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Preface

This book presents the scientific proceedings of the 58th European Study Group Mathematics
with Industry, held at Utrecht University in the Netherlands, from January 29 to February 2, 2007.
Locally in the Netherlands, this study group is also known as the Studieweek Wiskunde en Industrie
2007 (SWI2007).

During the week of the study group, 79 participants tried to solve six problems with a high
mathematical content posed to them by industry. Most (but not all) of the participants were mathe-
maticians, mainly from the Netherlands and Belgium, but also some from England, France, Ireland,
and Poland. As expected, many applied mathematicians participated, some of them regular partic-
ipants in study groups for years, but there were also a significant number of mathematicians with a
more theoretical background. All of them were motivated by the pleasure of solving important real-
life problems, hoping perhaps to make an immediate contribution to society, while having a good
time with their mathematical colleagues.

In these scientific proceedings, the participants themselves present the problems as they see
them, possible solutions, and the results obtained, in a format aimed at a scientific audience. The
papers have mainly been written in the six weeks after the week of the study group. The scientific
proceedings are the second part of the complete proceedings. The first part is a separate booklet
written in Dutch by science writer Bennie Mols, and intended for a general audience.

The six problems originated in widely different areas. Two academic hospitals (AMC Amster-
dam and UMC Utrecht) posed questions on state-of-the-art medical devices. The AMC asked for a
mathematical model of the workings of a mechanical heart pump that can be used to help a patient
recover after heart failure. The UMC asked for speeding up the adjustment of a new high-resolution
7-tesla MRI scanner to each individual patient. The current time needed for such an adjustment
would be several hours of CPU time, making adjustment impractical; better calculations with im-
proved numerics or analytics should reduce this to a couple of minutes.

KLM and Innogrow posed optimization problems. KLM hopes to minimize the total number
of days that cabin crew are on stand-by duty as reserves needed to replace rostered crew in case of
illness or other disruptions. Currently a replacement can cause further disruptions and the partic-
ipants of the study group were asked how to limit this domino effect. Innogrow constructs closed
greenhouses for agricultural crop such as tomatos. These greenhouses have closed windows and
underground storage for surplus heat (in summer) and surplus cold (in winter). The question is how
to minimize the energy expenditures and maximize the yield.

ASML manufactures machines for the production of computer chips. It posed a sampling prob-
lem occurring in one of the stages of the production process, namely the exposure of the photoresist
on the silicon wafer to light of varying intensity. The aim here is to replace the commonly used
light-mask by a grid of small mirrors performing the same task.

ING asked for a fast method for computing the price of financial options, taking fluctuations in
both interest rate and stock volatility into account.
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All problems were solved at least partially, and the details of the proposed solutions can be
read in the papers of these scientific proceedings. For the UMC problem, a solution was found
which indeed brings the required computation time down to practical levels. ING got three solution
approaches for the price of one: as an exception, the different solutions to the ING problem were not
written up in one paper, but presented as three separate papers with a common introduction by the
editor of the problem, see the papers at the end of these proceedings.

We thank our main sponsors NWO and STW for their generous financial support in the frame-
work Wiskunde Toegepast (Mathematics Applied) which makes the study group possible. We also
thank them for pledging to support the study group in the coming period 2008–2012. We thank the
CWI in Amsterdam for their offer to finance and print these proceedings, also in the coming years.
Furthermore, we thank Utrecht University for all the support we got in many different ways. We want
to express our gratitude to Hans Gooszen for excellent secretarial support, and to Celia Nijenhuis
and Jasper van Winden for their successful promotional work. We are indebted to the European Con-
sortium for Mathematics in Industry (ECMI), the Stichting voor Industriële en Toegepaste Wiskunde
ITW, and the Geometry and Quantum Theory cluster QCT, who sponsored several social events
during the week; these were much appreciated by the participants.

Finally, the biggest thanks go to the participants of the study week, who displayed willingness to
collaborate, a drive to succeed, curiosity, good humour, and plenty of talent in tackling challenging
problems. Thanks to you all!

Utrecht, December 2007

Rob Bisseling
Karma Dajani
Tammo Jan Dijkema
Johan van de Leur
Paul Zegeling
(organizing committee SWI2007)
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Modeling a heart pump

Vincent Creigen Luca Ferracina∗ Andriy Hlod† Simon van Mourik‡

Krischan Sjauw§ Vivi Rottschäfer¶ Michel Vellekoop‡ ‖ Paul Zegeling∗∗

Abstract

In patients with acute heart failure, the heart can be assisted by the insertion of a mechanical
device which takes over part of the heart’s work load by pumping blood from the left ventricle, one
of the heart chambers, into the aorta. In this project, we formulate a model that describes the effect
of such a device on the cardiovascular dynamics. We show that data for the pressure–volume re-
lationship within a heart chamber that have been obtained experimentally can be reproduced quite
accurately by our model. Moreover, such experimental data can help in calibrating unknown pa-
rameters that specify the characteristics of the pump. A key parameter turned out to be the extra
friction that is encountered by the blood flowing through the heart pump.

Key words: cardiovascular system, rotary heart pump.

1 Introduction
Nowadays it is possible to use mechanical devices to assist the pumping action of the heart in patients
with cardiovascular problems. A particular class of these, left ventricular assist devices, move blood
from the left ventricle (one of the heart chambers) into the aorta, to take over part of the heart’s work
load. Developments in the emerging field of cardiovascular medicine have led to the availability of a
wide range of instruments, from temporary assist devices to devices for long-term support and from
left or right ventricular assist devices to biventricular assist devices and even total artificial hearts.
This report will focus on the effects of a left ventricular assist device called the Impella, manufac-
tured by Abiomed Europe (GmbH, Aachen, Germany). Two versions are currently being used by
the Academic Medical Centre (AMC) in Amsterdam: the Impella 2.5 and the Impella 5.0, which are
able to produce a flow of 2.5 and 5.0 liters per minute, respectively. The problem considered here
has been formulated by cardiologists and cardiothoracic surgeons from the AMC.

The insertion of a mechanical device in the cardiovascular system obviously influences the dy-
namics of the blood flow through the arterial system. The contraction and relaxation of the heart
muscles in the heart chamber causes two valves, called the mitral and aortic valve, to open and close
due to pressure differences. When modeling the cardiac cycle, one can distinguish four phases.

∗CWI, Amsterdam
†Technische Universiteit Eindhoven
‡Technische Universiteit Twente
§AMC, Amsterdam
¶Universiteit Leiden
‖corresponding author, M.H.Vellekoop@ewi.utwente.nl
∗∗Universiteit Utrecht
∗Thanks to other participants who helped during the week.
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1. Isovolumic contraction phase, when the mitral and aortic valves are closed. Pressure is being
built up in this phase, until the left ventricular pressure rises sufficiently above the aortic
pressure to open the aortic valve.

2. Ejection phase, when the mitral valve is closed and the aortic valve is open. Blood flows out
of the chamber into the aorta.

3. Isovolumic relaxation phase, when the mitral and aortic valves are closed. Pressure in the
chamber decreases until it is so low that the mitral valve opens.

4. Filling phase, when the mitral valve is open and the aortic valve is closed. Blood flows into
the chamber, and the cycle then repeats itself.

Table 1: The cardiac cycle.

The first two phases are known as diastole and the last two phases are known as systole.
In patients, the influence of a mechanical device which assists the heart during this process is

difficult to quantify, since only a limited number of direct measurements can be performed on the
cardiovascular system with and without the blood pump. Typically, only the pressure and volume of
the blood in a heart chamber can be measured. The questions whether the pump really takes over a
substantial part of the task of the heart and whether it reduces the amount of work the heart has to
perform cannot be answered directly from such measurements. The amount of flow produced by the
heart, the cardiac output, is 5 to 7 liters per minute in healthy people. It can be indirectly determined
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by means of a method called thermodilution, which represents the gold standard in clinical practice.
However, it is uncertain if this method is reliable in the presence of a continuous flow pump, since
the normal physiology of the heart is altered, changing the premisses on which the method is based.
Moreover, it is not possible to determine directly the individual contributions of the heart and the
pump to their combined cardiac output, since detailed information about certain key parameters in
the system is unavailable. Information about the cardiac output and the contribution of the pump are
important to assess, and some form of mathematical modeling is therefore indispensable to obtain
information about these quantities.

2 Problem Formulation

In this project, the study group was asked to develop a mathematical model for the influence of the
Impella on the cardiovascular dynamics. More specifically, the group was asked to focus on the
estimation of the blood flow through the pump during the cardiac cycle, since this is an important
monitoring variable that can be used to establish how much the work load of the heart can be relieved.
To validate the model and to make it possible to calibrate unknown parameters, a PV (Pressure–
Volume) loop of a patient with and without the blood pump and an exact specification of the pump
had been made available.

The distinguishing characteristic for this problem is the specific placement of the pump across
the aortic valve. In order to obtain a realistic model, it is important that the pumping action of the
heart itself, the dynamics of the pump, and the rest of the body, i.e. the arterial system, are modeled
with sufficient accuracy. Moreover, the problem formulation suggests that the model should not
be too complicated or detailed, since we would like to be able to explain the change in qualitative
behaviour of the system in direct terms.

The structure of the paper is as follows. In the next section, the heart and the arterial system are
modeled, using an analogy with electrical circuits. In section 4, some details concerning the opera-
tion of the pump are given. Section 5 combines all these elements in a full cardiovascular model and
section 6 provides numerical results. We end by formulating our conclusions and recommendations
for further research in the last section.

3 Modeling the Heart and Arterial Systems

The cardiovascular system can be described in terms of quite complex fluid dynamics. Different
models have been developed to investigate it and various tools, ranging from rather simple to very
sophisticated numerical techniques, have been employed; see for example [9, 11, 16] and references
therein for an overview of computational methods in cardiovascular fluid dynamics.

A computationally cheap option to obtain information about the overall behaviour of the cardio-
vascular system is provided by so-called lumped parameter models [3, 13, 14, 15]. In these models,
critical parameters are defined by taking averages over many different subsystems without distin-
guishing these subsystems themselves in too much detail. Such models proved to be very useful as
a starting point for the investigation of arterial blood pressure and blood flow.

There is a close correspondence between the cardiovascular system and electrical circuits, which
we intend to exploit here. A description of this correspondence will therefore be given in the follow-
ing subsections.
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Cardiovascular Electrical

blood volume electrical charge
flow rate (F) current (I)
pressure (P) potential (V)

Table 2: The analogy between the cardiovascular and electrical systems.

3.1 Mapping Cardiovascular Elements to Electrical Elements
In the analogy that we will use, electrical charge represents blood volume, while potential (differ-
ence) and currents correspond to pressure (difference) and flow rates. A particular vessel, or group
of vessels, can be described by an appropriate combination of resistors, capacitors, and inductors.
Blood vessels’ resistance, depending on the blood viscosity and the vessel diameter, is modeled by
resistors. The ability to accumulate and release blood due to elastic deformations, the so-called ves-
sel compliance, is modeled by capacitors. The blood inertia is introduced using coils, and finally
heart valves (forcing unidirectional flow) are modeled by diodes. In the following, we will explain
in more detail how the different properties and parts of the cardiovascular system can be modeled by
electrical components.

Vessel Resistance and Electrical Resistance

Blood flowing from wider arteries into smaller arterioles encounters a certain resistance. This resis-
tance can be modeled as follows. Consider an ideal segment of a cylindrical vessel. The pressure
difference between its two ends and the flow through the vessel depend on each other. Although
this dependence will in general be nonlinear, for a laminar flow (which is the type of flow we are
interested in) it can be accurately approximated by a linear relation. If we indicate by Rc the propor-
tionality constant between the pressure difference P and the flow F then we can write

Rc =
P
F
. (1)

Similarly, a resistor is an electronic component that resists an electric current by producing a
potential difference between its end points. In accordance with Ohm’s law, the electrical resistance
Re is equal to the potential difference V across the resistor divided by the current I through the
resistor:

Re =
V
I
. (2)

Vessel Compliance and Capacitance

The walls of blood vessels are surrounded by muscles that can change the volume and pressure in the
vessel. Consider the blood flow into such an elastic (compliant) vessel. We denote the flow into the
vessel by Fi and the flow out of the vessel by Fo. Then the difference F = Fi−Fo which corresponds
to the rate of change of blood volume in the vessel is related to a change of pressure P inside the
vessel. Assuming a linear relation, we have that

F = Cc
dP
dt
, (3)
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where Cc is a constant related to the compliance of the vessel.
The analogy with a capacitor is immediate. A capacitor is an electrical device that can store

energy between a pair of closely-spaced conductors, so-called ’plates’. When a potential difference
is applied to the capacitor, electrical charges of equal magnitude but opposite polarity build up on
each plate. This process causes an electrical field to develop between the plates of the capacitor
which gives rise to a growing potential difference across the plates. This potential difference V is
directly proportional to the amount of separated charge Q (i.e. Q = CeV). Since the current I through
the capacitor is the rate at which the charge Q is forced onto the capacitor (i.e. I = dQ/dt), this can
be expressed mathematically as:

I = Ce
dV
dt
, (4)

where the constant Ce is the electrical capacitance of the capacitor.

Blood Inertia and Inductance

Since blood is inert, it follows that when a pressure difference is applied between the two ends of a
long vessel that is filled with blood, the mass of the blood resists the tendency to move due to the
pressure difference. Once more assuming a linear relation between the change of the blood flow
(dF/dt) and the pressure difference P we can write

P = Lc
dF
dt
. (5)

Note that this is the hydraulic equivalent of Newton’s law, which relates forces to acceleration.
The inertia of blood can be modeled by a coil (also known as an ‘inductor’), since the current

in a coil cannot change instantaneously. This effect causes the relationship between the potential
difference V across a coil with inductance Le and the current I passing through it, which can be
modeled by the differential equation:

V = Le
dI
dt
. (6)

Valves and Diodes

An ideal valve forces the blood to flow in only one direction. More specifically, it always stops the
flow in one direction while it allows the blood to flow in the other direction, opposing only a small
resistance (Rc) to the flow, as soon as the pressure difference is higher than a certain critical pressure
P∗ which is often taken to be zero. For this reason it is common use to model the action of a valve
as follows:

F =
{

0 if P < P∗

P/Rc if P ≥ P∗. (7)

The electrical analogue of a valve is a diode. In electronic circuits, a diode is a component that
allows an electric current I to flow in one direction, but blocks it in the opposite direction. There are
different models in the literature for diodes; we will use the idealized relationship corresponding to
(7):

I =
{

0 if V < V∗

V/Re if V ≥ V∗. (8)
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3.2 Other Relationships

One advantage of modeling the cardiovascular system by an electrical circuit is that Kirchhoff’s laws
for currents and potential differences can be applied:

• The sum of currents entering any junction is equal to the sum of currents leaving that junction
(conservation of blood mass).

• The sum of all the voltages around a loop is equal to zero (pressure is a potential difference).

All these elements, or their nonlinear extensions, are used in different forms in the models for the
heart and its environment, the arterial system. We summarize all the relationships in table 3.

In the following subsection, we discuss the relatively simple models for the cardiovascular sys-
tem that are known as Windkessel models.

P = FRc vessel resistance elec. resistance V = IRe

Cc
dP
dt
= F vessel compliance elec. capacitance Ce

dV
dt
= I

Lc
dF
dt
= P blood inertia magnetic inductance Le

dI
dt
= V

F =
{
0 if P < 0
P/Rc if P ≥ 0 valve diode I =

{
0 if V < 0
V/Re if V ≥ 0

Table 3: Analogy between electrical and cardiovascular behaviour.

3.3 Description of the Windkessel Model and its Use

The Windkessel model consists of ordinary differential equations that relate the dynamics of aortic
pressure and blood flow to various parameters such as arterial compliance, resistance to blood flow
and the inertia of blood. We discuss three forms of the model. In the different forms, the complexity
of the model is increased by introducing extra components, each representing a characteristic of the
cardiovascular system. Thus, closed-form solutions for the aortic pressure and the flow rate become
increasingly difficult to obtain.
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2-Module Windkessel Model

The first Windkessel model was put forward by Stephen Hales in 1733 [7]. He assumed that the
arteries operate like a chamber in an old-fashioned hand-pumped fire engine (in German Windkessel
pump) which smoothes the water pulses into a continuous flow. By conducting blood pressure
experiments on various animals he was able to perform the first direct measurement of arterial blood
pressure.

Hale’s analogy between the cardiovascular system and the water pump was enhanced by the
German physiologist Otto Frank [5]. His 2-module Windkessel model has since been applied in
studies including chick embryos [17] and rats [8]. Figure 1 shows the 2-module Windkessel model

Figure 1: The 2-Module Windkessel model.

consisting of an electrical circuit with a capacitor C corresponding to the arterial compliance and
a resistor R corresponding to the resistance to blood as it passes from the aorta to the narrower
arterioles. This is referred to as the peripheral resistance. As explained in more detail in section 3.1,
P and F represent the aortic pressure and the blood flow rate in the aorta, respectively, and both are
functions of time, t. A differential equation in terms of P and F can be obtained using the equations
given in section 3.2. These equations lead to

F = F2 + F3, (9)
P = F3R, (10)

C
dP
dt
= F2. (11)

Using Kirchhoff’s law for currents, we can eliminate the currents F2 and F3 from this equation,
leading to:

F =
P
R
+C

dP
dt
.

This equation can be solved if we consider just the diastole period of the heartbeat in which the heart
muscles relax, because during this period the left ventricle is expanding and F = 0. We then find

P = P(td)e−
(t−td )

RC . (12)

Here it has been assumed that P(td) is the blood pressure in the aorta at the starting time td of the
diastole.

3-Module Windkessel Model

An extension of the 2-Module Windkessel model, the 3-Module Windkessel model, was formulated
by the Swiss physiologist Ph. Broemser together with O. Franke and it was published in an article in
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1930 [2]. This model, which is also known as the Broemser model, introduces an extra resistor Ra

which represents the resistance encountered by blood as it enters the aortic valve. The corresponding
electrical circuit is shown in figure 2.

Figure 2: The 3-Module Windkessel model for the systemic circulation.

Adopting the same approach as before we obtain

(1 +
Ra

Rp
)F + RaCc

dF
dt
=

P
Rp
+Cc

dP
dt

(13)

and during diastole, when F and its time derivative are zero, we may again simplify (13). This leads
to the same expression for the aortic pressure during diastole as in the 2-Module Windkessel model.

4-Module Windkessel Model

The 4-Module version of the model was developed for the study of the systematic circulation in
chick embryos [17] and pulmonary circulation (i.e. the circulation relating to the lungs) in cats [10]
and dogs [6]. This model extends the 3-Module version by adding a coil Lc to represent the inertia
of the blood, see figure 3. The approach used previously and some tedious but trivial algebra then

Figure 3: The 4-Module Windkessel model.

results in the following equation:

(1 +
Ra

Rp
)F + (RaCc +

Lc

Rp
)
dF
dt
+ LcCc

d2F
dt2 =

P
Rp
+Cc

dP
dt
.

In section 5, the elementary Windkessel models will be expanded to include the pumping action
of both the heart and the mechanical pump. But first we will give a description of the pump itself
and its most important operating characteristics.
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Figure 4: The Impella 2.5 LP device.

4 Description and Specification of the Pump

In this section, we give some specifications which will turn out to be relevant for the mathematical
model of the blood pump. Part of the information about the heart pump was obtained from the
instruction manual [1] and some was provided by Krischan Sjauw (AMC).

As described earlier, the Impella Recover LP 2.5 is a catheter mounted micro-axial rotary blood-
pump, designed for short-term mechanical circulatory support. It is positioned across the aortic valve
into the left ventricle, with its inlet in the left ventricle and its outlet in the aorta; see figure 5. The
driving console of the pump allows management of the pump speed by 9 gradations and it displays
the pressure difference between inflow and outflow, which gives an indication of the pump’s posi-
tion. Expelling blood from the left ventricle into the ascending aorta, the Impella is able to provide a
flow of up to 2.5 litres per minute at its maximal rotation speed of 51000 rpm. To prevent aspirated
blood from entering the motor, a purge fluid is delivered through the catheter to the motor housing
by an infusion pump (see figure 6). Table 4 gives some further specifications.

The flow created by the pump depends mainly on the pressure difference between the outlet
in the aorta and the inlet in the ventricle, and on the speed of the rotor. The flow decreases if
the pressure difference increases or the rotor speed decreases. Figure 7 shows these dependencies,
obtained experimentally, between the flow through the pump and the pressure difference for different
pump speeds varying from the maximum possible 51000 rpm to 25000 rpm.

To describe the action of the rotary pump, we need to expand the Windkessel models discussed
above to model the valves and the heart chamber, and the dynamics which lead to the cardiac cycle.
An example of this is given in [4], where the left ventricle is described as a time varying capacitor
with an elasticity function E(t) for the heart, thereby providing a model for the heart capacitance
which is time-varying. This time-varying function is calibrated to the end-systolic pressure and
volume values and the end-diastolic pressure and volume values.

The pump itself is modeled as a bypass around the diode that represents the aortic valve with
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Parameter Value
Speed range 0 to 51000 rpm
Flow-Maximum 2.3±0.3 l/min
Catheter diameter max. 4.2 mm (nom. 4.0 mm)
Length of invasive portion (w/o catheter) 130±3 mm
Voltage max. 18 V
Power consumption less than 0.99 A
Maximum duration of use 5 days

Table 4: Pump parameters.

resistance and inertia at both ends of the pump. We remark that this means that even when the aortic
valve is closed, the pump can still pump blood from the left ventricle into the aorta and there may
even occur some backflow: blood flowing back from the aorta into the left ventricle due to adverse
pressure differences.

The rotator speed in the pump was assumed to be constant, since this was the explicit design
objective of the pump considered here.

5 The Full Model
Our model for the environment of the heart and blood pump is based on a paper by Ursino [12], in
which a nonlinear lumped parameter model of the cardiovascular system is proposed. The first order
differential equations in this model describe pressures, volumes, and flows in the lumped subsystems.

These subsystems are the pulmonary arteries, pulmonary peripheral circulation, pulmonary veins,
systemic arteries, peripheral systemic circulation, extrasplanchnic venous circulation, the left and
right atrium of the heart, and the left and right ventricle of the heart. This means a distinction is
made between veins, which carry blood to the heart, and arteries, which take blood from the heart
to the organs, and between the pulmonary system, which corresponds to the lungs, the splanchnic
system, which corresponds to abdominal internal organs, the peripheral system, corresponding to
the outer part of the body, and the extrasplanchnic system, which corresponds to other organs.

