on. If p < N/p, it is
possible to optimize superstep 1 of Algorithm 4 by sending packets of data.
This is done in a similar way as when permuting from block to cyclic distri-
bution (see Section 4.4); the only difference is in the destination processor,
which is revp(j mod p) instead of j mod p.

4.3 Permutations within the group-cyclic distribution family

Permuting a vector from the Cr1(p, N) distribution to the Cr2(p, N) distribu-
tion, where r1 = p/u1 and r2 = p/u2 may be any possible group sizes, not
necessarily powers of two, can be done as follows: first, use γ−1

u1
to permute

the vector to the block distribution, and then use γu2 to permute it to the
Cr2(p, N) distribution. This operation is expensive if performed in parallel,
because all the data have to be moved twice around the processors. The best
approach is to combine the two permutations into one:

γu2
u1

: {0, . . . , N − 1}→{0, . . . , N − 1}
j 7→ l = γu2(γ

−1
u1

(j)). (28)

(Note that (γu2
u1

)−1 = γu1
u2

, and that γu2
u1

is an abbreviation for γu2
u1,p,N .) In the

general case, there is no simple formula for computing the destination index
l. Algorithm 5 implements this case.

Algorithm 5 Parallel permutation from r1-cyclic to r2-cyclic distribution.
Call BSP CyclicToCyclic(s, p, N, u1, u2,y).

Input y = (y0, . . . , yN−1): Complex vector of size N , block distributed over
p processors; s is the processor identification number with 0 ≤ s < p;
u1 and u2 are the number of processors in the old group, u1 = p/r1,
and in the new group, u2 = p/r2, respectively.

Output y← Γu2Γ
−1
u1
· y.

1Comm Global permutation γu2
u1

.
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for j = sN
p

to sN
p

+ N
p
− 1 do

l ← γu2
u1

(j)
yl ← Put(l div N

p
, 1, yj)

Synchronize

Some combinations of the parameters r1, r2, p, and N , however, lead to simpler
expressions for the destination index. The simplest case is when r1 or r2 is
equal to p, i.e., one of the distributions involved is the block distribution. This
situation occurs in supersteps 3 and 7 of the FFT algorithm and is discussed
in Section 4.4.

4.4 Permutation from block to cyclic distribution

The permutations σp,N and σ−1
p,N are the permutations that convert a vector

from block to cyclic distribution and vice versa. In the case that p < N/p,
both σp,N and σ−1

p,N can be optimized by sending packets of size N/p2, where
we assume that p2 divides N .

For σp,N , this is done as follows. Let b = N/p. First, we perform a local
permutation σp,b on the local index j′,

j′ → t′ = j′ mod p · b
p

+ j′ div p.

Then we perform a global cyclic permutation of packets on the global index
t = t0 · b + t1 · b

p
+ t2,

t→ k = t1
︸︷︷︸

Proc(k)

·b + t0 ·
b

p
+ t2

︸ ︷︷ ︸

k′

. (29)

This method is illustrated in Figure 3. To verify that it indeed achieves the
desired permutation, we substitute t0 = j div b, t1 = (j mod b) mod p, and
t2 = (j mod b) div p into (29), obtaining

k =(j mod b) mod p · b + j div b · b
p

+ (j mod b) div p

= j mod p · b + (j div b · b + j mod b) div p

= j mod p · b + j div p

=σp,N(j).
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Fig. 3. Two-stage permutation from block to cyclic distribution (storage view).
Example with N = 32 and p = 4. (A) Local σ4,8 permutation. (B) Global cyclic
permutation of packets of size 2.

Algorithm 6 uses the idea described above to permute from block to cyclic
distribution within a group of u processors, numbered s0, s0 +1, . . . , s0 +u−1.
The corresponding subroutine is called with u = min(p, N/p) in superstep 3
of the FFT algorithm, where it performs the permutation for all the p/u = r
groups simultaneously. This achieves the desired permutation by γu,p,N , be-
cause permuting a vector of size N by γu,p,N is the same as dividing it into r
subvectors of size M = N/r and then performing a shuffle permutation σu,M

on each of the subvectors, cf. (17).