Figure 5: Placement of the pump between the aortic valves.
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The Ursino model offers the possibility of parameter adjustments based on physical specifica-
tions for individual patients, whereas in a Windkessel model more parameters and state variables
are modeled implicitly, and are therefore not adjustable in a straightforward way. Moreover, in the
expanded model, blood flow in or out of the right and left ventricles is only possible if the corre-
sponding valves are open. A valve opens one way, i.e. it is opened or closed, depending on the sign
of the pressure difference over the valve.

In the model, a distinction is made between the capacitance, inertia, and other characteristics in
the different components of the system. For example: the capacitance and resistance for blood flow
obviously depend on the width of the arteries and veins, which may vary considerably within the
human body. Different compartments of the system are denoted by different subscripts to make the
model equations easier to read, see table 5. The electrical circuit corresponding to the model is given
in figure 8. Notice that in this figure the time-varying pressures generated by the heart muscles in
the left and right ventricle are indicated by capacitors with arrows through them, while we have also
used the standard symbol for electrical earth to indicate a point of zero voltage, which corresponds
to a reference pressure based on which all other pressure differences are stated.

The model for pressures, volumes and flows then becomes as follows. Conservation of mass and
balance of forces in the different compartments lead to

dPpa

dt
=

1
Cpa

(Fo,r − Fpa) (14)

dFpa

dt
=

1
Lpa

(Ppa − Ppp − RpaFpa)

dPpp

dt
=

1
Cpp

(Fpa −
Ppp − Ppv

Rpp
) (15)

dPpv

dt
=

1
Cpv

(
Ppp − Ppv

Rpp
−

Ppv − Pla

Rpv
)

for the pulmonary arteries in the upper cycle in figure 8, while it leads to

dPsa

dt
=

1
Csa

(Fo,l − Fsa) (16)

dFsa

dt
=

1
Lsa

(Psa − Psp − RsaFsa)

dPsp

dt
=

1
Csp +Cep

(Fsa −
Psp − Psv

Rsp
−

Psp − Pev

Rep
)

dPev

dt
=

1
Cev

(
Psp − Pev

Rep
−

Pev − Pra

Rev
)

Figure 6: Left: Purge fluid preventing blood from entering motor housing. Right: Rotor positioned
above the motor housing.
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Figure 7: Dependencies between the flow through the Impella LP 2.5 pump and the pressure differ-
ences for different speeds of the motor.

for the lower cycle in that figure. Finally, for the left and right atrium

dPla

dt
=

1
Cla

(
Ppv − Pla

Rpv
− Fi,l) (17)

dPra

dt
=

1
Cra

(
Psv − Pra

Rsv
+

Pev − Pra

Rep
− Fi,r).

Here, Fi,l and Fo,l are the flow into and out of the left ventricle (in ml/s), and Fi,r and Fo,r are the
flow into and out of the right ventricle. Assuming a known and constant total blood volume V0 we
can express the last remaining pressure, the splanchnic venous pressure Psv, in terms of all the other

pa pulmonary arteries pp pulmonary peripheral
pv pulmonary veins sa systemic arteries
sp systemic peripheral ev extrasplanchnic venous
sv splanchnic venous ep extrasplanchnic peripheral
ra right atrium la left atrium
rv right ventricle lv left ventricle
i in o out
l left r right

Table 5: Subscripts of the variables.
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Figure 8: The full model.

pressures:

Psv =
1

Csv
[V0 −CsaPsa − (Csp +Cep)Psp −CevPev −CraPra − Vrv (18)

−CpaPpa −CppPpp −CpvPcp −ClaPla − Vlv − Vu].

The left and right ventricles are modeled using state variables that represent volumes instead of
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pressures and the flows through the valves:

dVrv

dt
= Fi,r − Fo,r (19)

Fi,r =

{
0 if Pra ≤ Prv

Pra−Prv
Rra

if Pra > Prv

Fo,r =

{
0 if Pmax,rv ≤ Ppa

Pmax,rv−Ppa

Rrv
if Pmax,rv > Ppa

dVlv

dt
= Fi,l − Fo,l

Fi,l =

{
0 if Pla ≤ Plv

Pla−Plv
Rla

if Pla > Plv

Fo,l =

{
0 if Pmax,lv ≤ Psa

Pmax,lv−Psa

Rlv
if Pmax,lv > Psa,

where the pressures and resistance in the ventricles are given by

Rlv = kr,lvPmax,lv (20)
Plv = Pmax,lv − RlvFo,l

Rrv = kr,rvPmax,rv

Prv = Pmax,rv − RrvFo,r

Pmax,lv(t) = φ(t)Emax(Vlv − Vu,lv) + [1 − φ(t)]P0,lv(exp(kE,lvVlv) − 1)
Pmax,rv(t) = φ(t)Emax(Vrv − Vu,rv) + [1 − φ(t)]P0,rv(exp(kE,rvVrv) − 1).

The parameter Emax is the ventricle elasticity at the instant of maximal contraction, and Vu is the
unstressed ventricle volume. The constants kr and kE describe the ventricle resistance and the end-
diastolic pressure–volume relationship for the heart. Parameter values that were not explicitly given
by the AMC cardiologists were taken from [12].

The heart is activated by the ventricle activation function

φ(t) =

 sin2
[
πT (t)
Tsys(t)

u
]

0 ≤ u ≤ Tsys/T
0 Tsys/T ≤ u ≤ 1

(21)

that steers Pmax,lv, the isometric left ventricle pressure. The ventricle activation function is controlled
by the baroreflex control system, which is a highly complex function of the sinus nerves.

For simplicity, we approximate the ventricle activation function by a simple sine function, which
is shown in figure 9,

φ(t) =
{

sin(2πω) 0 ≤ sin(2πω)
0 sin(2πω) < 0, (22)

with ω = 1.25 rad the signal frequency which corresponds to the cardiac cycle.
The rotary pump is modeled as a tube which creates a pressure difference depending on rotational

speed. It is assumed that the aortic valve closes perfectly around the tube, so when the valve is open,
blood is allowed to flow through the aorta and the pump, and when the valve is closed, blood is only
allowed to flow through the pump. The purge fluid is not modelled explicitly. The corresponding
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Figure 9: Approximated ventricle activation function φ.

equations for the outflow of the left ventricle are therefore modified to

Fo,l =


Pmax,lv+Ppump−Psa

Rpump
if Pmax,lv ≤ Psa

Pmax,lv+Ppump−Psa

Rpump
+

Pmax,lv−Psa

Rlv
if Pmax,lv > Psa.

(23)

The first equation describes flow through the pump when the aortic valve is closed and the second
equation describes the flow through the pump and the aorta when the aortic valve is open. The
quantity and direction depend on the pressure difference between the left ventricle and the aorta, and
on the pressure difference created by the pump. Here, Rpump is the flow resistance inside the pump.

As mentioned before, figure 7 shows the flow in l/min for the Impella LP 2.5 pump as a function
of the pressure difference over the cannula. The different lines represent different rotational speeds.
The exact experimental details were unknown to us, but it is our strong belief that the pressure
difference at the horizontal axis is artificially induced. Figure 7 suggests that locally around an
operating point a linear relation

F =
Ppump − ∆p

Rpump
(24)

for the flow through the cannula is reasonable. Here ∆p is the artificial pressure difference at the
horizontal axis of the experimental data, and Rpump is the flow resistance of the pump. We only
consider the highest rotational speed of 51000 rpm here. Two data points from the experimental
data available during the week (which differed from the ones presented in figure 7) were chosen to
determine Rpump around the operating point, which resulted in Rpump = 2.25 s · mmHg/ml.

6 Numerical Results
The full model was simulated in Matlab with a Runge-Kutta difference scheme with varying timesteps.
Figure 10 shows the PV loop (left) and the cardiac output (right) in millilitres per second for a normal
patient with and without a pump. The pump pressure was taken to be constant at Ppump = 25 mmHg
after calibration based on the experimental data from PV-loop measurements. This means that the
pump creates a constant pressure difference of 25 mmHg, and therefore also implies that for pressure
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differences between the left ventricle and the aorta that are higher than 25 mmHg, backflow through
the pump arises. Other unknown constants were taken from [12]. We took initial conditions which
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Figure 10: Left: Simulated PV loop. Right: Cardiac output for a normal patient with pump (dash-
dotted line) and without pump (solid line). Ppump = 25 mmHg.

differ slightly from the normal operating conditions of the heart to show that the dynamics converge
to a stable limit cycle.

In the left plot of figure 10, we observe that starting from some initial value for Plv and Vlv,
the cardiovascular system stabilizes, and the PV loop converges to a steady cycle. The PV loop
of the patient with pump shows a higher maximal volume, which is caused by backflow through
the cannula during relaxation. The constant suction induced by the pump also allows less pressure
buildup inside the left ventricle at the end of the systolic phase. The right plot of figure 10 shows that
the peaks are higher for the patient with the pump, because the pump induces extra outflow during
contraction. This increases the cardiac output. On the other hand, during relaxation there is a small
backflow through the pump, decreasing the overall cardiac output, since the pressure Ppump is too
small here to prevent backflow during relaxation.

We also simulated the system with a higher pump pressure of Ppump=160 mmHg. Figure 11
shows experimental data for the PV loop of the heart of a patient with coronary artery disease, with
and without the Impella LP 2.5 pump at the highest rotational speed. The left plot of figure 12 shows
that for a normal heart the maximal volume of the left ventricle and the bottom left corner in the PV
loop are shifted to the left after insertion of the pump, in correspondence to figure 11. The upper arcs
in the PV loop of the simulated normal heart are absent in the measured PV loop of the weak heart.
The right plot of figure 12 shows that there is no backflow anymore, and due to the constant outflow,
the left ventricle volume is smaller at the end of the systolic phase, which results in a smaller peak
in the cardiac output during contraction.

The area below the cardiac output graph equals the total cardiac output in ml, and a comparison
of figures 10 and 12 shows that the total cardiac output has increased when a stronger pump is used.
More specifically, the pump caused an increase from 73.9 ml in one cardiac cycle of 0.8 seconds
without the pump to 79.3 ml when the pump was used, corresponding to an increase from 5.54 litres
per minute to 5.95 litres per minute. This increase of approximately 7% is the result of almost 1.5
litres per minute extra cardiac output during the relaxation phase, and roughly 1 litre per minute less
cardiac output during the contraction phase.

Further increase of Ppump to Ppump = 1000 mmHg gives negative volumes in the PV loop, which
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Figure 11: PV loop of the heart of a patient with coronary artery disease, with and without a pump
(Measurements provided by AMC).
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Figure 12: Left: PV loop, and Right: Cardiac output for a normal patient with pump (dash-dotted
line) and without pump (solid line). Ppump = 160 mmHg.

can be explained as follows. Due to the linearity of the differential equations, state variables are
allowed to be negative. The resistances, compliances, and inertances are either measured for normal
blood flow or calibrated to fit the model, and therefore the model is only realistic whenever the state
variables do not deviate too much from the values of a normal blood flow.

7 Conclusions and Suggestions for Further Research
In this project, we have modeled the effect of a rotary blood pump on the behaviour of a cardiovas-
cular system. It turns out that the resistance encountered by the blood flowing through the pump is
a very important design parameter when one tries to calibrate such a model to existing experimental
results for the pressure–volume relationships. By varying the pressures generated by the pump, we
were able to see phenomena such as backflow through the pump in our simulations.

Under normal operating conditions we found an increase in the cardiac output by 7% as a result
of the pump, which is the net result of a substantial increase in output during the relaxation phase
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but also a substantial decrease in output during the contraction phase.
There is obvious room for more complex models in future research. We believe that such mod-

els should not necessarily involve more detailed modeling of the environment such as the artery
systems, since its dynamics seem to be captured quite well, but should rather investigate the exact
relationship between pressure and flow through the pump under more extreme circumstances. The
design specification of the pump that we investigated during this project focusses on maintaining a
constant rotational speed but one might easily envisage control systems for the pump in which other
specifications are formulated, to enable an even more beneficial contribution from the mechanical
device.
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Abstract

In this paper, we will discuss the issue of rostering jobs of cabin crew attendants at KLM.
Generated schedules get easily disrupted by events such as illness of an employee. Obviously, re-
serve people have to be kept ‘on duty’ to resolve such disruptions. A lot of reserve crew requires
more employees, but too few results in so-called secondary disruptions, which are particularly
inconvenient for both the crew members and the planners. In this research we will discuss several
modifications of the reserve scheduling policy that have a potential to reduce the number of sec-
ondary disruptions, and therefore to improve the performance of the scheduling process.

Key words: airline crew rostering, reserve duties, soft flights

1 Introduction
KLM (Koninklijke Luchtvaart Maatschappij N.V. also known as KLM Royal Dutch Airlines) has
more than 100 aircraft and over 8,000 cabin flight attendants. Every week, a new roster is received
by the cabin crew, which shows their assignments for the next several weeks. There are about 6,000
flights assigned to crew members each week. Besides the flights other assignments are rostered as
well, such as trainings, days off and reserve duties.

1.1 Rostering of Flights
The assignment of cabin crew to flights is a difficult problem in which many different aspects have to
be taken into consideration. First, the cabin crew is divided into four ranks: Senior Pursers, Pursers,
Business Class Flight Attendants and Economy Class Flight Attendants. The last two ranks are
sometimes denoted by the stripes (‘band’ in Dutch) on their sleeves: two stripes for the Business
Class Flight Attendants (‘2-bander’ or 2B) and one stripe for the Economy Class Flight Attendants
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(‘1-bander’ or 1B). There are certain regulations on how many crew members of a particular rank
have to be on a certain flight. In general, there are only Pursers and 1-banders for flights within
Europe (short-haul flights), while all four ranks have to be scheduled on intercontinental (long-haul)
flights.

Second, the crew has to be qualified to fly on a particular aircraft type. There are in total six
different aircraft types, and each crew member is qualified to fly a maximum of three different
types. Crew members of the same rank and with the same qualifications are grouped into divisions.
Currently, the KLM cabin crew members are divided into 17 divisions.

According to legal regulations and the collective labour agreement of the KLM cabin crew, each
flight duty should be followed by a minimum number of hours of time off. The length of this time
off depends on the characteristics of the duty such as duration, time of day, time difference between
origin and destination. Also, after several flight duties the flight attendant is entitled to a number of
days of leave, which also depends on the characteristics of the previous assignments.

The combining of flights in such a manner as to optimize the balance between duty time and leave
is a specialized process due to the complexity of the regulations. This is why flights are combined
into predefined patterns prior to the assignment process. A combination of flight duties followed by
the appropriate number of days of leave is called a pairing. The length of a pairing can vary from
three days up to seventeen days. The process of constructing these pairings is called the pairing
process. This is performed by an application called Carmen Crew Pairing.

Pairings are assigned to specific crew members several weeks ahead of the actual day of exe-
cution. This is done with consideration of the rank and aircraft qualifications of the specific crew
member. But also the flight preferences and requests for leave on specific days are taken into ac-
count. The requests are evaluated according to certain priority rules so as to avoid conflicts (such as
a number of crew members requesting the same assignment). These requests result in assignments
of pairings to crew members prior to the rostering of the remaining pairings, which is performed by
the application Carmen Crew Rostering. See Kohl and Karish [3] for rostering algorithms exploited
in such a system. Carmen produces a roster for a period of two weeks, the published period. The
resulting roster is rather fixed and cannot change much. The roster after these two weeks is also
published, however, it can still change quite a lot.

Currently, about 80% of all the flight assignments are assigned as requests. This method has a
serious drawback, because it does not allow for Carmen to optimize the crew rostering with respect
to efficient allocation of resources. Therefore, a new strategy is currently being introduced called
Preferential Bidding System. It consists in giving preferences rather than requests for specific flights.
A preference could refer to a single flight or something more general, like the preference to start and
finish early or the preference for flights to the Far East. The Carmen Crew Rostering system will
then try to comply with a maximum number of preferences while also optimizing the efficiency of
the rosters.

1.2 Disruptions

In general, a schedule is subject to changes. The flight assignments can become disrupted. In order
to handle these disruptions, reserve duties are assigned to crew members in-between their regular
activities. The reserves can take over flights that have become vacant. This process of resolving
disruptions and adapting the schedule is an online procedure. That is, as soon as a disruption is
reported, a reserve is assigned to the disruption. When a reserve is assigned to a disrupted flight, the
entire pairing or its remainder is assigned to the reserve crew member.

There are several types of disruptions. Internal disruptions deal with disruptions of individual
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crew members, like illness. External disruptions affect more crew members, like short-term com-
mercial changes, delays or problems on the day of operations. Next to these primary disruptions,
there are also secondary disruptions. It often happens that the disrupted pairing consists of more
days than the assigned reserve duty. In that case, the reassigned reserve crew member will no longer
be able to perform the pairing which was originally assigned following his or her reserve block. As a
consequence, this flight will become disrupted as well. This is what we call a secondary disruption.
Such a disruption can cause another disruption, a ternary disruption. This domino effect will con-
tinue until a disrupted flight occurs outside the published period, or when it is assigned to a reserve
who has enough days left to take over the remaining days of the disrupted pairing. This is illustrated
with an example for three crew members in Figure 1. In the left figure, we see a possible roster
produced by Carmen Crew Rostering. If on day 1 crew member 1 is disrupted, crew member 2 gets
assigned to the disrupted flight. However, the pairing of crew member 2 starting on day 6 is also
disrupted. Therefore, crew member 3 is assigned to this secondary disruption on day 6.

FLT FLT FLT FLT FLT OFF OFF

RES RESRES OFF OFF FLT FLT FLT OFF

FLT FLT OFF OFF RES RES RES RES RES

FLT FLT

DAY1 DAY2 DAY3 DAY4 DAY5 DAY6 DAY7 DAY8 DAY9

FLT FLT OFF OFF RES

DIS

FLT FLT FLT OFF

FLT FLT FLT FLT OFF OFF

DIS DIS DIS DIS DIS DIS DIS DIS

FLT

DAY1 DAY2 DAY3 DAY4 DAY5 DAY6 DAY7 DAY8 DAY9

??? ???

Figure 1: The roster before and after the disruption of crew member 1.

Besides the concept of disruptions, crew members can also recover (after for instance illness).
This means that they become available for duty again. After an internal disruption of a crew member
his or her schedule is completely erased. As a consequence, a recovered crew member has no tasks
left until the end of the published period and hence can be assigned new flights.

In the remainder of this paper, we refer to flight blocks when we talk about pairings. Note the
difference between a flight duty (reserve duty) and a flight block (reserve block). The first definition
does not include days off (or days of leave), while the latter does.

Currently, a reserve block consists of five consecutive days of reserve -by duty followed by two
days off. Each day, the reserve duty is restricted by a start time and end time which can vary from
one reserve to the other. There are six different start times over a day and the end time is always
eight and a half hours later. This means that a disrupted flight may only be assigned to those reserves
of which the flight starts within the reserve duty. The number of reserve blocks (level of reserves)
that needs to be assigned to crew members each day is determined at the beginning of each season.
There is, however, no model available with which these decisions are made. At the moment, this is
done by employees of the Planning Department of KLM who mostly use their past experience and
good judgement.

The goal of this research is to come up with a good reserve strategy for the cabin crew of KLM.
A reserve strategy is defined by the number of reserve blocks that have to start each time unit and
the configuration of each reserve block, i.e., the length of the reserve duty, the number of days off,
and where to locate the days off. The quality of a specific reserve strategy can be determined by the
following performance measures:

• The number of secondary disruptions: this is a measure of the uncertainty for crew members
about the assignment following the reserve block.
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• The number of unused reserve days: these days will make it necessary to roster extra crew,
making the reserve strategy more expensive.

• The number of ‘open’ days. These are days between the end of an assigned disruption and
the remainder of the roster for the assigned reserve. In order to be able to utilize these days,
it will mostly be necessary to reassign a part of the existing assignment of the crew member.
This is not desirable if one wants to maintain the remainder of the assignment intact as much
as possible.

There is an intricate trade-off between these three measures. For example, open days can be
avoided at the expense of creating secondary disruptions, whereas unused reserve days can be
avoided by assigning duties to reserves at the earliest possibility, thus creating more open days.

The rostering process of all KLM crew is quite complex. Figure 2 shows the relationships be-
tween the different components that are discussed in this section. The construction of the actual
schedule is performed by Carmen. In this paper, our goal is to define the input for Carmen about the
reserve duties that have to be assigned to crew members. Section 2 discusses the assumptions and
simplifications we made. In Section 3, we propose several methods to determine how many reserve
blocks should start on a particular day, and how long these reserve blocks should be. In Section 4,
we discuss the soft flight approach, which can be seen as an extra constraint for Carmen to prevent
the domino effect to occur. The main idea of this approach is to have a pairing after a reserve block
assigned to a reserve crew member on duty for the same length of time. This pairing is called a soft
flight. This guarantees that no ternary disruption occurs. The possibilities for other configurations
for the reserve block are considered in Section 5. After producing a schedule, we should also have a
method to evaluate the performance of the schedule. We therefore introduce an algorithm to analyze
how different schedules perform in Section 6. In the final section, we obtain some numerical results
on the different approaches and compare them.

2 Assumptions and Simplifications
Airline Crew Rostering problems belong to the most difficult problems to solve since they are NP-
hard (see Ní Éigeartaigh and Sinclair [1]). There are, however, principles and heuristic rules that
result in solutions that are good enough in practice. In order to find such principles we have to make
some assumptions since not all details can be modelled properly.

The first simplification we make is that we do not distinguish between cabin crew, i.e., we use
no ranking and no specific qualifications for aircraft type of the crew members. Consequently, all
crew members are interchangeable which simplifies the assignment of reserves to disruptions. This
simplification is only justified when the reserve blocks are rostered to members of each of the 17
divisions (as explained in Section 1) proportional to the number of crew members of each division
required to perform the scheduled flights.

For reasons of simplicity we assume that all crew members work full-time. An employee work-
ing part-time is entitled to have more days of leave. Another simplification we make has to deal with
the time units. We round everything to days. So, a reserve duty is for 24 hours on a day instead of
eight and a half hours.

We assume that a disruption can only occur on the first day of a flight block. As mentioned in the
previous section, we can distinguish short-haul and long-haul flights. Most of the time, a long-haul
flight duty consists of only one flight, where a pairing on a short-haul flight is likely to consist of
multiple flights. Consequently, a flight duty for a short-haul can be disrupted on each day while a
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Evaluation

Pairings (flight blocks)
Reserve blocks

Constraints

Published schedule

Executed (disturbed) schedule
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CARMEN

Schedule

Figure 2: All aspects to be considered in the rostering problem.

flight duty for a long-haul can only be disrupted on the first day. Therefore, we make the assumption
of considering long-haul flights only. Note that this assumption ignores the possibility of a crew
member getting ill during his or her flight, or a malfunction of an aircraft at its foreign destination
(flight blocks always start and end in Amsterdam). When we look at the length of short-haul flight
blocks and the current reserve strategy, this assumption is not a problem. From historical data we
know that about 29% of the flight blocks has a length of 6 days, 15% has length 8, 13% has length
7, 12% has length 11, 10% has length 10, 7% has length 9, and the remainder is small. The range of
lengths is from 2 to 16 days.

Most short-haul flight blocks have duties of at most 5 days flying and 2 days off afterwards. This
is exactly the same as the current configuration of the reserve blocks. Therefore, it is less likely that
the current reserve strategy results in problems when these short-haul flights get disrupted. On the
other hand, the current reserve strategy will most likely cause secondary disruptions when a long-
haul flight is disrupted, since more than half of the long-haul flights exceed the length of the current
reserve block. Therefore, the only way to deal with disruptions on long-haul flights without causing
a secondary disruption is with recoveries. Since disruptions of short-haul flights are not a problem,
it is reasonable to simply ignore short-haul flights completely in this research.

The final simplifications we make have to deal with the handling of internal disruptions, external
disruptions, and recoveries. Internal disruptions result in less available crew members. Therefore,
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they require actual reserves. On the other hand, external disruptions will most likely result in changes
of the reserve crew, since the crew becoming available due to an external disruption can partly be
used as a reserve again. A disrupted crew member becomes available again for services after a
predictable (e.g., external disruption) or unpredictable (e.g., internal disruption) time period. The
unpredictable recoveries are modelled as the start of a reserve duty with infinite length, i.e., a length
equal to the published period of two weeks.

The main idea of this paper is to model the crew members that get disrupted as workforce out-
flow, while crew members returning to service after a disruption (i.e., recovering) are modelled as
workforce in-flow. In the long-run, by constant number of employees, the total workforce in-flow
and out-flow is approximately equal – a workforce conservation principle. However, at each time
instant there is a mismatch of the flows, which must be resolved by reserves.

It seems only wise that a disrupted crew member should return to his or her original roster as soon
as possible, since this was found to be optimal. Hence, keeping as close to the original schedule as
possible means staying close to optimality. This approach is advocated in Kohl et al. [4, Section 3.2],
where closeness to the original schedule stands as a principal objective of disruption management.
In order to use this principle, we have to make sure that secondary disruptions are prevented as
much as possible. Otherwise, the original schedule is mixed up even more. Therefore, the reserve
blocks must cover the long-haul flights. This can be achieved by rostering longer reserve blocks as
compared to the current reserve strategy. In the next section, we develop different techniques that
exploit this concept.

3 Level of Reserves
The previous section made clear that secondary disruptions have to be avoided as much as possible.
With the current situation nearly every disrupted long-haul flight will cause a secondary disruption
since there are no indefinite recoveries. Therefore, longer reserve blocks are proposed. In this
section, we develop three techniques that determine the number of reserve blocks that has to start
on a particular day with a certain length. The first technique is based on the concept of constructing
reserve blocks that are copies of the long flight blocks, see Section 3.2. The second technique copies
the flight blocks proportional to their occurrence, see Section 3.3. In the third technique, we use a
more statistical model to construct the reserve blocks, see Section 3.4. But let us introduce some
notation first.

3.1 Notation
A given flight schedule is defined by the number of crew members starting their flight block of type
j at day k (denoted by S jk). A type j can involve the characteristics length, rank, and aircraft type.
We write j � i if the characteristics of type j exceed (nonstrictly) the characteristics of type i (in the
case of length or rank), or they are compatible (in the case of aircraft type). Plainly, j � i means that
a reserve of type j can be used to serve a disrupted flight of type i. In our simplified model, where
we ignore rank and aircraft type, we can identify the type of block with its length, so that j � i if and
only if j ≥ i.

We want to determine the number of crew members starting their reserve block of type j at day
k (denoted by T jk). Therefore, we have to model the disruptions and recoveries. Internal disruptions
are assumed to be independent over time, as well as independent over all crew members. Conse-
quently, each crew member can have an internal disruption with some probability pint, where pint is
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based on the historical data. External disruptions are also assumed to be independent over time. For
simplicity, external disruptions are analyzed for each flight attendant instead of per flight. Therefore,
external disruptions are also independent over all crew members. Consequently, each crew mem-
ber can get an external disruption with some probability pext, where pext is based on the historical
data. We have to emphasize here that this is not always what happens in reality, but it is a useful
simplification for an initial model.

The actual number of internal disruptions that requires a reserve of type j at day k is a random
variable denoted by X jk, where X jk has a binomial (S jk,pint) distribution. In order to determine the
number of recoveries used on a particular day, we assume independence over time. Consequently,
we can define the number of recovered crew members on day k as a random variable Yk with a
probability distribution function fY (y) with y ∈ {0, 1, 2, . . .}, and expectation E[Y], both independent
of k.

3.2 Mirror Longest Flights
As mentioned in Section 2, we would like to exploit the idea of preferring long reserve blocks over
short ones for long-haul flights. In this section we use a maximum length for the reserve block
configuration. Several options are presented in Table 1.

option 1 2 3 4 5 6
length reserve duty 5 6 7 8 9 10
number of days off 2 2 3 3 3 4
length reserve block 7 8 10 11 12 14

Table 1: Different options for the configuration of the (longest) reserve block.

The actual number of reserve blocks that has to start with this configuration depends on the flight
schedule. When there are more long flights, the reserve blocks should be long as well. But it is
meaningless to schedule more reserve blocks of a particular length than there are flight blocks with
at least this length.

The idea of this approach is to copy long flight blocks and replace the flight duty with a reserve
duty. This process of copying is referred to as producing a mirror. Therefore, we first determine
the number of flight blocks that has to start on day k (i.e.,

∑
j T jk) based on a minimal flight reserve

cover ratio α, ∑
j T jk∑
j S jk

≥ α, ∀k.

Currently KLM uses a fixed α equal to 4%. This means that we would like to copy at least 4% of
the longest flights scheduled for day k as reserves, where the maximum length of the reserve blocks
is restricted to those of the fixed configurations (as in Table 1). This approach assumes flight block
types to be characterized by their length only (as mentioned in Section 2). Since it is preferred
that disruptions of the longest flights are solved by recoveries, we do not copy the first E[Y] longest
flights. This is beneficial because the longest flights have a higher probability of causing a secondary
disruption, and recoveries cannot have secondary disruptions since they have no schedule yet. Note
that this strategy only incorporates averages.

The advantage of the mirror longest flight approach is that long reserve blocks are created. This
approach, however, also has its disadvantages. Proportionally there are more long reserve blocks
compared to the current situation. As a result, more reserve days are rostered as compared to the
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current situation. To resolve this, either the cover ratio of 4% reserves starting on a particular day
has to decrease, or the cover ratio should be based on the number of reserves and flights scheduled
at a particular day instead of only on the ones starting at day k, i.e.∑k

l=1
∑∞

j=k−l+1 T jl∑k
l=1

∑∞
j=k−l+1 S jl

≥ α ⇒
∑

j

T jk ≥ α

k∑
l=1

∞∑
j=k−l+1

S jl −

k−1∑
l=1

∞∑
j=k−l+1

T jl.

This will be referred to as the alternative cover ratio.

3.3 Mirror Flights Proportional
The mirror longest flight approach prefers long reserve blocks. A disruption of shorter flight blocks
will result in partial usage of such long reserve blocks. But also less reserves will start at a particular
day when a crew member is rostered as a reserve for around 4% of the time. Another technique
to solve the problem is to copy (or mirror) the flights in the same way as discussed in Section 3.2,
but the number of reserve blocks with a particular length should be proportional to the number of
flight blocks starting that day with the same length. Both options for the cover ratio can be used as
mentioned in Section 3.2. We can deal with the recoveries in the same way as well.

3.4 Statistical Model
When all flight block types are unique and cannot exceed another type ( j � i for i , j), only reserves
of type j can be used for a disruption of a flight block with characteristic type j. In such a situation,
the probability of requiring more reserves than available should be low, e.g., less than 5%:

P(X jk > T jk) < 0.05 ⇔ P(X jk ≤ T jk) ≥ 0.95 ∀ j, k. (1)

In reality, however, characteristic types can exceed each other. In this paper, we assume flight and re-
serve block length to be the only characteristic, i.e., i � j if and only if i ≥ j. Consequently, disrupted
flights of type j can only be resolved with reserves of type i if i ≥ j to exclude secondary disruptions.
Furthermore, recoveries can be used as well. Therefore, Equation (1) can be reformulated as

P

X jk ≤ T jk + Yk +

∞∑
i= j+1

(Tik − Xik)

 ≥ 0.95, ∀ j, k. (2)

Based on the central limit theorem (see Ross [5]), the binomial distribution for X jk can be approx-
imated by a normal distribution with mean µ jk = S jk pint and variance σ2

jk = S jk pint(1 − pint). For
simplicity, the stochastic recovery variable Yk is also assumed to be normally distributed, with pa-
rameters µrec and σ2

rec.
We can rewrite Equation (2) as

P

 ∞∑
i= j

Xik − Yk ≤

∞∑
i= j

Tik

 ≥ 0.95, ∀ j, k. (3)

The left-hand side of this inequality represents the number of required reserves of at least length
j, while the right-hand side represents the number of available reserves of at least this length. The
probability of a mismatch should be less than 5%. Since the disruptions and recoveries are indepen-
dent of crew members, the number of required reserves (

∑
i Xik − Yk) also has a normal distribution
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with a mean equal to
∑∞

i= j S ik pint−µrec and a variance equal to
∑∞

i= j S ik pint(1− pint)+σ2
rec. Therefore,

Equation (3) equals ∑∞
i= j Tik −

(∑∞
i= j S ik pint − µrec

)
√∑∞

i= j S ik pint(1 − pint) + σ2
rec

≥ Φ−1(0.95), (4)

where Φ(·) is the cumulative distribution function of the standard normal distribution. This is equiv-
alent to

T jk ≥ 1.645

√√
∞∑
i= j

S ik pint(1 − pint) + σ2
rec +

∞∑
i= j

S ik pint − µrec −

∞∑
i= j+1

Tik. (5)

With this iterative procedure, we can determine T jk by starting with the longest reserve block and
then each time decreasing j and computing the next value of T jk.

4 Soft flight approach
The previous section described several methods to determine the lengths and number of reserve
blocks that start on a particular day. In this section, we will consider flight blocks following reserve
blocks in a roster and give them a special status. We will call these special flight blocks soft flight
blocks (SFBs). See also Figure 3. Note that this approach also deals with the input for Carmen,
independent of the techniques discussed in the previous section. These SFBs have several special
properties, and therefore, should be treated differently in the disruption management process. First
of all, SFBs suffer the most from secondary disruptions. On the other hand, they account for just a
few percent of all flight blocks (the number of SFBs is equal to the level of reserves, which is around
4% of the total flights at the moment). Hence they may potentially be treated with special care.

We propose to create dedicated reserve blocks to cover soft flight blocks. Although the idea
here is similar as in the previous section, the method is quite different. First the level of reserves is
determined, as in Section 3. Next they have to be assigned to crew members. In the SFB approach,
we propose to start as many SFBs of a particular length as there are reserves starting that day with
the same length. The latter is determined first. This principle is shown in Figure 3. Since reserves,
and therefore, SFBs occur infrequently, most of these requests can easily be granted. If a dedicated
reserve is not needed to prevent a secundary disruption, this will be known in advance and the
reserve can then still serve as a regular reserve. This can be taken into account when determining
the required level of reserves.

OFF OFFRES RES RES RESRES OFF OFFSFL SFL SFL SFL SFL

OFF OFFRES RES RES RESRES

crew j

crew j’

Figure 3: Soft flight block for crew member j, with a dedicated reserve j′.

Ensuring the availability of reserve blocks having the appropriate length to cover a disrupted
SFB should stop the domino effect, i.e., a secondary disruption will almost never cause a ternary
disruption. Currently, the end of the published period is often used to stop this domino effect.
Stopping the domino effect could help to extend the planning horizon in the future.
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One could go a step further and exploit the regularity of used reserve patterns together with the
soft flight approach. We could pre-assign a potential secondary disruption on a SFB of crew member
j to the crew member j′ whose reserve block follows the reserve block of j. We could inform crew
member j′ in advance that he or she is the backup of j. It would probably be advantageous for j′

to have this information. Additionally, such an automatization of handling secondary disruptions
could simplify the online disruption handling process. Note that this is true since each day the level
of reserves is about the same and therefore after a reserve block another reserve block starts for a
different crew member.

5 Configuration of reserve blocks

As mentioned in Section 1, we can also change the configuration of a reserve block, i.e., the distri-
bution of the off days in the reserve block. Currently, a reserve block consists of five days of reserve
duty followed by two days of leave. In this section we discuss the possibility of changing this con-
figuration of reserve blocks. To be more specific, we consider the possibility of moving the days off
from the end of the block to the middle. It is desirable for the crew to have some days off at the end
of a reserve period, but not necessarily all of the days off.

When we consider the configuration of a reserve block, we have to make a choice which days
of the reserve block are most appropriate to be the starting days for serving disrupted flights. If the
length of the disrupted flight is at most the length of the reserve block, we would prefer to give this
flight to the person whose remaining length of reserve block just covers the flight. Consequently, no
secondary disruption is caused and no open days occur in the roster. But if the disrupted flight does
not fit to any available reserve block (which is almost always the case with disruptions of long-haul
flights), then the choice of the reserve depends on the flight he or she has scheduled just after the
reserve block. This is one more reason for introducing SFBs and controlling their lengths.

Imagine a situation where no reserve block is available to cover a particular disruption. Conse-
quently, a secondary disruption occurs. In such a case, one would prefer to assign this disruption to a
person at the end of his or her reserve block, such that serving the disrupted flight block would finish
at the same time as the SFB of the reserve. The open days are minimized with such a principle. In
the SFB approach, the secondary disruption would be served by its dedicated reserve crew member
and both reserves could return to their original schedules afterwards.

It makes little sense to speculate what would be the best configuration of a reserve block without
extensive testing. Just to illustrate the idea, one could consider the situation illustrated in Figure 4.
Assume we use the SFB approach. The first line shows a current configuration of 5 days reserve
and 2 days off. When we use the first day to cover disruptions without causing open days, we can
use it for disrupted flights of length 7 and 14. When this does not occur, the reserve can be used on
the second day for disruptions of 6 or 13 days, and so on. Disrupted flight blocks of length 8 or 9
always result in open days. Such flight blocks are quite common for long-haul flights, as we know
from the historical data mentioned earlier. Therefore, we propose to shift the two days off to day
4 and 5 of the reserve block, as shown on the second line of Figure 4. Note that on the other hand
the reordering of off days may increase the level of reserves needed, since off days will occur more
often during a reserve block.
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OFF OFFRES RES RES RESRES OFF OFFSFL SFL SFL SFL SFL

OFF OFFSFL SFL SFL SFL SFL

OFF OFFRES RES RES RESRES

RES RES RES OFF OFF RES RES

7|14 6|13 5|12 4|11 3|10

7|14 6|13 5|12 9 8

Figure 4: Two reserve blocks with different internal structure. The numbers under the reserve blocks
indicate the length of a disruption which they can fit ‘perfectly’, that is, without causing open days
in the roster (in combination with their soft flight block). If we want to optimize the perfect fittings,
we need to determine which disruptions have the highest probability to occur. In particular, if there
are more disruptions of length 8 and 9 than with length 3, 4, 10 and 11 we prefer the reserve block
pattern : 3 days active / 2 days off / 2 days active.

6 Comparison of scheduling techniques

In Section 3, we have developed different approaches to determine the number of reserve blocks that
have to start at a certain day with a particular length. In order to compare the different approaches,
we developed an analytical comparison procedure, which is the subject of this section.

For the comparison procedure we use the same assumptions as made in Section 2, i.e., no specific
qualifications for air crew members (no ranks, no particular qualifications for air craft type), only
long-haul flights, recoveries are reserves of infinite length (i.e., equal to the publishing period).
Another assumption we make, such that reserves can be assigned to disruptions more easily, is
complete knowledge of the availability of crew members being on reserve and of all disruptions on
a particular day before any reserve gets assigned to a disruption. In practice, this means that all
disruptions are reported before any of them is resolved by assigning reserves. Also all people who
recover and become available again are reported before this assignment takes place.

For the assignment of reserves to disruptions we want to have a fixed disruption handling scheme.
This scheme should result in using the reserve capacity in such a way that secondary disruptions and
open days are prevented as much as possible. Therefore, when a disruption of length j occurs, we
check recoveries first. Otherwise, we want to use a reserve block of length j. If there is no such
reserve block, we gradually increase the length of the desired reserve block, each time by one day.
When all options of reserve blocks of at least j days are checked and no reserve is available, a sec-
ondary disruption occurs. Now, use a reserve block of length j− 1 and gradually decrease the length
by one day until the disruption is resolved. This approach results in avoiding secondary disruptions
as much as possible, and if they still occur making them as short as possible, thus minimizing the
probability of ternary disruptions occurring.

Before we actually assign reserve blocks to disruptions, we make another simplification from
reality. In reality, we distinguish between a crew member being allowed to be called as a reserve or
having days off in a reserve block. In our comparison procedure, we do not want to keep track of
this distinction. So, we only look at reserve blocks and flight blocks disregarding the days off.
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Let us introduce some notations for the performance measures:

Uk = the expected number of unused reserves on day k

Vk = the expected number of secondary disruptions caused on day k

Wk = the expected number of disruptions that cannot be resolved with recoveries
and reserves on day k

The first two definitions have already been mentioned in Section 1. We added the third perfor-
mance measure, to have an understanding whether there is a lack of reserve crew. In the comparison
technique we predict the number of available reserve blocks of a particular length based on the
assignment scheme as described above and on the probabilities for recoveries and disruptions.

For each day, we would like to keep track of all flights that can get disrupted. Therefore we
define the sequence set Dk as all possible disruptions on day k, where k ∈ {1, . . . ,K} and K being
the publishing period (i.e., the planning horizon). A possible disruption d ∈ {1, . . . , |Dk |} on day k is
identified by the length of the flight l(k)

d and by its probability of requiring a reserve p(k)
d . There are

as many possible disruptions of length l on day k as the number of scheduled flight blocks with this
length (i.e., S jk). Consequently, |Dk | equals

∑
j S jk. Each possible flight block gets initially disrupted

with probability pint + (1 − pint)pext = 1 − (1 − pint)(1 − pext). We order the flights in Dk such that
l(k)
d ≥ l(k)

d+1 (i.e., in decreasing order of their length).
Set the initial probabilities for having i reserve blocks available of length j starting at day k

(denoted by pi jk) as

pi jk =

{
1, if i = T jk ∀ j, k
0, otherwise

and for the availability of recoveries

pi,K+1,k = fY (i) ∀i, k.

Since disruptions occur, the probabilities of reserves being available (i.e, pi jk) change over time. The
analytical procedure to update these probabilities and to compute the performance measures is given
in Appendix A.

7 Numerical Results
For the numerical results we used actual data of KLM. For simplicity, we assumed each day to be
the same, i.e., T jk = T j,k+1 and S jk = S j,k+1. When we evaluated the data on long-haul flights, we
observed the values as presented in Table 2 and Table 3, where µrec = 7.1 and σ2

rec = 8.353.

j S jk j S jk j S jk j S jk

1 0 5 8 9 27 13 13
2 8 6 108 10 38 14 3
3 0 7 49 11 46 15 5
4 0 8 55 12 12 16 2

Table 2: The number of flight blocks starting on a given day.

The probabilities for internal and external disruptions are pint = 0.06 and pext = 0.07, respectively.
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y fY (y) y fY (y) y fY (y)
0 0 7 0.122905 14 0.011173
1 0.011173 8 0.139665 15 0.011173
2 0.033520 9 0.136872 16 0
3 0.064246 10 0.069832 17 0
4 0.092179 11 0.047486 18 0
5 0.103352 12 0.019553 19 0.002793
6 0.120112 13 0.013966

Table 3: The probability distribution for the recoveries used to resolve disruptions.

Currently KLM uses a 4% flight reserve cover ratio where a reserve block consists of 5 days of duty
and 2 days off. So, in total 15 reserve blocks start on a daily basis (4% of

∑
j S jk = 374). Since the

length of a reserve block is 7 days, there are 105 crew members scheduled as reserve each day. We
would like to keep this number more or less fixed when comparing the different approaches discussed
in Section 3 (rounding real values to integers causes some small fluctuations). The cover ratio and
the alternative cover ratio are the same since each day is identical. For the different configuration
approaches we get T jk as in Table 4. Since all days are the same, the performance measures are also
the same for each day, as presented in Table 4. The current policy with 15 reserves starting a reserve
block of length 7 each day is reflected in our simplified model by option 1 in the table. The statistical
method without the restriction of the current 105 crew members being planned as reserves is given
in the last column, as ‘ideal statistical’. Notice that in our simplified model the number of needed
reserves for the current policy is higher than the number available, by more than the accepted margin
of 5% (about 5 disruptions), since Wk = 18.64, see column 2 in Table 4.

Table 5 presents a more detailed study of the requirements, only based on internal disruptions.
As mentioned already, 374 flight blocks start each day, as well as 15 reserve blocks. Each day,
there are on average around 7 recoveries. The expected number of internal disruptions of length j
equals pintS jk (column 3 in Table 5). On average, the 7 longest disruptions can be resolved with
recovered crew members. The remaining disruptions have to be resolved with reserve crew (column
4 in Table 5). More than 17 reserves are required each day. So, this points to a lack of two reserves in
our simplified model. This can also not be resolved with scheduling two disruptions in one reserve
block. This is shown by multiplying the expected number of required reserves with their desired
length, which represents the expected number of reserve days that have to be scheduled each day
(column 5 in Table 5). This equals almost 120 reserves, compared to 105 in the current schedule.

8 Conclusions and Future Research
In this paper we developed several techniques to determine the number of reserve crew to be sched-
uled. The use of the statistical model is recommended since it incorporates the stochastical nature
of disruptions and recoveries. This technique also uses a service level that can be interpreted quite
easily, instead of the cover ratio. One topic for further research would be to investigate the effects of
the SFB approach. This could be done by simulating the process of handling disruptions. Another
option is to extend the comparison technique discussed in Section 6 to incorporate the configuration
of the flight blocks and reserve blocks. It would also be interesting to look at more exact optimization
methods like column generation and genetic algorithms (see for instance Guo [2] and Thiel [6]).