Algorithm 6 Parallel permutation from block to cyclic distribution within a
group of processors.
Call BSP BlockToCyclic(s0, s1, u, b,y).

Input s0, s1: Processor offset and processor identification within group; 0 ≤
s1 < u.
y = (y0, . . . , yub−1): Complex vector of size ub, block distributed within
a group of u processors; the local block size, b, is a multiple of u, if
u < b.

Output y← Su,uby.

if u ≥ b then

1Comm Global σu,ub permutation.
for j = s1 · b to (s1 + 1) · b− 1 do

yσu,ub(j) ← Put(s0 + j mod u, 1, yj)
Synchronize

else

2Comp Local σu,b permutation.
for j′ = 0 to b− 1 do

xs1·b+σu,b(j′) ← ys1·b+j′

3Comm Global cyclic permutation of packets.
for proc = 0 to u− 1 do
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yproc·b+s1·
b
u
← Put(s0 + proc, b

u
, xs1·b+proc· b

u
)

Synchronize

Subroutine BSP CyclicToBlock, which carries out γ−1
u,p,N is obtained by in-

verting subroutine BSP BlockToCyclic. The algorithm starts by performing a
global cyclic permutation of packets within a group of u processors, and then
it carries out a local permutation σ−1

u,b. (The algorithm is not presented here;
see [15] for more details.)

4.5 BSP cost

To compute the total cost of our parallel FFT algorithm (Algorithm 2) we need
to sum the computation, communication, and synchronization costs. The com-
putation costs were already obtained in Section 4.1. To simplify the final result,
we only include the higher order term of the total computation cost (25),

CFFT,par,Comp(N, p) =
17

4

N

p
log2 N, (30)

which is exact when only 4-butterflies are performed.

The communication and synchronization costs are the costs involved in per-
forming the bit reversal and the permutations related to the group-cyclic dis-
tribution family. The maximum amount of data sent or received during a per-
mutation involving complex numbers is equal to N/p complex values (or 2N/p
real values). If the permutation is performed with puts, one synchronization
is needed, giving a total cost of

Cpermut(N, p) = 2
N

p
· g + l (31)

for each of the ⌈logN
p

N⌉ + 1 permutations performed in the FFT algorithm.

The total cost of the FFT algorithm is

CFFT,par(N, p) =
17

4

N

p
log2 N + 2

N

p
(⌈logN

p
N⌉+ 1) · g + (⌈logN

p
N⌉+ 1) · l.(32)

With this cost function, we can answer questions such as: is it ever worthwhile
to use more than p =

√
N processors? The answer would already be positive

if

CFFT,par(p
2, p) > CFFT,par(p

2, 2p). (33)
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One should realise that the values of g and l may grow with p, so that ap-
propriate values g(p) and l(p) must be used in the evaluation of (32). For the
interesting case p ≥ 8, the criterion becomes

17

4
p log2 p + p(6g(p)− 4g(2p)) + 3l(p)− 4l(2p) > 0. (34)

Note that if g does not grow too fast with p, i.e., if g(2p) < 1.5g(p), then
the communication time decreases. The number of synchronizations increases
from three to four, and if l(2p) ≥ l(p), which is most likely, this will cause an
increase in synchronization time. Still, if l does not grow too fast and p and
N are sufficently large, the savings in computation time will be larger than
the additional synchronization time.

In Section 6, we discuss the validity of cost function (32) as an accurate esti-
mator of the true cost of the FFT algorithm, and we also examine the use of
more than

√
N processors for our test machine.