Our numerical results show that the statistical method halves the number of secondary disrup-
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mirror longest flight mirror statistical ideal
j opt 1 opt 2 opt 3 opt 4 opt 5 opt 6 proportional statistical
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 4 0 8
7 15 0 0 0 0 0 2 0 4
8 0 13 0 0 0 0 2 2 4
9 0 0 0 0 0 0 1 2 2

10 0 0 11 0 0 0 1 3 3
11 0 0 0 10 0 0 2 3 3
12 0 0 0 0 9 0 0 1 1
13 0 0 0 0 0 5 1 0 0
14 0 0 0 0 0 3 0 0 0
15 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0∑
j T jk 15 13 11 10 9 8 13 11 26∑

j j · T jk 105 104 110 110 108 107 108 109 206
Uk 0.46 0.52 0.57 0.58 0.54 0.55 0.51 0.65 92.97
Vk 38.43 30.61 22.68 21.59 24.27 24.49 31.55 17.31 0.02
Wk 18.64 15.12 9.87 8.92 9.92 10.78 15.38 7.99 0

Table 4: The number of unused reserves Uk, secondary disruptions Vk, and unresolved disruptions
Wk for the different approaches.

j S jk disruptions required reserves scheduled reserve days
1 0 0 0 0
2 8 0.52 0.52 1.04
3 0 0 0 0
4 0 0 0 0
5 8 0.52 0.52 2.60
6 108 7.01 7.01 42.09
7 49 3.18 3.18 22.28
8 55 3.57 3.57 28.58
9 27 1.75 1.75 15.78
10 38 2.47 0.73 7.29
11 46 2.99 0 0
12 12 0.78 0 0
13 13 0.84 0 0
14 3 0.19 0 0
15 5 0.32 0 0
16 2 0.13 0 0

total 374 24.29 17.29 119.65

Table 5: The expected number of internal disruptions, required reserves, and scheduled reserve
days.



Cabin crew rostering at KLM: optimization of reserves 41

tions compared to the current policy, comes close to the 5% accepted level of unresolved disruptions,
while having the same low number of unused reserves. The current policy is already working quite
reasonably in practice; the numerical results for our simplified model indicate that these can be
improved by using the statistical model.
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A Probabilities of having reserve capacity

1 for k = 1 to K
2 Vk = 0, Wk = 0
2 for d = 1 to

∑
j S jk

3 p_r = p(k)
d

4 l = l(k)
d

5 prob_ext = pext · (1 − p_r)/(1 − pext)
6 j = K + 1
7 prob_not_avail = p0 jk

8 for i = 1 to ∞

9 pi jk =

{
pi+1, j,k · p_r + pi jk if i = 0
pi+1, j,k · p_r + pi jk · (1 − p_r) otherwise

10 next i
11 p_r = prob_not_avail · p_r
12 for j = l to K
13 prob_not_avail? = p0 jk

14 for i = 0 to ∞

15 pi jk =

{
pi+1, j,k · p_r + pi jk if i = 0
pi+1, j,k · p_r + pi jk · (1 − p_r) otherwise

15 next i
16 if ( j > l)
17 daysleft j−l,k+l + = p_r · (1 − prob_not_avail)
18 endif
19 p_r = prob_not_avail · p_r
20 next j
21 Vk = Vk + p_r
22 for j = l − 1 to 1
23 prob_not_avail = p0 jk

24 for i = 0 to ∞

25 pi jk =

{
pi+1, j,k · p_r + pi jk if i = 0
pi+1, j,k · p_r + pi jk · (1 − p_r) otherwise

26 next i
27 p(k+ j)

d + = p_r · (1 − prob_not_avail)/
∑

i S i,k+ j ∀d ∈ Dk+ j

28 p_r = prob_not_avail · p_r
29 next j
30 Wk = Wk + p_r
31 for i = 0 to ∞

32 pilk =

{
pilk · (1 − prob_ext) if i = 0
pilk · (1 − prob_ext) + pi−1,l,k · prob_ext otherwise

33 next i
34 next d
35 Uk =

∑
j
∑

i ipi jk

36 pi, j,k+1 =
∑i

l=0 pl, j+1,k · pi−l, j,k+1 ∀i, j
37 p j = daysleft j,k+1/

∑
j T jk

38 pi, j =
(∑

m Tmk
i

)
pi

j(1 − p j)
∑

m Tmk−i

39 pi, j,k+1 =
∑i

l=0 pl j · pi−l, j,k+1 ∀i, j
40 next k

For every day k, we treat every scheduled flight as a possible disruption d ∈ {1, . . . ,
∑

j S jk}. The
impact of a disruption is represented by lines 3–33. Flight block d with length l(k)

d has an initial
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probability p(k)
d of getting disrupted. Let us introduce the following probabilities:

prob_not_avail = the probability that no reserve block of length j is available
prob_ext = the probability that there is an external disruption

p_r = the probability that a crew member on flight d is disrupted,
and still requires a reserve crew member

To resolve this disruption d we first check whether a recovered crew member is available (i.e., a
reserve block of length K+1). Therefore, the probabilities pi jk are adjusted according to line 9. When
there is no recovery available, a reserve is still required, and p_r gets updated (line 11). Next, we
check whether a reserve block of at least l(k)

d days is available (lines 12–20). No secondary disruption
will occur in these situations. The procedure to update pi jk is the same as on line 9. If a reserve block
with length j ( j > l(k)

d ) is available, the remaining reserve days of this reserve block ( j − l(k)
d days)

become available after resolving flight d (at day k + l(k)
d ). This is represented on line 17. If there

is still no reserve crew found (with probability p_r), a secondary disruption occurs. Therefore Vk

increases. Again the same update procedure is used to update pi jk. A secondary disruption occurs
at day k + j since the reserve crew member cannot perform its scheduled flight block after his/her
reserve block. Since it can affect any of the flights, all flights at day k + j obtain a higher chance of
getting disrupted (line 27). If there is still no reserve available, an emergency crew member has to
be called (i.e., Wk increases).

When the disruption is external, the crew member becomes available to resolve other disruptions
(line 32). When all disruptions on a day are taken care off, we can calculate the expected number of
remaining reserves Uk. These reserves can be used the next day (line 36). The probability of having
reserve blocks of j days remaining and becoming available at day k+1 equals p j (line 37). The actual
number of reserve blocks becoming available with j days remaining has a binomial distribution (line
38). These have to be added to the reserve crew (line 39).
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A sampling problem from lithography for chip layout

Eric Cator∗ Tammo Jan Dijkema† Michiel Hochstenbach‡

Wouter Mulckhuyse§ Mark Peletier‡ Georg Prokert‡

Wemke van der Weij¶ Daniël Worm‖

Abstract

Given a list with simple polygons and a sampling grid geometry, we calculate the sample
(greyscale) value of each grid pixel, such that the residual error in a certain norm is sufficiently
small, taking into account that the amount of computational operations should be minimal.

Key words: sampling, Fast Fourier Transform, computational operations.

1 Introduction

1.1 Lithography
ASML is the worldwide leader in lithographic techniques for the semiconductor industry. Since the
different steps in the lithography process are important for the discussion of this report, we describe
them in some detail.

The main function of the lithographic system of ASML is to expose a silicon wafer with a pattern
of given light intensity. This exposure step is embedded in the following sequence:

1. A designer creates the design of the desired pattern in a CAD system;

2. The CAD system perturbs the design to pre-correct for deficiencies in the optical system (see
below);

3. For each layer of the chip a mask is created;

4. If needed, the material for the current layer of the chip is deposited on the water;

5. A photoresist coating is added on the wafer

6. The lithographic system exposes the photoresist on the wafer with the mask for the current
layer;

7. The photoresist is developed;
∗Technische Universiteit Delft
†Universiteit Utrecht
‡Technische Universiteit Eindhoven
§ASML, Veldhoven, the Netherlands
¶CWI, Amsterdam
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8. Those parts of the wafer where the photoresist is gone are further treated (i.e. etched).

9. The remainder of the photoresist is removed.

Steps 4 to 9 may be repeated as many as forty times, thus creating a landscape on the wafer with
details at many different heights.

Only step 6 takes place within the lithography machines, and therefore only this step is under
control here; the rest of this list is to be treated as a given, and this will be important below.

1.2 Maskless lithography
A new development is the creation of lithography systems that use an array of microscopic mirrors
instead of the mask. Step 3 above is then skipped, and the output of step 2 is fed directly into step 6.
The mirrors are then positioned in such a way that the resulting illumination pattern on the wafer
corresponds to the pattern that a mask-based optical system would create.

Maskless lithography will not be competitive with mask-based lithography for production ma-
chines, since mask-based systems have higher throughput. Maskless systems will have the advan-
tage, however, of eliminating the costly and time-consuming step of creating the mask. Therefore
maskless systems may be beneficial in the pre-production (testing) phase. Since the client should
be able to switch from testing on maskless systems to production on mask-based systems without
changing the pattern, it is essential that the maskless systems act as a drop-in replacement for mask-
based systems. In other words,

the maskless system has to imitate a mask-based machine with all its imperfections.

Some of the constraints posed to the Study Group stem from this requirement.

1.3 The pattern
The pattern that is created in steps 1 and 2 is defined as a collection of polygons. In mathematical
terms we will describe this pattern by the indicator function χP of the union of these polygons, i.e.

χP(x) :=
{

1 x lies in some polygon
0 otherwise.

For reasons of computational efficiency it is important that the pattern is given by polygons as these
can be described easily by a sequence of the coordinates of their vertices, in the order that defines
their boundary.

1.4 The question
As part of the ‘data path’ that transforms the machine input (the output of step 2 above) into the
steering signal for the array of mirrors, a sampling step is necessary. In this step the collection of
polygons is transformed into an array of intensity values (in [0, 1]) of the same size as the array of
mirrors. In this sampling step, aliasing is an important problem (see Section 2 and Figures 1 and 2),
and the original question as posed to the Study Group was to design an efficient algorithm to perform
this sampling step with sufficient control on aliasing. In Figure 1 a part of a chip layout is shown.
Clearly visible are the perturbations around corners that are introduced to correct for phenomena
occurring in a mask-based machine. Figure 2 shows the desired rasterization of this chip layout.
Gray values represent the intensity at which a square should be exposed.
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Figure 1: Part of a chip layout. Figure 2: The desired rasteriza-
tion of this chip layout.

2 Sampling, low-pass filters and aliasing
A well-known error source occurring in the processing of sampled signals is known as aliasing. In
our context, it is best understood theoretically from the simple observation that sampling and (low-
pass) filtering of a signal do not commute. To see this, interpret sampling as multiplication of a given
signal in the space domain by a so-called shah distribution or Dirac comb

Xa :=
∑
k∈Z

δ(· − ak)

where δ(· − ak) denotes a shifted delta distribution and 1/a is the sampling rate. It follows from the
Poisson summation formula that up to a scaling factor, the Fourier transform (denoted by a hat) of a
shah distribution is a shah distribution with inverse sampling rate:

X̂a =
1
a
X 1

a
.

Figure 3: Spatial sampling in frequency domain representation (qualitatively). On the left the orig-
inal signal is shown, on the right the resulting signal after sampling. This resulting signal consists
of an (infinite) sum of scaled and translated copies of the original signal. The dashed lines show the
low-pass filter bandwidth.
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As pointwise multiplication in space domain corresponds to convolution in frequency domain,
spatial sampling is represented in frequency domain by convolution with a shah distribution (Fig. 3).
If the sampling rate is taken too small, spurious contributions of higher frequencies will appear in the
low frequency band and persist even after applying a low-pass filter. For more details on sampling
and the aliasing effect we refer to [1].

There are two possible remedies to avoid this:

1. use of a higher sampling rate

2. preprocessing of the input data to suppress high frequencies before sampling.

The first of these possibilities is impractical because of the prohibitively high computational
effort. However, for a smaller model problem this approach can be used to obtain a “golden standard”
for the purpose of comparison to results of more efficient algorithms.

The second possibility is known as applying an anti-aliasing filter and is used in practice by
ASML. Schematically, the signal flow is described as in Fig. 2.

Figure 4: Signal flow scheme. The kernel of the anti-aliasing filter is denoted by K. In the frequency
domain, the low-pass filter is applied by pointwise multiplication with the characteristic function χ f

of the set {|ω| < f }. The application of the anti-aliasing kernel has to be corrected afterwards by
pointwise multiplication by K̂−1.

As the main computational effort is in the anti-aliasing filter, it was the task of the study group
to assess and, if possible, improve its efficiency. (It has to be remarked here that, of course, the
anti-aliasing filter is a low-pass filter in itself, so one might expect either a high computational effort
or aliasing effects for this filter as well. However, using the special structure of our data it is possible
to achieve a higher efficiency than in a standard FFT-based algorithm.)

3 First approach: numerical convolution
In the case of a sample field of 100µm×50µm with 6·106 polygons of 20 vertices each and a grid
pitch of 20nm×20nm, the computational effort of the method currently used by ASML is estimated
as to be about 1.9·1013 operations, half of them being multiplications.

We propose the following different approach: introduce a second grid which refines the original
(coarse) grid by a factor N in both directions. We will denote the gridpoints of the finer grid by Pi j

with the understanding that Pi j is a point of the coarse grid if both i and j are multiples of N.
1. For simplicity we assume that the fine grid has total height and width 2LH where H is the

distance between two coarse grid points. Let K be the kernel of the anti-aliasing filter as above and
set

Ki j := K
( iH

N
,

jH
N

)
i, j ∈ Z, −NL ≤ i, j ≤ NL.

The calculation of these values has to be performed only once.
2. For all fine grid points Pi j, set

χi j =

{
1 Pi j lies inside some polygon,
0 otherwise.
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To do this efficiently, one might use a triangulation of all polygons and determine for each of the
resulting triangles the range of the indices i, j of points inside the triangle.

3. The convolution in a coarse grid point PNk,Nl can now be approximated by

(K ∗ χP)(PNk,Nl) ≈
NL∑

i, j=−NL

Ki jχNk+i,Nl+ j (1)

This approximation is extremely simple to implement and very flexible with respect to the choice of
grid sizes and types of kernels used.

The necessary computational effort is dominated by the summations in (1) and is easily seen
to be about 4N2L2 additions per coarse grid point. The refinement factor N can be interpreted as
an “oversampling rate”, and experiments might be needed to determine its optimal value. When
the algorithm described here is applied with N = 100 to the sample field described above, 3.2·1013

additions are needed. This is in the same order of size as the analytic approach, when additions and
multiplications are considered to have the same computational cost.

In Figure 5, the difference is illustrated between an oversampling factor of N = 50 and N =
100. This figure indicates that the difference between an oversampling factor of 50 and one of 100
introduces only a small error. However, this error is mostly located at the boundary of polygons
(where an error causes most damage to the chip)
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Figure 6: The triangle XPQ

4 Second approach: triangulation and look-up tables
As a second approach to the problem, we start with a triangulation of the data, so we are given
the coordinates of the vertices of triangles T1, . . . ,TN . Furthermore, we will use a two-dimensional
normal kernel K with fixed bandwidth σ, so

K(x, y) =
1

2πσ2 e−
1
2

x2+y2

σ2 .

The bandwidth σ is determined in such a way that the aliasing effect on the final coarse grid is
negligible. Given a point P ∈ R2 of the coarse grid, we need to calculate the integral

I =
∫

Ti−P
K(x, y)dxdy

for each 1 ≤ i ≤ N such that Ti is close to P, in some precise sense.
The first step in approximating I is to make sure by applying a rotation that the triangle Ti − P

has at least one point on the (positive) x-axis. Because of the rotational symmetry of K, this will not
change I. We denote this triangle by XPQ, where X is the point on the x-axis, and P and Q are the
two other points.

4.1 Decomposing into right-angle triangles
We wish to decompose our triangle XPQ into four right-angle triangles. To this end, we define Z as
the intersection of the line through PQ with the x-axis, P′ as the projection of P onto the x-axis and
Q′ as the projection of Q onto the x-axis. If Z is not defined (or extremely far away), we will use a
separate approach. Figure 6 depicts the situation.

Now consider XPQ as an oriented curve in R2, where the order of the letters determines the
orientation. We know that we can rewrite I as an integral over this curve. However, we can also add
up curves, and it is easy to check that

XPQ = XPP′ + ZP′P + XQ′Q + ZQQ′.

Clearly, these four curves all correspond to right-angle triangles. To calculate I, we can therefore
determine the integral of K over the four right-angle triangles, and determine whether these integrals
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should have a positive or a negative sign: if the orientation of XPP′ is equal to the orientation of
XPQ, the contribution of XPP′ gets a positive sign, otherwise it gets a negative sign. The same
holds for the other three right-angle triangles. Determining these orientations is a simple algebraic
calculation.

4.2 Calculating the integral over right-angled triangles
We have reduced the problem of determining I to calculating the integral of K over a right-angle
triangle with two vertices on the x-axis, among which is the vertex with the right angle. We can
make sure by reflection in the y-axis that the x-coordinate x of the right angle is positive, so x ≥ 0.
Note that x either corresponds to P′ or to Q′. Furthermore, by reflection in the x-axis, we can ensure
that the point outside the x-axis has a positive y-coordinate, which we call h ≥ 0. The x coordinate
of the third point is given by x + b, where b ∈ R. See Figure 7.
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Figure 7: The right angle-triangle

We will use a different parametrization of the triangle (x, b, h), as is shown in Figure 7. We define

r =
|b|h

√
b2 + h2

and φ = arctan
(

h
b

)
∈ (−π/2, π/2).

Note that in Figure 7, b < 0 and φ < 0. The advantage of this parametrization lies in the fact we
only need to consider a bounded subset of the parameter space, since if (x, r, φ) lies outside this set,
I(x, r, φ) will either be very small, or almost equal to I(x′, r′, φ′), where (x′, r′φ′) is an element of
this bounded set. To see this, choose R > 0 such that∫

{u2+v2>R2}

K(u, v) dudv < ε0,

where ε0 is a small, fixed constant, corresponding to the accuracy with which we need to evaluate I.
First suppose x > R. Then if b > R − x, we have I(x, r, φ) < ε0. Otherwise, we get

I
(
R,
|b| − (x − R)
|b|

r, φ
)
< I(x, r, φ) < I

(
R
|b| − (x − R)
|b|

r, φ
)
+ ε0.

Now suppose 0 ≤ x ≤ R and fix φ ∈ (−π/2, π/2). We can define r0 such that the hypotenuse of the
triangle I(x, r0, φ) is tangent to the circle with radius R. Clearly, if r > r0, the set I(x, r, φ) \ I(x, r0, φ)
falls outside of this circle. It is not hard to check that

r0 = x − R sin(φ) ≤ 2R.
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So if r > 2R, we can choose r = 2R, and we will have

I(x, 2R, φ) < I(x, r, φ) < I(x, 2R, φ) + ε0.

4.3 Creating the “lookup table”
As we saw in the previous section, we only need to calculate I(x, r, φ) for (x, r, φ) ∈ [0,R]× [0, 2R]×
(−π/2, π/2) := Θ. To do this, we define a grid on Θ, by dividing each of the three intervals in M
parts, creating M3 grid points. For all these points, we calculate I and also ∂I/∂x, ∂I/∂r and ∂I/∂φ.
This would allow us to calculate I(x, r, φ) by interpolation from the nearest grid point. Another
possibility would be to just calculate I in all grid points, and use a weighted average over all nearby
grid points as an approximation for I(x, rφ).

To calculate I(x, r, φ), it is easier to work in the parametrization (x, b, h), so

b =
r

sin φ
and h =

r
cos φ

.

Note that φ ≈ 0 is handled as an exception, since this means that the point Z is not well defined. We
get, supposing that b > 0,

I =
1

2πσ2

∫ x+b

x

∫ b+x−u
b h

0
e−

1
2

u2+v2

σ2 dvdu.

This means that

∂I
∂x

= −
1

2πσ2

∫ h

0
e−

1
2

x2+v2

σ2 dv +
1

2πσ2

h
b

∫ x+b

x
e−

1
2

b2u2+(b+x−u)2h2

b2σ2 du,

∂I
∂b

=
1

2πσ2

∫ x+b

x

(u − x)h
b2 e−

1
2

b2u2+(b+x−u)2h2

b2σ2 du,

∂I
∂h

=
1

2πσ2

∫ x+b

x

b + x − u
b

e−
1
2

b2u2+(b+x−u)2h2

b2σ2 du.

Using the formula
∂I
∂r
=
∂I
∂b

∂b
∂r
+
∂I
∂h

∂h
∂r

and its equivalent for ∂I/∂φ, we can create the entire lookup table.
If we have that Z is not well defined, meaning that PQ is parallel to the x-axis, we need to

calculate the integral of K over the rectangle P′PQQ′ (and then subtracting the integral over XP′P
and XQQ′). Calling x the location of a point of the rectangle on the x-axis, b ∈ R the width and
h ≥ 0 the height, we can assume that 0 ≤ x ≤ R, b ∈ [−R,R] and h ∈ [0,R], by neglecting anything
outside the rectangle [−R,R]× [0,R]. For the rectangle, we need to calculate (assuming again b > 0)

I =
1

2πσ2

∫ x+b

x

∫ h

0
e−

1
2

u2+v2

σ2 dvdu

=
1

2πσ2

∫ x+b

x
e−

1
2

u2

σ2 du
∫ h

0
e−

1
2

v2

σ2 dv.

This can be done by making a table of

1
√

2πσ

∫ x+b

x
e−

1
2

u2

σ2 du
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for a grid of M2 points with (x, b) ∈ [0,R] × [−R,R]. Of course also the derivative can be easily
calculated and put in the table.

5 Conclusion
We have given two alternative approaches for the anti-aliasing filter that ASML currently uses, These
approaches, however, do not clearly improve upon the current method. Our two approaches are both
adjustments to this method. In our first approach, we replace the analytical approach used by ASML
by numerical calculations on a finer grid, where the values of the kernel at those grid points can be
calculated and stored beforehand. We get the same order of number of operations as the analytic
approach used by ASML, if we choose N = 100, where N is the factor with which the original
(coarse) grid has been refined in both directions.

Some numerical experiments have been done on this approach. For the masks in the test set it
seems that N can be chosen smaller than 100 and still deliver the required accuracy. However, this
is not necessarily true in general because patterns with worse aliasing behavior may exist. Further
analysis / experiments will need to be done in order to determine the correct N. A disadvantage
of this approach is that it requires a lot of memory to store the values of the kernel at the fine grid
points, and this will cause the process to be slower.

In the second approach, we first need to triangulate the polygons, which can be done quickly, and
many algorithms are available for this. Then we need to find for every triangle which grid points are
close to it, and for each of those points find the right decomposition in rectangular triangles, which
also should not take long, and find the required values of the integral in the look-up table. Here too,
experiments need to be done to find out how large the look-up table should be to get the required
accuracy, without needing too much memory.
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Optimizing a closed greenhouse
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Abstract

In this project we study the optimization of a closed greenhouse. Typical components of such
a greenhouse are aquifers in which surplus heat (in summer) or cold (in winter) is stored. Water
tanks are used to control short term variations in the heat and radiation supply due to the daily
weather variability. A closed greenhouse may also yield an excess of electricity which is delivered
to the public grid. The energy economics is determined by a considerable number of components.
The full optimization of such a greenhouse involves the incorporation of market prices of crops
and of electricity and gas, and the weather conditions. A formidable problem, as most of these
inputs are stochastic variables. We therefore restrict ourselves to minimizing the energy costs
given the heat and cold demand for a typical year. Discretizing the model equations on an hourly
time basis, we show that this problem has a linear cost function which has to be optimized under
linear conditions. Standard linear programming techniques are therefore applicable, guaranteeing
our limited optimization problem of a closed greenhouse to be tractable.

Key words: optimization, energy conservation, linear programming, greenhouse, mathematical
modelling

1 Introduction
The concept of using greenhouses has a long history. It allows farmers to grow products during
seasons in which and at places where the climate conditions are not or far from optimal for the crop
under consideration. In Europe this branch of agriculture is very dynamic. The competition is huge,
especially as frontiers between the European countries become more and more open. Furthermore,
the costs of energy are continuously increasing and governmental regulations to protect the environ-
ment of the greenhouses against negative influences become more and more severe. In 1997, within
the framework of a project called ‘Greenhouse of the future’, a number of innovations were intro-
duced in the classic greenhouse concept. These developments led to the idea of GeslotenKasÂő or
’closed greenhouse’. See Fig. 1.1 for a view from the outside and Fig. 1.2 for an inside view of such
a closed greenhouse. Since 2003 this new type of greenhouse has been sold and further developed by
Innogrow [1]. It is especially suitable for the growth of products that need climatic conditions that
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vary only slightly, and for which CO2 is an important growth factor. The new concept has economic
advantages, especially for products that consume a lot of energy, such as some vegetables, roses,
and orchids. The relevant growth factors in most greenhouses depend on temperature, humidity,

Figure 1.1: Outside view of a Closed Greenhouse.

and CO2. By closing the windows of a greenhouse and providing it with an integrated climate and
energy system, maximal control is obtained over these growth factors. For example, the CO2 can be
kept at a high level, which favours plant growth in general. Furthermore, the energy use can be kept
under control, and thus optimized. An extra advantage of keeping the greenhouse closed is the lower
susceptibility to diseases that might invade the greenhouse via the atmosphere. All of these aspects
result in a lower energy use, together with an increase in production.

A greenhouse could be considered as a huge sun collector. Unfortunately, the radiation of the sun
is not uniformly distributed over the year. In the summer there is an excess and in winter a lack of
heat. Apart from the annual cycle, short-term temperature variations take place due to local weather
conditions. Similar variations are found for humidity and CO2. The idea of a closed greenhouse is
to smooth these differences out by carefully controlling the local conditions.

1.1 Optimization of a closed greenhouse

The ultimate goal of optimizing the profit of a closed greenhouse includes two aspects:

• Maximizing crop growth and harvest at the right time.

• Minimizing operation costs, i.e., the energy demand to heat/cool the greenhouse.

These two aspects require the application of several submodels:
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• A climate model, which determines the heating and cooling requirements of the greenhouse
given the weather conditions.

• A crop model, which determines the development of the crop given the light, nutrition, CO2
and humidity conditions.

• An energy cost model, also referred to as utility model, which calculates the costs if a certain
energy strategy is followed.

• A market model, which predicts when the crop can be sold for a good price.

It has to be realized that several additional aspects are relevant, which make a complete optimiza-
tion approach very hard, if not nearly impossible. For example, in practice the weather forecast is
available for a few days. Within this time horizon an optimization tool that focuses on the energy
expenditure could calculate the best strategy, and when time goes on and the weather forecast is up-
dated, the strategy could be updated, too. However, such a short term strategy should be combined
with long term issues such as crop and market developments. Furthermore, a highly restrictive con-
dition, stemming from environmental safeguarding considerations, is that on average per year the
total amount of heat/cold pumped into and released from the soil is vanishing: the system may not
heat up or cool down the soil layer used for storage. So, this leads to a periodic boundary condition:
after a year the situation in the storage devices must be the same as at the start of that year. Such a
long term condition may have strong consequences for the short-term energy costs strategy.

Figure 1.2: Inside view of a Closed Greenhouse.

1.2 Goal of the project
In view of the considerations mentioned above the full treatment of optimizing the closed greenhouse
is a huge task. To keep the project tractable we therefore defined a restricted goal: optimization of
the energy costs in a typical year. For example, this implies that the influence of CO2 is neglected.
For temperature and radiation conditions, we take the average values over a long time period in the
past. As for the crop development, we assume that a constant temperature and humidity are optimal.
Typical heat/cold demands follow from these assumptions over the period of a year.

Similar assumptions hold for the energy prices. In summary, we assume to be given (on an
hourly basis):
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- the heat/cold demands of a ‘typical’ year, and

- the prices of electricity and gas.

Furthermore, the capacities of all storage, pump, and heat generation devices are known. Given
these data, the purpose of the project is to: find a heating/cooling strategy such that the costs are
minimized, under the conditions that the reservoirs have the same heat/cold contents before and after
the optimization period.

In principle, the period of optimization must be a year, but for practical reasons we could start
with a shorter period. It is expected that the models will yield useful information on:

- the capacities needed to cover the requirements in a typical year, and

- the best strategy for a typical year.

The insight, information, and mathematical tools gained from the model are useful in general, in
particular in the following two ways:

- they allow to design new greenhouses based on the ‘closed greenhouse’ concept, and

- the mathematical techniques to be developed may directly be applied in a computer tool for the
short-term optimization of the energy costs.

Finally, this report is organized as follows. In §2 we describe the components that constitute
the energy sources of the closed greenhouse. In §3 the model presented is shown to be linear in the
variables after discretization of the time window over which it is optimized. In §4 interim results are
summarized, which are discussed in §5.

2 Energy (Utility) Model

In the present project, we focus on the energy needs of the closed greenhouse system. The purpose is
to optimize the efficiency of its energy management, such that the costs are minimized. The system
has a complicated network of devices to control the energy fluxes. In Fig. 2.1, a sketch is given of
the energy devices in the closed greenhouse.

2.1 The simplified utility model

There are four basic demands: the heat and cold demands together with the demands for light and
CO2 for the crop. Here, as a first step we have decided to neglect the light and CO2 demands.

Cold and hot water storages

Long term heat excesses in the greenhouse are stored in an underground aquifer, and short term heat
excesses in a water reservoir alongside the greenhouse. Similar storage devices are used to store and
release cold. The transfer of heat is performed by a heat exchanger.
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Figure 2.1: Schematic of the components involved in the energy needs of the Closed Greenhouse
concept.

Heat from electricity

A consequence of our simplified model is that electricity is used only for driving the heat pump
(ignoring the requirement for providing light at night). This pump has the property that it can only
transfer heat and cold together, not independently. We have then to decide whether to buy electricity
from the public grid or to produce it from the “combined heat power” (CHP) unit (also known as
cogeneration). It is depicted in Fig. 2.2. The surplus of electricity can be delivered to the public
electricity network, but the price of electricity delivered to the network is lower than the price of
electricity bought from this network. Different day and night electricity prices must also be taken
into account.

Heat from gas

The CHP device consumes gas (Gc). It produces not only electricity but also a heat quantity Qc

proportional to Gc. The system also contains a boiler that consumes gas and produces heat (Qbl).
The CO2 generated by these two devices is not taken into account as the CO2 demand for the crop is
neglected.
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Figure 2.2: Part of the energy network of the Closed Greenhouse, showing the relations between the
heat pump, the combined heat power unit and the external electrical grid.

2.1.1 Seasonal requirements

Accessing the aquifer is a very expensive initial investment, but later on it is a relatively cheap source
of heat and cold, so it should be used as much as possible. What has to be done during the summer is
quite clear. We only use the cold aquifer as a cheap source of cooling. Conversely, during winter, the
aquifer is always configured as a heat supply. The difficulties arise with intermediate seasons where
the aquifer may be switched from hot to cold according to needs. It must be noticed that switching
the aquifer has a cost. During the 15 minutes after a switch, the water coming from the aquifer
contains sand and cannot be used. Hence gas must be consumed to compensate the heat demand.
We should also mention that during summer, we still have a demand for heat as well as cold. In
addition, the air conditioning system needs to reheat greenhouse air after dehumidifying it.
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2.1.2 Notation

It is clear that the system is quite intricate in view of the many couplings between the components.
As for the notation, we denote the required (and prescribed) cooling demand in the greenhouse by
C = C(t) and the heating demand by Q = Q(t).

In the system, the heating and cooling devices are uncoupled nearly everywhere, with the excep-
tion of the heat pump, which produces heat and cold at the same time. In the following, we denote
an energy flux used for cooling by C. The source of such a flux is indicated with a superscript. E.g.,
Cp, Ca, and Cb are cooling fluxes stemming from the heat pump, the aquifer, and the cooling buffer,
respectively. Heating fluxes are represented by Q. E.g., Qp, Qa, Qb, Qbl, Qc indicate the heating
contribution from the heat pump, the aquifer, the heating buffer, the boiler, and the CHP unit, respec-
tively. The total heat flux from and to the aquifer is denoted by qa, which can be positive (from) and
negative (to). Electricity from the grid is denoted by E, it can be either positive (if supplied from
grid to the greenhouse) or negative (the other way around). Electricity from the CHP is denoted by
Ec. Gas used by the CHP is denoted by Gc and gas used by the boiler is related to the heat flux of
the boiler Qbl with efficiency and gas price conversion factors.

There are storage tanks or so-called buffers (relatively small compared to the aquifers), for short-
term heating and cooling with fluxes Cb (cold temperature storage) and Qb (warm temperature stor-
age). The energy levels in the cold and hot buffer are Hbc and Hbh. The energy level in the aquifer is
denoted by Ha.

2.2 Energy balances
In the following, we summarize the energy balances in the system. The total cooling demand C =
C(t) is supplied by cold fluxes from the heat pump, the aquifer and the cold buffer:

C = Cp +Ca +Cb. (2.1)

The total heating demand Q = Q(t) is supplied by heat fluxes from the heat pump, aquifer, hot buffer,
boiler, and CHP:

Q = Qp + Qa + Qb + Qbl + Qc. (2.2)

The aquifer total flux qa (a negative or positive value) is related to Ca and Qa by

Ca = max(−qa, 0), Qa = max(qa, 0). (2.3)

The energies in buffer and aquifer are related to the fluxes according to:

dHa

dt
= qa, (2.4)

dHbh

dt
= −Qb − µh Hbh, (2.5)

dHbc

dt
= −Cb − µc Hbc, (2.6)

in which we introduced damping coefficients µh and µc associated with heat or cold losses. The heat
pump has the special property that it produces heat and cold at the same time and at a fixed ratio:

Qp = γCp with γ > 1. (2.7)
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The cooling power plus electrical demand of the heat pump equals its heating power:

Cp + Ep = Qp. (2.8)

The electricity used by the heat pump stems from the grid and the CHP (combined heat power):

Ep = E + Ec. (2.9)

The gas used by the CHP yields both heat production and electrical power at fixed ratios:

αGc = Qc, βGc = Ec, (2.10)

with α and β the proportionality constants. In practice, the efficiency of the CHP is not 100 %, so that
in general α + β < 1. Because of efficiency considerations the boiler either operates at a maximum
or is shut off; hence

Qbl = 0 or Qbl = Q̃bl (2.11)

with Q̃bl a fixed value. If the CHP is working this happens at at least 50% capacity:

Gc = 0 or Gc ∈ [0.5, 1] G̃c. (2.12)

In summary, the balance equations of the system are

C = Cp +Ca +Cb, (2.13a)

Q = Qp + Qa + Qb + Qbl + Qc, (2.13b)
Ca = max(−qa, 0), (2.13c)
Qa = max(qa, 0), (2.13d)

dHa

dt
= qa, (2.13e)

dHbh

dt
= −Qb − µh Hbh, (2.13f)

dHbc

dt
= −Cb − µc Hbc, (2.13g)

Qp = γCp, (2.13h)
Cp + Ep = Qp, (2.13i)
Ep = E + Ec, (2.13j)
αGc = Qc, (2.13k)
βGc = Ec, (2.13l)

Note that there are 15 variables involved in (2.13): Cp,Ca,Cb,Qp,Qa,Qb, Qbl,Qc,qa,Ha,Hbh, Hbc,Ep,Ec,Ep.
The range limits are denoted as:

0 ≤ Ha ≤ Ẽa, 0 ≤ Hbh ≤ H̃bh, 0 ≤ Hbc ≤ H̃bc (2.14)

0 ≤ C... ≤ C̃..., 0 ≤ Q... ≤ Q̃..., (2.15)

where C... and Q... refer to any of the cold and heat fluxes.



Optimizing a closed greenhouse 63

2.3 Linear modelling
The aim is to formulate the problem as a linear program (LP), but some elements of the above formu-
lation are impermissible. It should be clear that some of the equations do not allow a strictly linear
model to be constructed. For example, (2.13c) and (2.13d) contain the (nonlinear) max function.
Such a nonlinearity is circumvented by rewriting the constraints as

qa = Qa −Ca

and including a term
λ(Qa +Ca) (2.16)

in the cost function, where λ is a positive scalar. This ensures that at least one of the variables
will be zero at an optimal solution of the LP; it can readily be seen that in the event that both are
positive, the cost function can be decreased by reducing both values until the smaller value is zero,
without affecting the constraint. This also relies on the fact that LP variables must be nonnegative—
something guaranteed by any method, such as the simplex algorithm. The actual solution obtained
will obviously depend on a particular choice of λ. We will defer discussion on this value, and its
interpretation until §3.

The nonnegativity requirement also affects some of the variables: for example, the cold buffer
flux as formulated is a directional variable with its value unconstrained in sign. This can be dealt
with simply by decomposing it as

Cb = Cb+ −Cb−

and then using a Boolean variable δ in a pair of constraints:

Cb+ ≤ Mδ and Cb− ≤ M(1 − δ),

where M stands for a suitably large scalar—larger than the maximum value that can feasibly be
taken by the flux. The effect of this is that at most one can be positive, corresponding to the relevant
direction of the flux. A similar approach is used for the hot buffer and the grid supply of electricity.

Finally, there are some either/or constraints that also need to be modelled using Booleans. For
example, if the CHP is on, it must operate at more than 50% of its maximum capacity. This can be
formulated as a pair of constraints:

Gc ≤ δG̃c and Gc ≥ 0.5δG̃c.

The situation is similar for the boiler, except that in this case, if it operates at all, it is at maximum
capacity, so that only one constraint is needed:

Qbl ≤ δQ̃bl.

2.4 Cost function
The cost function (in euros) is given by the following integral over the time window [0,T ]) consid-
ered:

K =
∫ T

0
[ f

(
t′, sign(E)

)
E(t′) + c1 Gc(t′) + c2 Qbl(t′)] dt′, (2.17)

where the first term in the integrand f
(
t, signE)

)
E(t) is the cost of the electricity and t is time.

The coefficient f (t, sign(E)) > 0 attains four positive values and is thus boolean in nature. It takes
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different values for day and night. Further, its sign indicates whether the electricity is taken from or
delivered to the electricity grid. To wit:

f (t, E) =


{

f1 day hours
f2 night hours for E > 0{
f3 day hours
f4 night hours for E ≤ 0

(2.18)

with f1 > f3 and f2 > f4.
Further weak constraints are that the cold and warm buffers have no net influx over short periods,

while the aquifer must remain in heat balance over a long period Ty, a year, say:∫ T

0
Cb(t′)dt′ ≈ 0,

∫ T

0
Qb(t′)dt′ ≈ 0, and

∫ Ty

0
qa(t′)dt′ ≈ 0. (2.19)

Finally, we must remember to add the parameterized term from (2.16), which resurrects the question
of the meaning of λ. Given its context, it should be clear that this relates to the cost of extracting heat
from (or storing it in) the aquifer. A reasonable approximation could perhaps be determined after
some lengthy calculations. Initially it was assumed by Innogrow that this cost is negligible, being
dominated by the other sources, so it may be sufficient to try some rough estimates to determine the
boundaries within which a particular solution remains optimal.

3 Discretization and linear programming

3.1 Linear programming

The most important insight for finding an optimization procedure for the cost function under the
conditions given by the balance equations, is that both the cost function and the conditions are es-
sentially linear in the variables. To see this for the cost function, we simply replace the integral by a
Riemann sum taking as grid points hourly intervals. So, if we introduce as variables the hourly val-
ues of the 15 variables, the cost function is linear in this function space. Since the balance equations
are instantaneous relations between variables, they are inherently linear in the hourly variables, too.
Therefore we decided to apply linear programming techniques. The only complicating factor is that
some variables are Boolean. Fortunately, standard linear programming techniques such as the ’sim-
plex’ method have been extended to incorporate Boolean variables. The idea of linear programming
is to find the extremum of the cost function by ascending/descending along the nodes of a multi-
dimensional simplex. Owing to the linearity this can be done in a systematic way using a simple
‘greedy’ algorithm to move from one node to the next. Although theoretically the computational
complexity of this approach is not polynomial, practical experience over 5 decades has shown that
the average-case performance is very good, and optimal solutions can be obtained relatively quickly.
Adding a moderate number of Booleans degrades the performance a little; if very many Booleans
are required then it may take a very long time to find an optimum. However, even in such cases
solutions of excellent quality are usually found quickly—the problem is in proving that the quality
is good!
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3.2 Algebraic system in linear form

Note that by using hourly variables, the total number of variables is very high, especially if the time
period is taken to be very long. For example, 15 variables taken on an hourly basis during a year
leads to 15 × 24 × 365 = 131400 variables in total. Furthermore, since for linear programming all
variables must be nonnegative, we have to write some variables as the difference of two nonnegative
variables. This increases the number of variables again. However, present day standard packages for
linear programming may deal with huge numbers of variables.

In the end, the entire system of equations is rewritten as

Cb
i = Cb+

i −Cb−
i , (3.1a)

Qb
i = Qb+

i − Qb−
i , (3.1b)

Ci = Cp
i +Ca

i +Cb+
i −Cb−

i , (3.1c)

Qi = Qp
i + Qa

i + Qb+
i − Qb−

i + Qbl
i + Qc

i, (3.1d)
qa

i = Qa
i −Ca

i , (3.1e)

Hbc
i = Hbc

i−1 −Cb+
i−1 ∆t + ∆t Cb−

i − µc Hbc
i−1 ∆t, (3.1f)

Hbh
i = Hbh

i−1 − Qb+
i−1 ∆t + ∆t Qb−

i − µh Hbh
i−1 ∆t, (3.1g)

Qp
i = γCp

i , (3.1h)
Cp

i + Ep
i = Qp

i , (3.1i)
Ep

i = Ei + Ec
i , (3.1j)

Ei = E+i − E−i , (3.1k)
βGc

i = Ec
i , (3.1l)

αGc
i = Qc

i. (3.1m)

Here, ∆t is the time step, usually one hour. Note that the (hourly) heat and cold demands Qi and Ci

are given. The domains of validity and Boolean variables are

−q̃a ≤ qa
i ≤ q̃a, (3.2a)

0 ≤ E+i ≤ M δ3i, (3.2b)
0 ≤ E−i ≤ M (1 − δ3i), (3.2c)

0 ≤ Cb+
i ≤ M δ4i, (3.2d)

0 ≤ Cb−
i ≤ M (1 − δ4i), (3.2e)

0 ≤ Qb+
i ≤ M δ5i, (3.2f)

0 ≤ Qb−
i ≤ M (1 − δ5i), (3.2g)

Qbl
i ≤ δ1i Q̃bl, (3.2h)

Gc
i ≤ δ2i G̃c, (3.2i)

Gc
i ≥ 0.5 δ2i G̃c, (3.2j)

with δ1i = 0, δ2i = 1, δ3i = δ4i = δ5i = 1 if Ei,Cb+
i ,Q

b+
i > 0 and with δ1i = 1, δ2i = 0, δ3i = δ4i =

δ5i = 0 if Ei,Cb+
i ,Q

b+
i = 0. M is a very large integer.
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The cost function (2.17) is discretized in time, over intervals ∆t over a period T such that N ∆t =
T . It then becomes

K = K(Q) =
N∑

i=1

P+i E+i + P−i E−i + c1 Gc
i + c2 Qbl

i + c3 (Qa
i +Ca

i ) (3.3)

with P+i = f1 or f2, and P−i = − f3 or − f4 for day and night prices of electricity intake or supply from
the net. The cost function depends on all variables Q in the desired period.

The values c1, c2 represent the actual costs of gas for the CHP and boiler respectively, while c3
is what we earlier called λ —the variable cost of using the aquifer.

In summary, the procedure is to minimize cost function (3.3) of the system (3.1) with booleans
(3.2) with linear programming (LP).

3.2.1 Possible refinements

The above formulation assumes that we can treat periods (of whatever length) independently, which
is probably not entirely true. A few extra constraints came to light in subsequent discussions: for
instance, the aquifer cannot work at full capacity after being switched from the cooling to the heating
mode or vice versa. A reasonable estimate is that the maximum capacity in such cases would be 75%
of its normal value. This necessitates inter-period constraints. For example, in period i we have a
new Boolean variable δ6i which is 1 (resp. 0) if the aquifer is in heating (resp. cooling) mode in
period i, and constraints

Qa
i ≤ q̃a δ6i Ca

i ≤ q̃a (1 − δ6i).

This ensures that at most one of Qa,Ca is positive, and both are bounded from above. Then we have
to consider whether the aquifer was in the heating mode in period i − 1 or not. If it was, we can use
the full capacity, otherwise only 75%. The constraint

Qa
i − 0.25 δ6(i−1) q̃a ≤ 0.75 q̃a

will model this situation. There is an analogous constraint for the cooling mode.