5 Variants of the algorithm

5.1 Parallel FFT using other data distributions

Up to now, we discussed an FFT algorithm where the input and output (I/O)
vector must be block distributed. FFT applications exist, however, where a
different distribution of the I/O vector is preferred or where the distribution
can be freely chosen (see e.g. [10,24,25]). Here, we discuss how to modify our
parallel FFT algorithm to accept I/O vectors that are not distributed by the
block distribution.

The first and the last supersteps of Algorithm 2 are permutations. Because
of this, the algorithm can be modified to accept any I/O data distribution
without any extra communication cost, or even at a smaller communication
cost depending on the desired distributions. If the input vector is not in the
block distribution, the algorithm is modified by combining the redistribution
to block distribution with the bit reversal permutation. If the output vector
is expected to be in a distribution other than the block distribution, this
is done by replacing the permutation from cyclic to block distribution by a
permutation from the cyclic to the desired distribution.

If the desired distribution for the output vector is the cyclic distribution,
the last communication superstep can be completely skipped. The first per-
mutation can also be skipped if the input vector is already stored by the
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distribution associated with the bit reversal permutation. Applications where
the input vector is bit reversed and the output vector is cyclically distributed
are advantageous, because, in such cases, two complete permutations can be
skipped. This saves two thirds of the total communication cost in the com-
mon case that p ≤ N/p, leaving only one permutation in the middle of the
computation. (The idea of skipping permutations to save communication time
or to reduce the overhead caused by local permutations is known. Cooley and
Tukey [2] already suggested this to save local bit reversals. Other authors
[10,24,25] give examples where skipping permutations saves communication
time.)

While the cyclic distribution is simple and widely used, the distribution asso-
ciated with the bit reversal permutation is awkward. Fortunately, it is possible
to modify Algorithm 2 so that the cyclic distribution is a natural input distri-
bution, i.e., a distribution that does not involve any communication as the first
superstep. This is done as follows. The first three supersteps of Algorithm 2
are described by the matrix decomposition

Γu · AN
p

,N . . . A2,N · PN , (35)

where u = min(p, N/p). Knowing that AK,N = Ip ⊗ AK, N
p
, and that the bit

reversal matrix can be decomposed as PN = (Ip ⊗ PN
p
) · (Pp ⊗ IN

p
) · Sp,N (cf.

Corollary 7), we rewrite matrix (35) as

Γu · (Ip ⊗ AN
p

, N
p
) . . . (Ip ⊗A2, N

p
) · (Ip ⊗ PN

p
) · (Pp ⊗ IN

p
) · Sp,N

=Γu · (Ip ⊗ FN
p
) · (Pp ⊗ IN

p
) · Sp,N

=Γu · (Pp ⊗ IN
p
) · (Ip ⊗ FN

p
) · Sp,N . (36)

Here we used Lemma 2. The first three supersteps of the parallel FFT algo-
rithm derived from this new decomposition are: (1Comm) permutation from

block to cyclic distribution, (2Comp) local FFT, (3Comm) permutation defined
by Γmin(p,N/p) · (Pp⊗IN

p
). In the case that the input vector is already cyclically

distributed, the first superstep can be skipped.

5.2 Generalized butterfly phase with adjustable size

In our original algorithm, we chose to insert the permutation matrices Γu

in the leftmost possible position. This procedure corresponds to factoring N
as N = N

(N/p)H−1 (N/p)H−1, and gives an algorithm with a minimum number

of permutations. However, if p 6= (N/p)H−1, it is possible to insert the per-
mutation matrices at an earlier position without increasing the number of
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permutations. The resulting algorithm corresponds to a different factorization
of N .

We can use this flexibility to reduce the computation cost of some combina-
tions of p and N by inserting the permutations so that a maximal number
of generalized butterfly stages are paired off. Another reason to permute the
vector at an earlier stage is that the sizes of the butterfly phases can be better
balanced (so that all factors of N have approximately the same size). This
would enhance the performance on a cache-sensitive computer (see the discus-
sion in Section 6). An even more effective way of enhancing the performance on
a cache-sensitive computer is to reduce the butterfly sizes so that the butter-
flies always fit completely in the cache. We suggest a method in the following
subsection.