4 Optimization experience
For the parameters we used the following values [2]

(C̄, Q̄) = (70, 43) W/m2, (Cobs
max,Qobs

max) = (629, 124) W/m2,

α = 0.501, β = 0.42,
COP = 4.2, δ = 0.97,
c1 = 0.0262 Euro/kWh,
c2 = 0.029 Euro/kWh,

( f1, f2, f3, f4) = (0.109, 0.059, 0.085, 0.042) Euro/kWh.

(4.1)

The optimization program was run with the above values and c3 running over the values 0.001,
0.01 and 0.1. An initial attempt was made to verify the formulation using the simple LP package
LINDO—a “student” version of which is freely downloadable [3]. This version proved sufficient
to deal with a day with a known demand profile divided into 3 periods of 8, 10 and 6 hours. With
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c3 = 0.001, the LP was poorly scaled and gave rise to numerical problems, but eventually a solution
was obtained. Although the actual numerical values changed a little over the range of values used
for c3, it was encouraging that the overall structure of the different solutions (i.e., which sources
were used or ignored) tended to remain fairly stable, and agreed in broad terms with what would
have been expected. Nonetheless, it suggested that there is a need for a more accurate estimate of
the value of c3 in order to obtain a better approximation of the optimal solution.

Later it was possible to use another software package—CPLEX, which implements linear and
integer programming techniques in a significantly more sophisticated way [4]. For example, it can
take care of nonnegative variables implicitly, without the need for the ‘tricks’ used above, thus re-
ducing the number of variables. It is also considerably faster than LINDO. Hence, it was possible
to discretize to hourly periods, and to optimize the model over a time horizon of a year. The re-
sults were satisfactory, but gave rise to several further problems that suggested the modelling needs
some fine-tuning. Although the costs were of the right order of magnitude, they suggested values
that were above those currently incurred without optimization! Also in some cases the LP became
infeasible after several periods had elapsed. These suggest that the existence of unsuspected inter-
period constraints needs to be examined further, and the accuracy of all parameter values needs to
be considered again.

5 Conclusions
We conclude that the greenhouse energy optimization problem can be formulated as a linear pro-
gramming problem including a number of Boolean variables. To find the solution standard tech-
niques can be applied. The computation times strongly depend on the time period over which is
optimized. In principle it must be possible to take a full year as optimization period. This allows
the application of the boundary conditions that are in force, namely that the net influx in the aquifers
averaged over a year must vanish. It would also make it possible to find the optimal strategy for
a year with “typical” weather conditions, i.e., averaged over a long period. These insights in turn
allow the designers to use “typical” dimensions for the capacities of all components, when they are
designing a new greenhouse. Furthermore, since the optimization is very fast for short periods, this
project makes clear that optimization of the energy costs in a closed greenhouse can easily be per-
formed using standard software. However, further work needs to be done in terms of understanding
and modelling the inter-period connections, and the effect of other assumptions made in the initial
formulation.
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Abstract

In this note, we study the magnetic field pattern in an MRI scanner, in order to ultimately im-
prove the resolution of the image. We model the situation in 2-D, with a simplified model for the
patient, consisting of two regions bounded by ellipses with constant dielectric properties. The so-
lution to the Maxwell equations is described in terms of two different bases: Bessel and Mathieu
functions. By expansions in Bessel (cylindrical) modes, that are matched at the boundaries, the
magnetic field can be computed in a few seconds on a PC or Mac. By optimizing the distribution
of antenna currents the homogeneity of the magnetic field can be improved.

Key words: MRI scanner, Maxwell equations, Bessel functions, Mathieu functions

1 Introduction
In an MRI scanner a patient is placed in a strong constant magnetic field. We give a brief heuristic
(mixed classical and quantum-mechanical) description of the main physical process. The magnetic
field aligns all dipoles (for practical purposes, the spin-1/2 hydrogen nuclei) in the patient’s body
parallel or anti-parallel to this field. However, this alignment is not perfect and therefore the dipoles
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precess around the radial axis of the field with a typical frequency, called the Larmor frequency,
proportional to the size of the external field.

Subsequently, electromagnetic waves are created in the cavity of the scanner (by sending currents
through antennas placed inside the MRI scanner), which excite the hydrogen dipoles. The frequency
of these waves is chosen to be the Larmor frequency to maximize the number of excitations. The
electromagnetic waves temporarily cause some of the dipoles to leave their parallel/anti-parallel
state, and when the wave field subsides, these dissidents “fall back” to a parallel/anti-parallel state.
This causes the emission of a photon, a scanner detects these photons, and from this information
a computer constructs an image of the object or person in the MRI scanner. What is effectively
measured here, is the density of dipoles with fixed Larmor frequency — in practice, hydrogen nuclei.

As the strength of the magnetic field increases, so does the Larmor frequency, and hence the
frequency of the electromagnetic waves. Advances in superconducting magnet design and in MRI
technology have increased the field strength to such an extent that nowadays the wavelength of
the electromagnetic waves is of the order of the size of the patient. This causes the field to be
significantly altered from the field in an empty MRI scanner if a patient is inserted. Moreover, the
homogeneity of the magnetic field is reduced. This has the disadvantage that the received image is
distorted: it will show too many hydrogen atoms where the induced field is big and too few where
the field is small. Moreover, the induced electric field may lead to significant currents which heat up
the patient.

Therefore, the question is how to create an induced electromagnetic field whose magnetic field
is homogeneous and whose electric field is small. As constraints we assume the geometry of the
MRI scanner (i.e., size of the scanner, size of the patient, location of the antennas etc.) to be given,
and we are only allowed to change the phases and amplitudes of the currents through the antennas.
In practice, changing the size of the scanner would be prohibitively expensive, and one cannot really
change the size of the patients either. However, the antennas could be moved around a bit, but for
mathematical simplicity we do not consider this option here.

To answer this question we first have to be able to find a “simple” expression for the induced
field generated by the antennas when a given current runs through them. After some introductory
remarks about electromagnetic waves in Sections 2 and 3 we present two methods to obtain an
approximation of the induced field. In Section 4 we discuss an expression using Bessel functions.
This has the advantage that Bessel functions are well-known and many good numerical packages
exist for them. In Section 5 we consider an option using Mathieu functions, which are less easy
to work with numerically, but fit the geometry of the situation better. Finally, in Section 6, we
consider how to optimize the currents, given the fields generated by the individual antennas, such as
to maximize the homogeneity of the induced magnetic field.

2 Geometric considerations

The outer cylinder of the MRI scanner itself has, to good approximation, a rotation and translation
symmetry along the central axis. We choose coordinates so that the z-direction corresponds to the
translation symmetry, and x = y = 0 on the central axis. The edge of the scanner will therefore be a
circle at radius r (typically r ≈ 35 cm).

We consider a cross-section of the patient’s abdomen. In this region the patient is modeled
by two (confocal) ellipses. The outer one denotes a surrounding fat layer, while the inner one
denotes the inside of the patient with organs and muscles and bones. In each layer we consider
the electromagnetic properties to be constant; in particular, we use an average of the electromagnetic
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fat layer (region II)

Air (region I)

muscle/bone (region III)

Figure 2.1: Cross-section of the MRI-scanner.

properties of the different tissues in the inside layer. The typical size of the inner ellipse is an outer
radius of 15 cm and an eccentricity of 0.85, while the outer ellipse can vary a lot, but is generally
not more than 10 cm thick.

Finally, the antennas are modeled as point/line sources located in a circle at a distance of a few
centimeters from the edge of the scanner. The currents running through the antennas will have
constant frequency, and we assume that the electromagnetic properties of the different layers are
time-independent for this fixed frequency.

3 Maxwell equations
We will show that in the case at hand, the Maxwell equations, which describe the electromagnetic
field in general, reduce to a single Helmholtz equation in each of the three regions. The theory used
is well-known, so we shall go through the derivation rapidly. For references on our notation, consult
[1].

We begin by writing down the Maxwell equations for the four fields: the electric field E, the
magnetic field B, the so-called displacement field D and the auxiliary field H1. The free charge and
the current are denoted by ρ and J respectively.

∇ · B = 0, ∇ × E +
∂B
∂t
= 0, (3.1a)

∇ · D = ρ, ∇ × H −
∂D
∂t
= J. (3.1b)

The equations on the first line are known as the homogeneous Maxwell equations, and are universally
valid. Those on the second line – the inhomogeneous Maxwell equations – depend on free charges
and currents, and on the different materials in our system.

By assumption, our materials are linear and isotropic, which means that, in each region, D and
H are scalar multiples of E and B respectively. We write D = εE and H = µB, where the dielectric

1Although different authors may use different names for these fields, there is consensus about the symbols.
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constant ε and the magnetic permeability µ are constants of the materials in the different regions. In
the situation of the MRI scanner, µ is constant throughout, and equal to µ0, the permeability of the
vacuum.

Next, we discuss the boundary conditions. Since the conductivity in the inner regions (patient)
is much smaller than that of the metal cylinder, the losses in the latter will be small, hence we will
assume it to be superconducting. Further, we will neglect the penetration depth of the current in the
metal. Let n be a vector normal to the boundary between two media 1 and 2, and let Di, Ei, i = 1, 2,
be the displacement and electric fields, respectively, then

n · (D1 − D2) = Σ, n × E1 = n × E2.

Here Σ is the free surface charge between the media. In particular, the tangential component of E
vanishes on the outer boundary (i.e., the MRI scanner itself). The boundary conditions for B and H
are similar, and, since µ is constant, they imply that B is continuous on the entire domain.

The two inhomogeneous Maxwell equations (3.1b) imply the conservation law

∂ρ

∂t
+ ∇ · J = 0.

In the current term J, we must distinguish between the externally imposed current Jext, and the
current Jind induced in the medium by the electric field. We assume that the induced currents are
governed by Ohm’s law, i.e. Jind = σE, where σ is the conductivity of the medium. We note that
different sources approach this in different ways: some include the induced currents in the J, others
redefine ε, which is then commonly referred to as the complex permittivity. The externally imposed
current is assumed to consist of N line sources, located at positions (xl, yl) to be specified later:

Jext = Jext(x, y, t) =
N∑

l=1

 0
0

Il exp(iωt)δ(x − xl)δ(y − yl)

 , (3.2)

where the constants Il determine the amplitude and the phase of the currents (obviously, in reality all
the physical quantities are real, but this complex formalism simplifies the formulas).

The homogeneous Maxwell equations (3.1a) imply the existence of potential functions: a vector
potential A and a scalar potential Φ. They are related to the electromagnetic fields via

B = ∇ × A, E = −∇Φ −
∂A
∂t
. (3.3)

We note that A and Φ are not uniquely defined: if (A,Φ) are potentials, then one can check that
(A + ∇ f ,Φ − ∂ f

∂t ) are potentials of the same fields, for any function f . This non-uniqueness, called
gauge-freedom, can be used to impose some conditions on A and Φ. There are several choices for
this, but we will use the so called Lorenz2-gauge:

∇ · A +
1
c2

∂Φ

∂t
= 0, where

1
c2 = εµ.

This gauge is chosen so that the inhomogeneous equations would separate if the domain were ho-
mogeneous, which our domain is not; nevertheless, we stick with the Lorenz gauge.

2Although often erroneously called Lorentz gauge, supposedly after Hendrik Lorentz, it was in fact Ludwig Lorenz who
first published the idea.
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Based on the symmetries of the problem, the expression (3.2) for Jext, and physical intuition, we
now take the Ansatz

Φ = 0, and A =

 0
0

Az(x, y, t)

 .
For notational convenience, we write x for the pair (x, y), and we replace Az by A, hence Az(x, y, t)
becomes A(x, t), with x ∈ R2. The governing equation for the vector potential is

εµ
∂2A
∂t2 = ∆A + µJ, (3.4)

which is to hold globally, i.e., A is continuously differentiable throughout the domain (in particular
across the boundaries between the regions), except at the antennas, where singularities occur. As
boundary condition we take A = 0 on the outer boundary.

In view of the time dependence of the currents through the antennas, we expect waves of fixed
frequency ω. This means that all functions under consideration (and in particular A) are a product of
a function that depends only on space, and eiωt. The spatial part of a function will be denoted by the
same letter as the function itself, e.g., the electric field is from now on of the form Eeiωt. We thus
replace ∂A

∂t by iωA and ∂2A
∂t2 by −ω2A.

Recalling that

Jind = σE = −
∂A
∂t
= −iωA

and by combining (3.4) and (3.2) we obtain an elliptic (Helmholtz) equation, for ~x ∈ Ω ⊂ R2,(
∆ + ζ2

)
A = −

N∑
l=1

clδ(~x − ~xl), A|∂Ω = 0, (3.5)

for the nonzero component of the vector potential. Here

cl = µIl,

and
ζ2 = εµω2 − iσω

is (a complex) constant on each of the regions. We will also use the notation ζ2
k = εkµ0ω

2 − iσkω
for the three regions k = 1, 2, 3. Note that to good approximation ε1 = ε0, the dielectric constant of
vacuum/air.

Equation (3.5) indeed has a (unique) solution, from which we can recover the fields B and E
using (3.3). It is easily checked that these fields then satisfy the Maxwell equations as well as the
boundary conditions, hence they represent a solution to our original problem. In fact, general PDE
theory for Maxwell equations implies that it is the unique solution. We are thus left with the task of
finding the solution of the Helmholtz equation (3.5).

4 Cylindrical modes
Within each region the coefficients ε, σ, and µ are constant. For the constant coefficient PDE, an
infinite number of solutions can easily be found by separation of variables. Since the Helmholtz
equation (3.5) is linear, with an inhomogeneous right-hand side, we solve the equation for one an-
tenna at a time, and we may restrict our attention to cl = 1. Based on this, the strategy in this section
will be as follows:
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1. In region I (see Figure 2.1 for the geometry of the various regions), write A = Ã+ F, with F a
fundamental solution. The function Ã then satisfies a homogeneous PDE, with inhomogeneous
boundary conditions.

2. For each of the regions, find a set of basis functions that satisfy the homogeneous PDE.

3. Write A and Ã as a finite linear combination of the basis functions in each region. Each linear
combination automatically satisfies the PDE. Choose the coefficients such that the boundary
conditions are satisfied, or at least as well as possible, since only a finite number of modes can
be used in practice.

We will use polar coordinates (even if the domain and the different regions (as well as the patient)
are elliptic). Furthermore, we drop the tilde (on A in region I) from the notation.

The fundamental solution F = F(~x, ~xl) satisfies

(∆ + ζ2
1 )F = −δ(~x − ~xl),

where ζ1 = ω
√
ε0µ0 as explained in the previous section. The solution is readily given by

F = −
1
4

Y0(ζ1|~x − ~xl|),

where Y0 is the 0-th order Bessel function of the second kind (notice that F is not uniquely deter-
mined since any smooth solution of the homogeneous PDE can be added to it). With the source at
the antenna position, we have

F = −
1
4

Y0(ζ1 ρ),

where ρ(r, θ) = r2 + R2
ant − 2Rantr cos(θ − θant) is the distance to the antenna, which is positioned at

(Rant, θant), in polar coordinates.
To find the basis functions we use separation of variables in polar coordinates, which can be

found in many textbooks on PDEs. Substituting the Ansatz A(r, θ) = R(r)Θ(θ), we find that Θ must
satisfy the eigenvalue problem

Θ′′ + λΘ = 0, Θ is π-periodic,

with solutions Θ = einθ, λ = n2, n ∈ Z, while R must satisfy the equation

d2R
dr2 +

1
r

dR
dr
−

n2

r2 R + ζ2R = 0.

This equation has two linearly independent solutions for each n:

Jn(ζ r) and Yn(ζ r),

where Jn and Yn are the Bessel functions of order n of the first and second kind, respectively. The
basis functions are therefore φk,n(r)einθ and ψk,n(r)einθ, with

φk,n(r) = κk,n Jn(ζ r),
ψk,n(r) = κ̃k,n Yn(ζ r),

where k = 1, 2, 3 represents the region, and κk,n and κ̃k,n are normalization constants.
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In regions I, II and III we now use the following representation of the solution:

A1(r, θ) = F(ρ) +
n1∑

j=−n1

a1, jφ1, j(r)ei jθ +

ñ1∑
j=−ñ1

b1, jψ1, j(r)ei jθ

def
= Φ1(r, θ) · a1 + Ψ1(r, θ) · b1

A2(r, θ) =
n2∑

j=−n2

a2, jφ2, j(r)ei jθ +

ñ2∑
j=−ñ2

b2, jψ2, j(r)ei jθ

def
= Φ2(r, θ) · a2 + Ψ2(r, θ) · b2

A3(r, θ) =
n3∑

j=−n3

a3, jφ3, j(r)ei jθ

def
= Φ3(r, θ) · a3,

where we define ak and bk, k = 1, 2, 3, to be column vectors containing the ak, j and bk, j, and Φ1 to
be a row vector containing the functions φ1, j(r)ei jθ, and similarly for the other Φ’s and Ψ’s. The ψ’s
are omitted in region III, as they would cause an undesirable pole in the solution. The choice of the
number of basis functions nk, k = 1, 2, 3 and ñk, k = 1, 2 is discussed below.

Using the boundary conditions we try to match the solutions at the boundaries between the
different regions and thus obtain the coefficients ak, j and bk, j. These conditions are evaluated using
a uniform distribution in the angle along the cavity (C) and ellipses (E1 and E2). This leads to the
following over-determined system

Φ1|C Ψ1|C 0 0 0
Φ1|E1 Ψ1|E1 −Φ2|E1 −Ψ2|E1 0
∂Φ1
∂n |E1

∂Ψ1
∂n |E1 −

∂Ψ2
∂n |E1 −

∂Ψ2
∂n |E1 0

0 0 Φ2|E2 Ψ2|E2 −Φ3|E2

0 0 ∂Φ2
∂n |E2

∂Ψ2
∂n |E2 −

∂Φ3
∂n |E2




a1
b1
a2
b2
a3

 =

−F|C
−F|E1

− ∂F
∂n |E1

0
0

 . (4.1)

Here ∂
∂n denotes the derivative in the direction normal to the boundary, and Φ1|C is the matrix with

as its rows Φ1 evaluated at (many) different points in C. To be precise, the elements of the matrix
Φ1|C are given by (Φ1|C) j,k = φ1,−n1−1+k(r j)ei(−n1−1+k)θ j , in which (r j, θ j) are the points along C, and
k = 1, . . . , 2n1 + 1. The other blocks in the matrix in (6) are defined similarly. The coefficients
a1, a2, a3, b1, b2 are obtained by solving the system (4.1) using a least squares approach.

The above algorithm was implemented in Matlab. In Figure 4.1 a plot of the field is given, for
the following parameters. We set the outer cylinder to have a radius of 0.34 m, and the semi-axes of
the ellipses to be 0.2 m, 0.125 m, and 0.175 m, 0.1 m for the outer and inner ellipse, respectively.
The antenna was located at θant = 0, Rant = 0.315 m, with unit current. Furthermore, we set the
frequency at the Larmor frequency ω = 300 MHz, and set material constants of εr = 5, σ = 0.076,
for the fatty layer, and εr = 5, σ = 0.4 for the interior part of the body; see [5]. The number of the
different modes used was (20, 20, 13, 13, 13) for (n1, ñ1, n2, ñ2, n3). With lower orders very similar
pictures were obtained. The computation of the coefficients was done in a few seconds on a PC.
Evaluating all the basis functions to compute an image took more time, in the order of a minute
depending on the resolution and the number of basis functions involved. The remaining errors in
the boundary values were small, up to a few percent of the values of the fundamental solution on
the circle and outer ellipse. A second example is shown in Figure 4.2, where we have two antennas,
located at θ = 3π/8 and θ = 11π/8. The field is seen to have a hard time penetrating the body.
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real part of Az field with (41,41,27,27,27) modes
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Figure 4.1: Real and imaginary part of the simulated A field
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Figure 4.2: Real and imaginary part of the simulated A field, with two antennas.

Two remarks can be made about the numerics. First, the normalization is important, since Bessel
functions are badly scaled on the domain of interest. Also, the rows in the system (4.1) that cor-
respond to derivatives are normalized differently from the other rows. Second, the method breaks
down because of rank deficiency of the matrix if the number of basis functions is too large. By
choosing suitable normalization, quite a large number can be handled, whereas with a poor choice
for normalization the rank deficiency occurs already for much smaller numbers of basis functions.

To conclude, the expansion in these cylindrical modes leads to a very fast algorithm. A compar-
ison with results from finite-difference calculations could provide a final check of the results.

5 Mathieu functions

5.1 Elliptic coordinates

Let Ω ⊂ Rn be a bounded open set, we now focus on the Helmholtz equation:

∆A + ζ2A = 0, in Ω, (5.1)
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Figure 5.1: Elliptic coordinate grid: the ellipses are curves of constant ξ, the hyperboles curves of
constant η.

for ζ ∈ C specified in the previous sections. Since the specific domains we are interested in are
elliptical, we introduce the elliptic coordinates, thus simplifying the form of the boundary conditions.
We set

x = a cosh ξ cos η,
y = a sinh ξ sin η,

where 2a is the distance between the foci, ξ ≥ 0 and η ∈ [−π, π). An impression of an elliptic
coordinate grid is given in Figure 5.1.

Note that the ellipticity of the ellipse for given ξ equals 1/ cosh(ξ) and hence quickly becomes
zero as ξ → ∞. Equation (5.1) in elliptic coordinates becomes

2
a2(cosh 2ξ − cos 2η)

(
∂2A(ξ, η)
∂η2 +

∂2A(ξ, η)
∂ξ2

)
+ ζ2A(ξ, η) = 0, in Ω. (5.2)

Now we use the standard separation of variables technique, i.e., we look for a solution of the particu-
lar form A(ξ, η) = X(ξ)Y(η). Then the partial differential equation (5.2) results in two linear ordinary
differential equations: 

X′′(ξ)
X(ξ)

+ 1
2ζ

2a2 cosh 2ξ = λ,

Y ′′(η)
Y(η)

− 1
2ζ

2a2 cos 2η = −λ,

(5.3)

where λ is the separation constant. These equations are known as the radial and the angular Mathieu
equations, respectively (see e.g. [2], [3], [4] and the references therein). Note that the radial equation
can be obtained from the angular equation by the substitution η = −iξ, hence the solutions of the
radial equations are just those of the angular part with imaginary argument.