5.3 Cache-friendly parallel FFT

Each computation superstep of our parallel FFT algorithm performs a but-
terfly phase which consists of a sequence of generalized butterfly stages rep-
resented by the operation y ← Rα

l,ny, where l and n are powers of two with
2 ≤ l ≤ n, and

Rα
l,n = Aα

n,n · · ·Aα
2l,nAα

l,n, (37)

is an n×n matrix. Suppose that the cache memory of a computer is such that
the data needed by a butterfly phase of size n/v, where v < n is a power of
two, fits totally in the computer cache. We can view v as the number of virtual
processors available in each processor. If we decompose (37) into a sequence
of smaller butterfly phases of size less than or equal to n/v which can be
carried out independently from each other, we can fully exploit the cache of
the computer.

Define h = ⌈logn
v
n⌉ and j = ⌈logn

v
l⌉ − 1, so that (n

v
)j < l ≤ (n

v
)j+1. Similarly

to (22), if we denote Γu,v,n by Γu, we can write

Rα
l,n = Γ−1

v Âα
n
v

,v . . . Âα

2
(n/v)h−1

v
,v

︸ ︷︷ ︸

phase h−j−1

Γv · Γ−1
(n

v
)h−2 Âα

n
v

,(n
v
)h−2 . . . Âα

2,(n
v
)h−2

︸ ︷︷ ︸

phase h−j−2

Γ(n
v
)h−2 · . . .

. . . · Γ−1
(n

v
)j+1 Âα

n
v

,(n
v
)j+1 . . . Âα

2,(n
v
)j+1

︸ ︷︷ ︸

phase 1

Γ(n
v
)j+1 · Γ−1

(n
v
)j Âα

n
v

,(n
v
)j . . . Âα

l

(n/v)j
,(n

v
)j

︸ ︷︷ ︸

phase 0

Γ(n
v
)j ,

(38)
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where Âα
k,u is an abbreviation for the n× n matrix Âα

k,u,v,n = Γu,v,nAα
ku,nΓ

−1
u,v,n.

Generalized versions of Theorem 4 and Corollary 5 can be used to prove that

Âα
k,u,v,n = I v

u
⊗ diag(A

α/u
k, n

v
, A

(α+1)/u
k, n

v
, . . . , A

(α+u−1)/u
k, n

v
). (39)

The matrix decomposition (38) can be used to construct an alternative (cache-
friendly) algorithm for the computation of the generalized butterfly phases.
Note that if α = 0 then the resulting algorithm can be used to construct a
cache-friendly sequential FFT algorithm.

6 Performance results and discussion

In this section, we present results on the performance of our implementation
of the FFT. We implemented the FFT algorithm for the block distribution in
ANSI C using the BSPlib communications library [21]. Our programs are com-
pletely self-contained, and we did not rely on any system-provided numerical
software such as BLAS, FFTs, etc.

We tested our implementation on a Cray T3E with up to 64 processors, each
having a theoretical peak speed of 600 Mflop/s. The accuracy of double pre-
cision (64-bit) arithmetic is 1.0 × 10−15. We also give accuracy results from
calculations on a Sun workstation using IEEE 754 floating point arithmetic,
which has a double precision accuracy of 2.2 × 10−16, and which is the stan-
dard used in many computers such as workstations. To make a consistent
comparison of the results, we compiled all test programs using the bspfront

driver with options -O3 -flibrary-level 2 -fcombine-puts and measured
the elapsed execution times on exclusively dedicated CPUs using the system
clock. The times given correspond to an average of the execution times of a
forward FFT and a normalized backward FFT.

6.1 Accuracy

We tested the overall accuracy of our implementation by measuring the error
obtained when transforming a random complex vector f with values Re(fj) and
Im(fj) uniformly distributed between 0 and 1. The relative error is defined as
||F∗−F||2/||F||2, where F∗ is the vector obtained by transforming the original
vector f by a forward (or backward) FFT, and F is the exact transform, which
we computed using the same algorithm but using quadruple precision. Here,
|| · ||2 indicates the L2-norm.
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Table 1 shows the relative errors of the sequential algorithm for various prob-
lem sizes. Since the error for the forward and backward FFT are approximately
the same, we present only the results for the forward transform. The errors of
the parallel implementation are of the same order as in the sequential case. In
fact, the error of the parallel implementation only differs from the error of the
sequential one if the butterfly stages are not paired in the same way. This val-
idates the parallel algorithm. The results also indicate that IEEE arithmetic
is superior to the CRAY-specific arithmetic.

Table 1

Relative errors for the sequential FFT algorithm.

N CRAY T3E IEEE 754

512 2.4× 10−16 1.9× 10−16

1024 5.2× 10−16 1.6× 10−16

2048 8.4× 10−16 1.8× 10−16

4096 2.1× 10−15 1.9× 10−16

8192 3.2× 10−15 2.0× 10−16

16384 6.5× 10−15 2.2× 10−16

32768 2.3× 10−14 2.3× 10−16

65536 3.4× 10−14 2.3× 10−16

6.2 Performance of the sequential implementation

Our sequential FFT algorithm was implemented using Algorithm 3 with α = 0.
Its efficiency can be analyzed by looking at execution times or FFT flop rates :

FFTrate(seq, N) =
5N log2 N

Time(seq, N)
, (40)

where Time(seq, N) is the execution time of the sequential implementation.
Analyzing the performance of an FFT algorithm by using the number of flops
of the radix-2 FFT as basis is a standard and useful procedure. By doing so,
it is possible to compare different algorithms with different cost functions and
also to evaluate the overall performance of the algorithm as a function of N .
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Table 2

Timing results (in ms) and FFT flop rates (in Mflop/s) of the sequential FFT on

the Cray T3E.

N Time FFTrate

128 0.10 47.3

256 0.15 69.6

512 0.41 56.5

1024 0.66 77.5

2048 1.82 62.1

4096 2.94 83.5

8192 19.95 26.7

16384 58.91 19.5

32768 149.79 16.4

65536 318.28 16.5

Table 2 gives timing results and FFT flop rates for various problem sizes.
The flop rates show that the performance of the algorithm increases until
N = 4096, when it suddenly drops. This sudden decrease in performance
happens because the data space allocated by the program becomes too large
to fit completely in the cache memory of the CRAY T3E, which means that
the computation becomes more expensive, because more accesses to the main
memory are needed. The cache size of the CRAY T3E is 96 Kbytes, which
means that a sequential FFT of size up to N = 4096 fits completely in the
cache (64 Kbytes for the data vector + 8 Kbytes for the weights table).

6.3 Scalability of the parallel implementation

The timing results obtained by our parallel algorithm are summarized in Ta-
ble 3. We also present the theoretical predictions using the cost function (32)
and the values of the BSP parameters v, g, and l listed in Table 4 which
were obtained using a modified version of the benchmark program from BSP-
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pack 3 [15].

Except for the out-of-cache computations (boldface entries in Table 3), the
timings show that the BSP cost function predicts the behavior of the parallel
implementation well. The discrepancy between predicted and measured results
for out-of-cache computations is to be expected, since the computation speed,
which we assumed to be constant, suddenly drops when the computations
cannot be done completely in cache. These results show that the BSP model
is a valid tool for analyzing and predicting parallel performance.

Table 3 shows that using
√

N processors or more is not advantageous on our
test machine and with our limited number of processors, cf. the timings for
N = 512, 1024 with p = 32, 64 and for N = 2048, 4096 with p = 64. Table 4
tells us that the growth of g satisfies g(2p) < 1.5g(p) for all p, so that the
communication time decreases with p for all problem sizes N , cf. (34). For
small problems, the increase in synchronization time dominates the decrease
in computation and communication time. For larger problem sizes and a larger
number of processors, we expect this to be the reverse, but we do not have
enough processors available to observe this phenomenon.