As any linear second order differential equation these equations have two independent solutions,
and we can choose as basis of the solution space an even and an odd solution. Denote these by
C(λ, q, η) (even) and S (λ, q, η) (odd) respectively, with (traditionally) q = 1

4ζ
2a2. The angular equa-

tion only has 2π-periodic solutions for specific values of λ, that are denoted by the two (q-dependent)
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sequences λk(q) (k ≥ 0) and µk(q) (k ≥ 1) respectively3, called the characteristic values. The se-
quences λk(q) and µk(q) are defined such that

Ck(q, η) = C(λk(q), q, η), S k(q, η) = S (µk(q), q, η),

are the 2π-periodic solutions, continuous in q, with limq→0 Ck(q, η) = cos(kη) and limq→0 S k(q, η) =
sin(kη). For q = 0 we have λk = µk = k2, but for q , 0 all λk and µk are generically different. For
positive real q we have λ0 < µ1 < λ1 < µ2 < λ2 < µ3 < . . ., see [3].

The angular part of our solution Y(η) should be 2π-periodic, hence we only retain these Ck’s and
S k’s as solutions for that part. Furthermore, using the eigenvalues λk and µk one can write down the
radial solutions X(ξ). Thus, we find that the system of equations (5.3) has the general solution:

A(ξ, η) =
∑

k

(
αkC(λk(q), q,−iξ) + βkS (λk(q), q,−iξ)

)
Ck(q, η)

+
(
γkC(µk(q), q,−iξ) + δkS (µk(q), q,−iξ)

)
S k(q, η),

where the coefficients αk, βk, γk, δk have to be determined in each of the specific domains by matching
boundary conditions and imposing the correct symmetry and regularity for A.

In the domain containing the origin we must also ensure that the solution remains continuously
differentiable on the line connecting the two focal points. For the even angular solutions, this implies
that the derivative at ξ = 0 of the radial part must vanish (for it changes sign when passing the line
between the focal points). For odd angular solutions, the value of the radial part itself must vanish
on this line. More concretely, we lose the S (λk, q,−iξ)Ck(q, η) and C(µk, q,−iξ)S k(q, η) solutions on
this domain, or alternatively βk = γk = 0 on this domain.

5.2 Matching
It still remains to determine the constants αk, βk, γk and δk on all domains. Denote the solutions
on the different domains by A1 + F, A2, A3 for the domains I, II, and III, respectively, and the
corresponding constants by αk, j, βk, j etc. for j = 1, 2, 3.4 Here F is the solution in free space for the
Helmholtz equation including the sources. We set ξ1 to be the outer boundary of the scanner, and ξ2
and ξ3 to be the radii of the outer (resp. inner) ellipse of the patient. The boundary conditions then
become

A1 + F = 0 on ξ = ξ1, (5.4a)
A2 = A1 + F on ξ = ξ2, (5.4b)
A3 = A2 on ξ = ξ3, (5.4c)

∂ξA2 = ∂ξA1 + ∂ξF on ξ = ξ2, (5.4d)
∂ξA3 = ∂ξA2 on ξ = ξ3, (5.4e)

Heuristically, this will give us ‘5 sets’ of conditions that can be used to determine the ‘10 sets’ of
constants α j,k ( j = 1, 2, 3), β j,k ( j = 1, 2) etc..

Concerning condition (5.4a), as written down here we force our solution to vanish at an ellip-
tical boundary, while the actual MRI scanner is circular. However, since the ellipticity of ξ-levels

3In the literature, these sequences are usually called ak(q) and bk(q), but in this paper we already use those symbols for
different purposes.

4The indexing is a bit different from the one in the previous section.
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decreases with ξ, the shape of the ellipse for ξ1 is already close to a circle, and this will provide a
rather good approximation. With a little extra work the matching can be performed on a circular
interface as well.

The idea of the matching is to take a basis of the angular part of the solution on each interface,
write the solutions on both sides in terms of this basis and then match the corresponding coefficients.
When we started researching this method we hoped that the angular Mathieu functions in the differ-
ent regions would give the same basis, so that we would not have to perform any base-change before
the actual matching. This would reduce the boundary conditions to equations involving only 4 or 3
parameters each. However, as the functions Ck and S k do depend on q, we were out of luck. This
forces us to perform a basis transformation on the angular part of at least one side for each interface.

We considered two methods. One method is to use as a basis the Mathieu functions Ck(q, ·) and
S k(q, ·) for the value of q on one of the two sides of the interface. Since these Mathieu functions are
orthonormal with respect to the standard L2 inner product given by

〈 f , g〉 =
1
π

∫ 2π

0
f (t)g(t)dt,

we can find the expansion of the functions Ck(q′, ·) and S k(q′, ·) in this basis by simply calculating the
inner products 〈Ck(q′, ·),Cl(q, ·)〉 and 〈S k(q′, ·), S l(q, ·)〉 (since arguments of oddness of the integrand
show that 〈Ck(q′, ·), S l(q, ·)〉 = 0). Unfortunately, not much is known about the coefficients obtained
in this way.

Another method is to express both sets of solutions in the basis given by cosines and sines.
The advantage is that the expansion of the angular Mathieu functions in cosines and sines has been
studied previously. The disadvantage is that we now have to perform two basis transformations,
which implies we make approximation/numerical errors twice. We will expand on this method
further (the analysis of the first method is quite similar).

We need to find an expansion

Ck(q, x) =
∞∑
j=0

c j(k, q) cos( jx),

where sines do not occur since Ck(q, x) is even. Indeed, since Ck is either π-periodic or anti-periodic
depending on the parity of k, only the cos( jx) occur where k− j is even. Good algorithms to calculate
these coefficients exist. Similarly we want the coefficients in

S k(q, x) =
∞∑
j=1

s j(k, q) sin( jx),

where again s j(k, q) = 0 if k − j is odd.

We remark that most of these coefficients are quite small, namely both c j(k, q) = O( q|k− j|/2

k|k− j|/2 ) and

s j(k, q) = O( q|k− j|/2

k|k− j|/2 ) for fixed k, with small constants. For the specific values of q encountered in this
problem we can therefore approximate Ck(q, x) very well by cos(kx) for large enough k (for example
ck−2(k, q) = q/4(k − 1) + O( q3

k3 ) if k > 2).
Matching the solution on each interface can now be done by equating the coefficients of each

cos( jx) and sin( jx). For example, for the continuity on the interface between the second and third
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layer we obtain ∑
k

[αk,2C(λk(q2), q2,−iξ3) + βk,2S (λk(q2), q2,−iξ3)]c j(k, q2)

=
∑

k

αk,3C(λk(q3), q3,−iξ3)c j(k, q3),

as a relation between the coefficients of cos( jx) on both sides of the interface (recall that βk,3 = 0).
Similarly the continuous radial differentiability at the interface gives us the relation∑

k

[αk,2C′(λk(q2), q2,−iξ3) + βk,2S ′(λk(q2), q2,−iξ3)]c j(k, q2)

=
∑

k

αk,3C′(λk(q3), q3,−iξ3)c j(k, q3),

where the C′ and S ′ are the derivatives of the radial solution.
In order to take F into account we will have to express that solution also in terms of cosines

and sines on the interfaces. Since the solution F is generally not immediately given in terms of
elliptical coordinates, there is no simple formula expanding this function in terms of cosines and
sines. However we can always numerically calculate the Fourier coefficients to express

F(ξ2, η) =
∑

j

ψ j,2c cos( jη) + ψ j,2s sin( jη),

and a similar equation on the outer boundary.
If the assumption that the circular outer boundary can be approximated by an ellipse of suffi-

ciently low eccentricity fails we can also use a similar calculation to express the basis functions
of the solution on region I in terms of Fourier coefficients on an actual circle. However, calculating
these coefficients involves (numerically) calculating many integrals for each basis function, and since
each integral involves the slightly intractable Mathieu functions this could become computationally
expensive.

Note that the resulting system of equations splits in four systems of equations. Indeed, we have
one set of equations relating the αk,i and βk,i for even k, one set for αk,i and βk,i with odd k, one set for
γk,i and δk,i with even k and one set for γk,i and δk,i with odd k. These sets of equations correspond to
solutions which are even/odd in η (i.e. symmetrical or anti-symmetrical with respect to reflection in
the horizontal axis) and π periodic/anti-periodic (i.e. symmetrical or anti-symmetrical with respect
to the vertical axis). Since all sets are very similar we will focus on the first one.

5.3 Approximation
In order to obtain a finite set of equations we only consider a small number K of modes. This means
we set αk,i = 0 and βk,i = 0 for k ≥ K. Note that here we only consider the equations between the αk,i

and βk,i with k even (as announced in the previous section), so in particular we forget about γk,i and
δk,i. To obtain a system with the right amount of equations we moreover only consider the equations
related to the coefficients of cos( jx) with j ≤ K. Indeed, in the equations of the coefficient of cos( jx)
for j > K the terms with α j,i are very dominant since c j( j, qi) ≈ 1, while c j(k, qi) � 1 for k , j and
j > K, so including that equation without including the α j,i term would probably lead to very bad
results.
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We now have to solve the system of equations
A1(ξ3) 0 0
A1(ξ2) −A2(ξ2) 0

0 A2(ξ3) −A3(ξ3)
A′1(ξ2) −A′2(ξ3) 0

0 A′2(ξ3) −A′3(ξ3)



α1
β1
α2
β2
α3

 =

−F(ξ3)
−F(ξ2)

0
−F′(ξ2)

0

 .

Here Am(ξn) denotes the matrix

Am(ξn) = {C(λk(qm), qm,−iξn)c j(k, qm), S (λk(qm), qm,−iξn)c j(k, qm)}0≤k, j≤K, k, j even

and similarly for Am(ξn)′ (containing the derivatives of C and S ). Moreover

αn = (αn,k)0≤k≤K, k even,

and finally
−F(ξn) = (−ψ j,nc)0≤ j≤K, j even.

The problem thus involves solving a system of 5b(k + 1)/2c equations in as many variables.
Considering the matrix is nearly sparse (i.e. involves many small terms as cl(k, q) is small for |l−k| >
0) this should be feasible, but we have not implemented it.

A numerical problem might occur since the columns in the matrix corresponding to α1,k and
β1,k are nearly identical, so the matrix becomes almost singular and likewise for α2,k and β2,k. The
problem is that C(λk(q), q,−iξ) and S (λk(q), q,−iξ) (the basis of the solutions to the radial Mathieu
equation) are very similar for large ξ. Indeed they are the generalizations of the hyperbolic cosines
and sines, which both behave as exp(x)/2 for large x. While C(λk(q), q,−iξ) and S (λk(q), q,−iξ) do
not behave like exp(ξ)/2 for large ξ, they still are very similar. In order to find a less near-singular
matrix it would therefore be good to find a different basis of the radial solution to the Mathieu
equations. Indeed the arguments given above apply to any basis of solutions (in the radial part), so
the method would not need to change.

One convenient basis would be the one which intuitively is associated to exp(x) and exp(−x),
namely C(λk(q), q,−iξ) + S (λk(q), q,−iξ) and C(λk(q), q,−iξ) − S (λk(q), q,−iξ). Unfortunately we
have been unable to find any good algorithms to actually calculate these functions (other than calcu-
lating C and S and taking their difference, which does not behave well numerically as the difference
of these two functions is much smaller than their values itself).

6 Optimization

We continue our semi-explicit approach to the problem and consider here the task of making the
field in the patient as uniform as possible. We combine the separation-of-variables method in polar
coordinates (i.e., using Bessel functions) from Section 4, with the handling of the boundary condi-
tions between regions from Section 5. In particular, we use a discrete Fourier transform technique
to match the solutions in the different regions at their common boundaries. Furthermore, we refrain
from “normalizing” the Bessel functions (as was done in Section 4). Instead, we precondition the
matrix that governs the matching of the Fourier modes, which reduces rank deficiencies (mentioned
in Sections 4 and 5).
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More precisely, for each of the N antennas, uniformly distributed on a circle of radius Rant, we
solve the Helmholtz equation with source term (3.5) using 2M + 1 angular modes in the Fourier-
Bessel expansion in each region (and correspondingly also 2M + 1 modes in the Fourier expansion
for the matching conditions at the boundaries), i.e.,

A =
M∑

m=−M

(
ak,mJm(ζkr) + bk,mYm(ζkr)

)
eimθ,

for the three regions k = 1, 2, 3. We will only consider optimization of the field in (a subregion
of) the core of the patient (region III). There, only Bessel functions of the first kind contribute
(b3,m = 0), and for the jth antenna we denote the coefficients a3,m from now on by a j

m. In region III,
the expression for the potential then becomes

A =
N∑

l=1

cl

M∑
m=−M

al
mJm(ζr)eimθ, (6.1)

where ζ = ζ3, and the complex amplitudes cl = µ0Il appear as complex control parameters.
The magnetic field corresponding to A is given by

B =

 Bx

By

0

 = ∇ ×
 0

0
A

 =


∂A
∂y
− ∂A
∂x
0

 .
The part of the field that we are interested in is B+ = Bx+iBy, since this is the (polarized) combination
that turns the spins. This field, induced by the antennas, is often called B+1 to distinguish it from the
much bigger constant field B0 in the axial direction (generated by the superconducting magnet). We
are thus interested in

B+ = Bx + iBy =
∂A
∂y
− i

∂A
∂x
= eiθ

(
1
r
∂A
∂θ
− i

∂A
∂r

)
.

Using the identities

Jm−1(r) + Jm+1(r) =
2m
r

Jm(r), and

Jm−1(r) − Jm+1(r) = 2
dJm

dr
(r),

for Bessel functions, the expression (6.1) for the potential implies that the approximation of B+ in
the inner region III is

B+ =
N∑

l=1

cl

M∑
m=−M

iζal
mJm+1(ζr)ei(m+1)θ. (6.2)

We have attempted to find those values of cl for which B+, rather than |B+|, is as uniformly
distributed as possible. We make this choice because this problem is much easier to solve and still
leads to reasonably uniform |B+|. The reason it is easier is that minimizing the variation in B+,
as formulated below, is in essence a least square problem, i.e., a linear algebra problem, while
minimizing the variation in |B+| is a fully nonlinear optimization problem. Even if one eventually
would like to optimize |B+|, it would not be a bad idea to start that optimization procedure from
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the easily computable configuration that optimizes B+. Let us also remark that, to keep the method
tractable, we did not consider the issue of minimizing the electric field.

Recalling that
>
Ω

B+ =
∫
Ω

B+/
∫
Ω

1 is the average of B+ on Ω, a simple and apparently satisfying
approach is to use >

Ω

∣∣∣B+ − >
Ω

B+
∣∣∣2∣∣∣>

Ω
B+

∣∣∣2
as a measure for the variation in B+. We can rewrite this as>

Ω

∣∣∣B+ − >
Ω

B+
∣∣∣2∣∣∣>

Ω
B+

∣∣∣2 =

>
Ω
|B+|2∣∣∣>
Ω

B+
∣∣∣2 − 1.

Since this expression is clearly invariant under scalings of B+, and since
∫
Ω

1 is just the (fixed)
measure of Ω, one may reformulate the problem as finding the minimizer of

min
{∫
Ω

|B+|2 :
?
Ω

B+ = 1
}
,

i.e., minimization is over all cl such that
>
Ω

B+ = 1.
We first consider the case where the optimization domain Ω is a disk D of radius ρ around the

origin, where ρ is sufficiently small, so that the domain lies entirely in region III. This choice of
domain reduces the integral formulas considerably (we will review the general case below). In view
of (6.2) the constraint becomes?

Ω

B+ =
2
ρ2

N∑
l=1

clal
−1iζ

∫ ρ

0
J0(ζr)r dr = 1.

The expression to be minimized reduces to (complex conjugation denoted by a star)∫
D
|B+|2 =

∑
l,k,m,n

clc∗kal
mak∗

n ζζ
∗

∫
D

Jm+1(ζr)J∗n+1(ζr)ei(m+1)θe−i(n+1)θ

=
∑
l,k,m

clc∗kal
mak∗

m ζζ
∗2π

∫ ρ

0
|Jm+1(ζr)|2r dr

=

M∑
m=−M

∣∣∣∣∣∣∣∣
N∑

l=1

clal
mζ

√
2π

∫ ρ

0
|Jm+1(ζr)|2r dr

∣∣∣∣∣∣∣∣
2

.

To ease notation we introduce

qml = al
mζ

√
2π

∫ ρ

0
|Jm+1(ζr)|2r dr,

and the matrix Q = (qml), as well as the vector c = (cl). Then

∫
D
|B+|2 =

∑
m

∣∣∣∣∣∣∣∑l

clqml

∣∣∣∣∣∣∣
2

= |Qc|2 .
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To write the constraint in linear algebra terms as well, define the vector p = (pl) with

pl =
2
ρ2 al
−1iζ

∫ ρ

0
J0(ζr)r dr.

Then we may reformulate the problem as finding the least-square solution of Qc = 0 under the
constraint pT c = 1.

With a final reformulating step the constraint can be absorbed into the matrix, namely define

Q̃ =
(

pT

Q

)
,

and let e1 be the standard unit vector. Find the least-square solution of Q̃x = e1, say x = c̃ = (c̃l),
then, using the linearity of the problem, it follows that the optimal c = (cl) of the constraint problem
above is given by a rescaled version of c̃, namely

cl =
1

pT c̃
c̃l.

For general domains Ω this can be generalized as follows. Let us describe the method for a two-
dimensional integral using polar coordinates, but it is straightforward to extend. We first want to
discretize the integral. Let Ω lie inside some (large) disk DR, and let ∆r and ∆θ be discretization step
sizes, so that n1 =

R
∆r and n2 =

2π
∆θ

are integers. The grid points are now given by r j1 = ( j1 − 1
2 )∆r

and θ j2 = j2∆θ for 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2. Let I be an enumeration of all the grid points that lie
inside Ω, and 1 ≤ i ≤ NΩ (with NΩ ≤ n1n2) indexes I, i.e., (ri, θi) ∈ Ω.5 Then∫

Ω

f (r, θ) ≈ ∆r∆θ
NΩ∑
i=1

f (ri, θi)ri,

where the final “weight” ri is due to the polar-coordinate Jacobian. With this discretization in place,
we may write, with δ = ∆r∆θ∫

Ω

|B+|2 ≈
∑

l,k,m,n,i

clc∗kal
mak∗

n |ζ |
2δJm+1(ζri)J∗n+1(ζri)riei(m+1)θi e−i(n+1)θi .

To simplify notation we introduce

gim = Jm+1(ζri)ei(m+1)θi
√

riδ,

and the matrix G = (gim), as well as hml = al
mζ and H = (hml). Then the above expression reduces to

∫
Ω

|B+|2 ≈
∑

l,k,m,n,i

clc∗khmlh∗nkgimg∗in =
∑

i

∣∣∣∣∣∣∣∑m,l gimhmlcl

∣∣∣∣∣∣∣
2

= |GHc|2.

The remainder of the argument is now analogous (with Q = GH) to the case Ω = D.

5A formal description is as follows: let I = {( j1, j2) | (r j1 , θ j2 ) ∈ Ω}, and NΩ is the number of elements in the set I. Then
there are “enumeration” functions ̃1(i) and ̃2(i) such that I = {(̃1(i), ̃2(i)) | 1 ≤ i ≤ NΩ}. Now set ri = r ̃1(i) and θi = θ

̃1(i).



Understanding the electromagnetic field in an MRI scanner 85

A amplitude, region 1
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Figure 6.1: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are not optimized.

6.1 Results

The computational parameters in the simulation were chosen as follows: 65 Fourier-Bessel modes
are used in each region (for both types of Bessel functions), and 28 discretization points on each
boundary. The optimization computation in this case only takes a few seconds. For the physical
parameters we used realistic values provided by the problem presenters: ε2 = 10ε0 and σ2 = 0.076
for the fatty layer, and ε3 = 34ε0 and σ3 = 0.4 for the interior part of the body. The parameters
that determine the geometry of the MRI scanner are the same as in Section 4. Note that since the
problem is linear the absolute size of the fields is fairly irrelevant (although it is of course important
in practice), since it can be tuned by an arbitrary multiplicative constant.

For comparison, we first look at the non-optimized fields in Figure 6.1. There the amplitudes
of the currents in the antennas are all equal and the phase is rotated uniformly (Il = I1e2πi(l−1)/16).
We indeed see the phase of A nicely rotating, while the field does not penetrate the body very well.
Looking at the crucial B+ field, we see that its amplitude is nonuniform and very small in certain
central parts of the body.

In Figure 6.2 we have optimized (in the sense explained above) the B+ field in a disk of radius
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Figure 6.2: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are optimized as to make B+ optimally uniform in the indicated disk inside the inner ellipse.
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A amplitude, region 1
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Figure 6.3: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are optimized as to make B+ optimally uniform in the entire inner ellipse.

0.1 m around the origin (the optimization region is indicated in the figure). We see that although
our method makes B+ optimally uniform, in fact the amplitude |B+| is much more uniform than the
phase. This is a bit unexpected, but it is very welcome in view of the original aim of making this
amplitude uniform, and we are pleasantly surprised by how uniform the amplitude of the field is: the
fluctuations are within a factor 2. When we look at the antennas, we see quite a spread in current
amplitudes, and the complicated phase pattern illustrates the subtleness of the optimal configuration.

Next we optimize the B+ field on the entire inner ellipse (the interesting not-fat part of the body).
In Figure 6.3 we see that the amplitude of the resulting field is less uniform, which is to be expected
since we are trying to make it uniform on a bigger domain, but the results are still much better than
the non-optimized case in Figure 6.1.

Finally, we optimize on a domain whose size is in between the disk and the entire ellipse. The
results are depicted in Figure 6.4, where also the domain of optimization is indicated. The results
show a fairly uniform |B+|: within a factor 3 over the entire ellipse representing the inner region of
the body. This demonstrates that the relatively simple optimization procedure performs satisfactorily
even on non-circular domains. We note however that perhaps the optimization in Figure 6.2 is
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Figure 6.4: The amplitude and phase of the fields A and B+ in the different regions. The antenna
currents are optimized as to make B+ optimally uniform in the indicated domain.
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preferable. Furthermore, the pattern in the (amplitude and phase of) antenna currents is quite similar
to Figure 6.2.