A way of analyzing the scalability of a parallel implementation is to look at
its absolute efficiency

Eabs(p, N) =
Time(seq, N)

pTime(p, N)
, (41)

as done in Figure 4. In theory, Eabs(p, N) ≤ 1, and our goal is to achieve
efficiencies as close to one as possible. The figure shows moderate efficiencies
for small problem sizes (N ≤ 4096). For N ≥ 8192, efficiencies above one are
achieved. Such amazing efficiencies are possible because of the so-called cache
effect : when N ≥ 8192 the total amount of memory needed by the FFT is
too large to fit in the cache memory of one processor, but, if the problem is
executed using a sufficiently large number of processors, the memory required
by each processor becomes small enough to fit in the cache. This effect is
welcome, but it masks the real scalability of the algorithm.

Note that there is a sudden rise in the flop rate when the local problem size
becomes small enough to fit in the cache. In this way the cache effect can
be easily spotted and the scalability of the algorithm better judged. FFT
sizes that fit completely in the cache (N ≤ 4096) have a completely differ-
ent behavior than larger problems. For small sizes (N ≤ 4096) the efficiency
decreases notably in going from one to two processors, then it is more or
less constant up to 8–16 processors and after that it decreases steadily. For

3 Available at http://www.math.uu.nl/people/bisseling/software.html
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Table 3. Predicted and measured execution times (in ms) for the FFT on a Cray T3E. Boldface entries indicate out-of-cache computations.

p N = 512 N = 1024 N = 2048 N = 4096 N = 8192 N = 16384 N = 32768 N = 65536

pred meas pred meas pred meas pred meas pred meas pred meas pred meas pred meas

seq 0.56 0.41 1.25 0.66 2.74 1.82 5.99 2.94 12.97 19.95 27.93 58.91 59.9 149.8 127.7 318.3

1 0.58 0.40 1.28 0.66 2.81 1.81 6.12 2.95 13.23 19.95 28.46 58.98 60.9 149.8 129.8 315.8

2 0.37 0.42 0.77 0.90 1.61 1.66 3.44 3.90 7.33 8.93 15.61 33.65 33.2 87.1 70.3 207.3

4 0.25 0.28 0.45 0.47 0.89 0.99 1.83 1.81 3.83 4.40 8.09 9.72 17.1 39.7 36.1 101.1

8 0.21 0.21 0.32 0.33 0.56 0.69 1.06 1.22 2.12 2.33 4.36 5.28 9.1 12.5 19.1 46.7

16 0.20 0.22 0.25 0.26 0.37 0.39 0.63 0.56 1.16 1.20 2.30 2.26 4.7 5.4 9.8 12.7

32 0.26 0.29 0.23 0.33 0.29 0.37 0.42 0.53 0.70 0.75 1.29 1.43 2.5 2.9 5.1 7.1

64 0.46 0.31 0.48 0.38 0.51 0.55 0.46 0.63 0.61 0.76 0.91 0.98 1.5 1.7 2.9 3.2
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Table 4

BSP parameters for the CRAY T3E, with v = 34.9 Mflop/s. The value of v is based

on in-cache dot product computations.

p g l

(flops) (µs) (flops) (µs)

1 0.28 0.008 3 0.09

2 1.14 0.033 479 13.72

4 1.46 0.042 858 24.57

8 2.14 0.061 1377 39.48

16 2.30 0.066 1754 50.26

32 2.77 0.079 2024 58.00

64 3.05 0.088 3861 110.88

large sizes (N > 16384) the flop rate is nearly constant, both before and after
the transition out-of-cache/in-cache, indicating a good scalability. The cases
N = 8192, 16384 are intermediate cases with an efficiency increase in going
from one to two processors, but a decrease when the number of processors
becomes too large.

We can also examine the scalability of our parallel algorithm by increasing the
problem size together with the number of processors [12,26], for instance by
maintaining the local problem size N/p constant and increasing p. In doing so,
we can learn about the asymptotic behavior of our algorithm. Figure 5 shows
the predicted and measured efficiencies as a function of p for various values of
N/p. The predicted values converge to a horizontal line as N/p increases which
means that asymptotically the efficiency can be maintained at a constant level
if N/p is maintained constant. The measured values must be analyzed keeping
in mind the cache effect, which causes the sudden increase in the efficiency. It
is clear that efficiency can be maintained at reasonable levels for N/p as small
as 256, and at very good levels for N/p = 4096.

7 Conclusions and future work

In this work, we present a new parallel FFT algorithm, Algorithm 2, which is
a mixed radix-2 and radix-4 FFT. It was derived from the matrix decomposi-
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Fig. 4. Absolute efficiencies of the FFT on a Cray T3E.

tion corresponding to the radix-2 algorithm by inserting suitable permutation
matrices corresponding to the group-cyclic distribution family. The use of the
group-cyclic distribution family gives a parallel algorithm which is easy to
understand and implement.

The use of matrix notation proved to be a powerful tool for deriving parallel
FFT algorithms and adapting them to our needs. With the help of matrix
notation, we showed how to modify our original algorithm to accept I/O vec-
tors that are not block distributed, without incurring extra communication
cost. For the cyclic distribution, we showed how to eliminate the first and the
last permutation altogether, reducing the communication to one third of the
original cost. Since the cyclic distribution is simple and widely used, this prop-
erty can be exploited to accelerate many applications. A prime application of
the cyclic distribution would be in the field of quantum molecular dynamics
where a potential energy operator is applied to the input vector representing a
wave packet and a kinetic energy operator is applied to the output vector [27].
Since both operations are componentwise, every distribution can be chosen,
including the best one, the cyclic distribution.

We measured the performance of our implementation on a Cray T3E with up
to 64 processors. Our implementation proved to scale reasonably well for small
problem sizes (N ≤ 4096) with up to 8 processors, and to scale very well for
larger problem sizes (N ≥ 16384). In part, the favorable results obtained for

33



2 4 8 16 32 641
Number of processors p

0.0

0.5

1.0

1.5

2.0

E
ffi

ci
en

cy
: T

im
e(

se
q)

/(
p 

T
im

e(
p)

) 

ideal
N/p=256 (meas)
N/p=512
N/p=1024
N/p=2048
N/p=4096
N/p=256 (pred)
N/p=512
N/p=1024
N/p=2048
N/p=4096

Fig. 5. Efficiency as a function of p for a constant problem size N/p on a Cray T3E.
Solid lines: measured values. Dashed lines: predicted values.

larger N are due to the cache effect. To exclude this effect, we also analyzed our
results in terms of FFT flop rate per processor, which confirmed the scalability
of our algorithm.

Our algorithm is applicable for the case that p >
√

N . Using such a relatively
large number of processors becomes worthwhile in the case that g and l grow
slowly enough with p, provided that N is sufficiently large. The number of pro-
cessors, p = 64, of our test machine was too small to allow us to observe gains
in the range p >

√
N . This may be different on a larger machine, or a machine

with faster communication and synchronization. Also note that our implemen-
tation uses the block distribution for the I/O vector. We could have improved
our experimental results by using the cyclic distribution instead, as outlined in
Section 5.1, and this would have reduced the total amount of communication
and synchronization, thus making it easier to observe the gains. Of course, in
certain situations it might be worthwhile to use our algorithm with more than√

N processors even when this would be slower, for instance, for reasons of
memory space, or as part of a larger application with other computationally-
intensive parts that would benefit from additional processors.

Because the cache-based architecture of the Cray T3E influences our results
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so much, and many other computers have a similar architecture, we proposed
the use of cache-friendly FFT algorithms. A cache-friendly sequential algo-
rithm can be derived from our parallel algorithm by replacing the processors
by virtual processors. It is also possible to derive a cache-friendly parallel al-
gorithm by writing each generalized butterfly phase as a sequence of smaller
generalized butterfly phases. We expect such an algorithm to scale just as well
as the algorithm we implemented.

A Proof of Theorem 4

The proof uses the following lemma.

Lemma 8 Let u, M , and k be powers of two such that 2 ≤ k ≤M/u. Define
K = ku. Let j be an index, 0 ≤ j < M . Then

(1) If j mod K < K/2, then σu,M(j) mod k < k/2.
(2) If j + K/2 < M , then σu,M(j + K/2) = σu,M(j) + k/2.
(3) If j1 = j mod M

u
, and j0 = j div M

u
, then

σ−1
u,M(j) mod K

K
=

j1 mod k + j0/u

k
.

PROOF. Part 1: σu,M(j) mod k = (j mod u·M
u

+j div u) mod k = (j div u) mod k.
Now, j div u = (j div K ·K + j mod K) div u = j div K · k + (j mod K) div u.
As a consequence, σu,M(j) mod k = (j mod K) div u < (K/2) div u = k/2.

Part 2: σu,M(j + K/2) = (j + K/2) mod u · M
u

+ (j + K/2) div u = j mod u ·
M
u

+ j div u + k/2 = σu,M(j) + k/2.

Part 3: σ−1
u,M(j) mod K = (j mod M

u
·u+j div M

u
) mod K = (j1 · u + j0) mod K

= (j1 div k · K + j1 mod k · u + j0) mod K = j1 mod k · u + j0, which gives
(σ−1

u,M(j) mod K)/K = (j1 mod k · u + j0)/K = (j1 mod k + j0/u)/k.

2

Proof of Theorem 4.

PROOF. Define K = ku. To prove the theorem, it is sufficient to prove that

Su,MAK,MS−1
u,My = diag(A

0/u
k,n , . . . , A

(u−1)/u
k,n )y, for all y.
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First note that the vector AK,Mx can be described by







(AK,Mx)j = xj + wj mod K
K xj+K/2,

(AK,Mx)j+K/2 = xj − wj mod K
K xj+K/2, 0 ≤ j mod K < K/2.

(A.1)

Let x = S−1
u,My and z = Su,M(AK,Mx), and substitute xj = yσu,M (j) and

zσu,M (j) = (AK,Mx)j into (A.1). This gives







zσu,M (j) = yσu,M (j) + wj mod K
K yσu,M (j+K/2),

zσu,M (j+K/2) = yσu,M (j) − wj mod K
K yσu,M (j+K/2), 0 ≤ j mod K < K/2.

(A.2)

Defining l = σu,M(j) and applying Lemma 8 to j gives the following. Part 1 of
Lemma 8 says that j mod K < K/2 implies l mod k < k/2. Furthermore, by
Part 2, σu,M(j +K/2) = l+k/2. Finally, applying Part 3 to l gives wj mod K

K =

w
σ−1

u,M (l) mod K

K = w
u(l′ mod k)+s1

K = w
l′ mod k+s1/u
k , where l′ = l mod n and s1 =

l div n.

Substituting the above results into (A.2) gives the following description of
vector z = Su,MAK,MS−1

u,My:







zl = yl + w
l′ mod k+s1/u
k yl+k/2,

zl+k/2 = yl − w
l′ mod k+s1/u
k yl+k/2, 0 ≤ l mod k < k/2.

(A.3)

Writing the index l = s1 · n + (l′ div k) · k + l′ mod k, it is easy to see that

zl = (diag(A
0/u
k,n , A

1/u
k,n , . . . , A

(u−1)/u
k,n ) · y)l. The corresponding matrix structure

is illustrated in Figure 2(B). 2
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