7 Concluding remarks
After completing the report we asked Ir. Bob van den Bergen and Dr. Ir. Nico van den Berg of
the Department of Radiotherapy of the University Medical Center in Utrecht to write the concluding
remarks on the results obtained for the problem they submitted to the study group:

The UMC Utrecht problem consisted of finding a semi-analytical method to calculate and opti-
mize rapidly the radiofrequency (RF) field of an MRI scanner. According to the UMC Utrecht this
goal has been fully achieved. The developed model allows an evaluation of the full electromagnetic
field in less than a minute. This enables an on-the-fly optimization procedure for patients. At the
moment we are designing the RF hardware to implement this procedure for our 7 Tesla MRI scanner.

As an extra bonus we obtained a rapid optimization method which is based on a simple least
squares method in stead of the conventionally applied non-linear optimization procedures which
suffer from lengthy calculation times and local minima. Currently, we are using this to study the
ultimate RF homogeneity as a function of various physical parameters. Furthermore, the short com-
putation time opens up the new possibility to find the optimal coil geometry in an automated fashion.
Concluding, we can state that the SWI workshop has been a great success for the UMC Utrecht and
has resulted in much new research.

The UMC Utrecht would like to express their gratitude for being able to take part in this work-
shop. It is quite unique that such mathematical talent and knowledge is brought together to solve
such a complex modelling problem in the medical industry. The rigorous mathematical methodol-
ogy of the participants applied to this physical problem has been an eye-opener. On a more personal
level, we would like to thank to all the participants for their work and great character. Enlighten all
these mathematical heathens out there!
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The ING problem: a problem from the financial
industry

Cornelis W. Oosterlee∗

In the 2007 Mathematics with Industry workshop, ING posed a challenging problem from fi-
nancial mathematics. For a system of stochastic differential equations, representing an advanced
model for asset prices, the question was whether a closed, or semi-closed, form of a pricing for-
mula for call options could be derived. The asset price model of interest was the so-called hybrid
Heston–Hull–White model.

The industrial interest comes from the fact that valuing and risk-managing derivatives demands
fast and accurate prices. As the financial models used in practice are becoming increasingly complex,
efficient solution methods have to be developed to cope with such models. Needless to say that
working with a closed form solution is highly efficient.

The basis of modern option pricing theory is found in the famous Black–Scholes model, which
itself is based on a one-factor stochastic model for asset prices,

dS t = rS tdt +
√

vS tdWt.

Here S t denotes asset price, and Wt denotes Brownian motion. Interest rate r and ‘volatility’
√

v are
assumed to be constant in this model which is a major model simplification. Based on this model
derivatives, like options, can be priced highly efficiently.

The motivation behind using more general processes is the simple fact that the Black–Scholes
model is not able to reproduce important empirical features of asset returns and at the same time
provide a reasonable fit to the so-called implied volatility surfaces observed in option markets. Over
the past few years it has been shown that several models that incorporate stochastic volatility are, at
least to some extent, able to reproduce the volatility skew or smile. The particular model we will
consider here is a more advanced form of the well-known Heston stochastic volatility model. The
model is a generalization as also the interest rate is modeled by a stochastic differential equation.
The hybrid Heston–Hull–White asset price model reads:

dS t = rtS tdt +
√

vtS tdW1,t ,
dvt = κ(η − vt)dt + λ

√
vt dW2,t ,

drt = (θ(t) − art)dt + σdW3,t

for 0 ≤ t ≤ T with T the maturity of the option. Here S t, vt, rt denote the random variables asset
price, its variance and interest rate, respectively, at time t ≥ 0. The model constitutes an extension
of the well-known Black–Scholes model as the volatility and the interest rate both evolve randomly
over time. The quantities κ, η, λ, a, σ are positive real constants, that can be calibrated to market
data. Furthermore, θ(t) is a deterministic, continuous, positive function of time which can be chosen

∗CWI, Amsterdam, and Technische Universiteit Delft, editor ING problem, c.w.oosterlee@cwi.nl
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as to match the so-called term structure of interest rates. Finally, W1,t, W2,t, W3,t denote Brownian
motions with a positive covariance matrix

varP(W̃t) :=

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 t.

By means of the risk-neutral valuation formula, the price of any European option can be written as an
expectation of the discounted payoff of this option. Starting from this representation one can apply
several techniques to calculate the price itself. Broadly speaking one can distinguish two types of
methods: Solution of the corresponding partial differential equation (PDE) or stochastic differential
equation (SDE) by integration. Both solution approaches may rely on techniques from numerical
mathematics, including Monte Carlo simulation, in particular when pricing early exercise options or
complex option contracts.

Quite a few mathematicians took up this ING challenge, and during the week three subgroups
were formed, each approaching the problem from a different side. A particular challenge here was
that some Dutch professors in financial mathematics in earlier attempts were not able to come up
with a closed form option pricing solution for this particular model. It is therefore no surprise
that the problem in its full generality could not be solved within the workshop week. However,
three high-quality approaches with interesting insights are presented hereafter that allow for different
dependency structures. We believe that based on the results in the contributions the pricing of options
under the dynamics of the complete hybrid Heston–Hull–White model, such as by classical Monte
Carlo simulation, can be significantly accelerated1

On behalf of the group participants we would like to thank in particular Dr. Antoine van der
Ploeg from ING for his detailed technical note on the problem and for his assistance during the
workshop.

1We would also like to point to work by N. Kunitomo and Y-J Kim, which can be found at http://www.e.u-tokyo.ac.jp/ ku-
nitomo/Effects.pdf, which contains interesting aspects for our problem, but which we did not study during the workshop.



Three approaches to extend the Heston model

Michael Muskulus∗

1 Introduction
The stock price in the Heston model [8] is given by the following stochastic differential equation

dS t = rS tdt +
√

vtS tdW1,t, S 0 > 0,

where r > 0 denotes the risk-free interest rate, which is assumed to be constant in time. Since S t

follows a geometric Brownian motion, it is advantageous to consider Xt = ln S t instead. By the
Itô–Doeblin formula one then has

dXt = d ln S t = (r −
1
2

vt)dt +
√

vtdW1,t.

The volatility of the instantaneous stock returns dS t/S t follows the process

dvt = κ(η − vt)dt + λ
√

vtdW2,t, v0 > 0,

in which κ > 0 determines the speed of adjustment of the volatility towards its theoretical mean
η > 0, and λ > 0 is the second-order volatility, i.e., the variance of the volatility. Note that this has
exactly the form as the Cox-Ingersoll-Ross (CIR) [6] interest rate process.

The money-market account evolves according to the ordinary differential equation dMt = rMtdt
with solution Mt = M0ert. The importance of the Heston model comes from the fact that it allows
for a semi-analytical solution in terms of characteristic functions (see Section 3).

2 Extension of the Heston model
Although the Heston model incorporates stochastic volatility, the fixed interest rate is an unrealistic
assumption. Let us therefore consider (following [14]) a generalized Hull–White process [9] for the
interest rate,

drt = (θt − art)dt + σdW3,t,

where θt > 0, t ∈ R, is a nonconstant drift term. Usually, stock rate, volatility, and interest rate are
correlated; a phenomenon known as the leverage effect [2, 3]. Assume that

dWi,tdW j,t = ρi jdt,

∗Universiteit Leiden, muskulus@math.leidenuniv.nl
∗We would like to thank the other participants of our group: Joris Bierkens, Fang Fang, Karel in ’t Hout, David Kan, Coen

Leentvaar, Kees Oosterlee.
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where

C = (ρi j)1≤i, j≤3 =

 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1


is a constant1 covariance matrix, and therefore positive semi-definite. In fact, for the application in
finance, we can assume that C is nonsingular2.

From the spectral theorem of linear algebra we see that C, being positive definite and symmetric,
has a unique matrix square root A = (ai j)1≤i, j≤3, such that

C = UΣU t = (UΣ1/2)(UΣ1/2)t = AAt, (2.1)

where UΣU t is the singular-value decomposition of C. Explicitly, we have

3∑
k=1

aika jk = ρi j, for all i, j = 1, 2, 3.

There now exist adapted, independent Brownian motions Bi,t, i = 1, 2, 3, such that

dWi,t =

3∑
j=1

ai j dB j,t,

and the general model we consider here is the following:

dS t = rtS tdt +
√

vtS t a1idBi,t or dXt = (rt −
1
2

vt)dt +
√

vta1idBi,t (2.2)

dvt = κ(η − vt)dt + λ
√

vt a2 jdB j,t (2.3)
drt = (θt − art)dt + σ a3kdBk,t, (2.4)

where the Einstein convention for summation of repeated indices is used. The money market account
develops according to

Mt = M0 exp
(∫ t

0
rsds

)
.

In this generality, the model is probably not solvable (semi-) analytically. Therefore three differ-
ent constraints, arising from different strategies are discussed that lead to partial solutions.

3 Independent interest process
The first simplification is to assume that the interest rate process rt evolves independently from the
stock price and volatility processes S t and vt, keeping the correlation between the latter two,

dW1,tdW2,t = ρdt

dW1,tdW3,t = dW2,tdW3,t = 0.

1The decomposition of correlated Brownian motions into independent ones we are about to describe is also possible if
C = C(t) is an adapted process in time.

2This is possible since we will never have a perfectly linear relation between the driving Brownian motions of stock price,
volatility, and interest rate — this would be rather contradictory to the assumption of stochasticity, and in such a case we
could do with a simpler model than the one considered.
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The first relation can be rewritten3 as

dW1,t = ρdW2,t +

√
1 − ρ2dW ′2,t,

where W ′2,t is another Brownian motion, independent of W2,t.

Define the integrated interest Rt =
∫ t

0 rtdt. We want to find the European call option price at
maturity time T , given an initial stock price S 0, volatility v0 and interest rate r0 (and initial time
t = 0),

CT (S 0, v0, r0) = E[e−RT (S T − K)+ | S 0, v0, r0]

= E[e−RT S T · 1(ln S T>ln K)] − KE[e−RT · 1(ln S T>ln K)]

= E[e−RT S T ]
E[e−RT S T · 1(ln S T>ln K)]

E[e−RT S T ]
− KE[e−RT ]

E[e−RT · 1(ln S T>ln K)]
E[e−RT ]

,

where x+ = max(0, x) denotes the positive part of x, and 1A is the indicator function of the event A.
Note that under the risk-neutral measure the process (e−Rt S t)t≥0 is a martingale, such that E[e−Rt S t] =
S 0.

Define an (analytic) function

Ψ(z) = E[e−RT+z ln S T ], z ∈ C,

such that
Ψ(0) = E[e−RT ] = P(r0,T )

is the discount price function, i.e., the price of a zero-coupon bond at time T .
Consider now the two (scaled) characteristic functions

Φ1(z) =
Ψ(1 + iz)
Ψ(1)

=
E[e−RT S T eiz ln S T ]
E[e−RT S T ]

Φ2(z) =
Ψ(iz)
Ψ(0)

=
E[e−RT eiz ln S T ]
E[e−RT ]

for two distribution functions F1, F2.
The particular form of these functions is a consequence of the generalized Bayes theorem [12,

pg. 231] for conditional expectations, when we require

CT (S 0, v0, r0) = S 0

∫ ∞

ln K
dF1(x) − KP(r0,T )

∫ ∞

ln K
dF2(x). (3.1)

Fourier inversion4 then allows to numerically evaluate the probability distributions [4], such that
3This is nothing else than the two-dimensional analogue of the matrix square root decomposition, Eq. (2.1).
4The inversion formula goes back to Gurland [7], who showed that

F(x) + F(x − 0) = 1 −
1
π

∫ ∞

−∞

e−iuxΦ(u)
iu

du,

where the integral has to be interpreted as a Cauchy principal value. For (left-) continuous F(x) this reduces to

P(X ≤ x) = F(x) =
1
2
+

1
2π

∫ ∞

0

Φ(−u)eiux − Φ(u)e−iux

iu
du,

such that

P(X ≥ ln K) = 1 − F(ln K) =
1
2
−

1
2π

∫ ∞

0

Φ(−u)eiu ln K − Φ(u)e−iu ln K

iu
du.
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the option pricing function at time t is

CT−t(S t, vt, rt) = S t

(
1
2
−

1
2π

∫ ∞

0

Φ1(−u)eiu ln K − Φ1(u)e−iu ln K

iu
du

)
− KP(rt,T − t)

(
1
2
−

1
2π

∫ ∞

0

Φ2(−u)eiu ln K − Φ2(u)e−iu ln K

iu
du

)
.

The remaining work is to find an expression for Ψ(z). This method is due to Scott [11], and we
just follow his calculations (see Appendix for details), to arrive at

Ψ(z) = e−z(v0+κηT ) · E[e(z−1)RT ] · E[ewVT+z ρλ vT ], (3.2)

where we used the integrated volatility Vt =
∫ t

0 vtdt, and

w = (z − 1)z
1
2

(1 − ρ2) + z
(
ρ

λ
κ −

1
2
ρ2

)
.

From the theory of Bessel bridges [10, 5] we have the following closed form for the second
expectation:

E[e−s1VT−s2vT | v0] = eaT−bT v0 , Re si ≥ 0, i = 1, 2,

where

aT = 2κη · ln
2γe

1
2 (κ−γ)T

2γe−γT + (κ + γ + s2)(1 − e−γT )

bT =
(1 − e−γT )(2s1 − κs2) + γs2(1 + e−γT )

2γe−γT + (κ + γ + s2)(1 − e−γT )
,

and γ =
√
κ2 + 2s1. The parameters κ and η are taken from the volatility process:

dvt = κ(η − vt)dt + λ
√

vtdW2,t, v0 > 0. (3.3)

This almost solves the problem, since we still need to find an expression for the first expectation
in Eq. (3.2).

If we now replace5 the generalized Hull–White interest rate process with a CIR type interest
process,

drt = (θ − art)dt + σ
√

rtdW3,t,

then this is also of the above form (3.3) (replacing κ by a, and η by θ/a), giving us a semi-analytical
solution.

4 Constrained correlations
We now present an alternative method. Consider the model (2.2-2.4) again.

The change of variable S t = exp(Xt) leads to Gt(Xt, ·, ·, ·) = Ct(S t, ·, ·, )̇, such that (e−RtGt) is a
martingale (under the appropriate, equivalent risk-neutral measure). Following the strategy of the

5In fact, it should be possible to arrive at a similar expression for the (standard) Hull–White interest rate process, too, by
following the lines of the proof of above formula in [10, 5]. This is one possible direction for future research.
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multi-dimensional Feynman-Kac theorem for independent Brownian motions [13], we expand the
differential d(e−RtGt) in dt and dBi,t terms (i = 1, 2, 3), and set the dt term equal to zero, leading6 to
the following PDE:

rtGt =
∂Gt

∂t
+ (rt −

1
2

vt)
∂Gt

∂Xt
+ κ(η − vt)

∂Gt

∂vt
+ (θt − art)

∂Gt

∂rt

+
1
2

vt
∂2Gt

∂X2
t
+

1
2
λ2vt

∂2Gt

∂v2
t
+

1
2
σ2 ∂

2Gt

∂r2
t

+ λρ12vt
∂2Gt

∂Xt∂vt
+ σρ13

√
vt
∂2Gt

∂Xt∂rt
+ λσρ23

√
vt
∂2Gt

∂vt∂rt
.

The ansatz7

Gt = eA(T−t)+vt B(T−t)+rtC(T−t)+
√

vt D(T−t)+iuXt

now gives8 the following system of equations:

dA
dt
= θtC(t) +

1
2
σ2C2(t) + κηB(t) +

1
2
λσρ23D(t)C(t) +

1
8
λ2D2(t)

dB
dt
= −

iu
2
−

u2

2
− κB(t) + λρ12iuB(t) +

1
2
λ2B2(t)

dC
dt
= iu − aC(t)

dD
dt
= iuσρ13C(t) −

1
2
κD(t) + iu

1
2
λρ12D(t) + λσρ23B(t)C(t) +

1
2
λ2B(t)D(t)

0 = 8D(t)
(
4κη − λ2

)
which is a system of ODEs, either (i) if we set

λ = 2
√
κη (Forced volatility variance),

or (ii) if we set D(t) = 0. The latter is possible, if we let B(t) = −iu ρ13
ρ23

1
λ
, which gives us two

constraints on the parameters (from dB
dt = 0):

ρ23 =
2κ
λ
ρ13, ρ12 =

4κ2 + λ2

4κλ
(Forced volatility correlation).

In this case, the equation in A(t) can be integrated easily, since C(t) is readily available,

C(t) =
iu
a

(
eat − 1

)
, when C(0) = 0.

Furthermore, if θt is assumed constant, the solution is given analytically by the characteristic function
of Gt, as in the solution of the Heston model.

6Note that aikdBk,t · a jldBl,t = aika jlδkldt = aika jkdt = ρi jdt, where δkl is the Kronecker delta.
7Which fulfills the necessary boundary condition GT = eiuXT , given the initial conditions A(0) = B(0) = C(0) = D(0) = 0.
8Use that

∂Gt

∂vt
= Gt

[
B(t) +

1
2
√

vt
D(t)

]
∂2Gt

∂v2
t
= Gt

[
B2(t) +

B(t)D(t)
√

vt
+

1
4vt

D2(t) −
1

4(vt)3/2 D(t)
]
.
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5 Volatility-interest coupling

The third method discussed considers an interest rate process that is coupled9 to the volatility, via

drt = (θt − art)dt + σ
√

vta3kdBk,t.

The Feynman–Kac partial differential equation for the martingale (e−RtGt) then reads

rtGt =
∂Gt

∂t
+ (rt −

1
2

vt)
∂Gt

∂Xt
+ κ(η − vt)

∂Gt

∂vt
+ (θt − art)

∂Gt

∂rt

+
1
2

vt
∂2Gt

∂X2
t
+

1
2
λ2vt

∂2Gt

∂v2
t
+

1
2
σ2vt

∂2Gt

∂r2
t

+ λvt
∂2Gt

∂Xt∂vt
ρ12 + σvt

∂2Gt

∂Xt∂rt
ρ13 + λσvt

∂2Gt

∂vt∂rt
ρ23.

Following Heston, we make a similar ansatz for the characteristic function:

Gt = eA(T−t)+B(T−t)vt+C(T−t)rt+iuXt .

Grouping together terms with vt, respectively rt, we get the following system of ordinary differential
equations,

dA
dt
= κηB(t) + θtC(t)

dB
dt
= b0 + b1B(t) +

1
2
λ2B(t)2 +

1
2
σ2C(t)2

+ λσρ23B(t)C(t) + iuλρ12C(t)
dC
dt
= (iu − 1) + aC(t)

where b0 = −
1
2 iu(1 − iu), and b1 = iuσρ13 − κ.

The initial conditions are A(0) = B(0) = C(0) = 0, and the last equation has solution:

C(t) =
1 − iu

a
(e−at − 1).

The second equation is a Riccati equation of form

dB(t)
dt
=

1
2
λ2B(t)2 + g(t)B(t) + h(t)

with coefficient functions

g(t) = g0 + g1e−at

h(t) = h0 + h1e−at + h2e−2at

9The form of this coupling is only motivated by the mathematical structure. In fact, whether this coupling is of any value
in the modelling of real-world finance, is quite unclear, though one might expect it not to be.
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where, setting q = (1 − iu),

g0 = iuσρ13 − κ − λσ
q
a
ρ23, h0 = −

1
2

iuq +
q2σ2

2a2 − iuλ
q
a
ρ12

g1 = λσ
q
a
ρ23, h1 = iuλ

q
a
ρ12 −

q2σ2

a2

h2 =
q2σ2

2a2 .

Although the quadratic term B(t)2 makes it impossible to split this equation into real and imaginary
parts, there exists10 an analytical solution of this equation in terms of Whittaker functions [1], such
that it can be evaluated efficiently with tabulated values. Yet the equation for A(t) makes it necessary
to solve the whole system numerically. Still, this is more efficient than integration of the partial
differential equation or direct (Monte-Carlo) simulation, and makes this approach also interesting.

6 Discussion
In this short note we have discussed three different ways of obtaining efficient solutions to extensions
of the Heston model. Unfortunately, the page limitation in this contribution does not allow for
numerical experiments with these methods.

A The method of Scott
Write

ln S t =

∫ t

0
rsds +

∫ t

0

√
vs

(
ρdW2,s +

√
1 − ρ2dW ′2,s

)
−

1
2

∫ t

0
vsds

= Rt +

(
ρ

∫ t

0

√
vsdW2,s −

1
2
ρ2

∫ t

0
vsds

)
+

(√
1 − ρ2

∫ t

0

√
vsdW ′2,s −

1
2

(1 − ρ2)
∫ t

0
vsds

)
= Rt + ηt + ξt.

Since vs develops independently from dW ′2,s, we can calculate

E[ξt | W2,t] = −
1
2

(1 − ρ2)Vt,

Var[ξt | W2,t] = (1 − ρ2)Vt,

where Vt =
∫ t

0 vsds.
Furthermore, we now can use

√
vtdW2,t =

1
λ
(dvt − κ(η − vt)dt) to write

ηt =
ρ

λ
(vt − v0 − κηt + κVt) −

1
2
ρ2Vt.

10The commercial software package M can be used to derive the analytical solution of this ODE.
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Considering Ψ(z) = E
[
e−RT+z ln S T

]
, we see that Ψ(z) = E

[
e(z−1)RT

]
· E

[
ezξT+zηT

]
. Now ξT , being an

Itô integral, is normally distributed. Therefore ezξT has a log-normal distribution, such that

E[ezξT | W2,t] = e(z−1)z 1
2 (1−ρ2)Vt (conditional on W2,t)

and we arrive at the formula given in the text, Eq. (3.2).
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A semi closed-form analytic pricing formula for call
options in a hybrid Heston–Hull–White model

Karel in ’t Hout∗ Joris Bierkens† Antoine P.C. van der Ploeg‡

Jos in ’t Panhuis§

1 Introduction
We consider the valuation of European call options under the general Heston–Hull–White asset
pricing model. The model constitutes an extension of the well-known Black–Scholes model [3]
where the volatility and the interest rate both evolve randomly over time. The process for the variance
vt has been proposed by Heston [5]. The process for the interest rate rt was formulated by Hull and
White [6] and forms a generalization of the Vasicek model [8]. In this contribution we assume that
the process W3,t is independent from W1,t and W2,t. The two Brownian motions W1,t, W2,t are allowed
to be correlated; their correlation is denoted by ρ ∈ [−1, 1].

The purpose of this note is to derive an analytic pricing formula in semi closed-form for Eu-
ropean call options under the Heston–Hull–White asset pricing model. The availability of such a
pricing formula is particularly useful in a calibration procedure. In practice, option pricing models
are calibrated to a large number of market-observed call option prices. It is important that such a
parameter estimation procedure is fast. Therefore a (near) closed-form call option pricing formula
is very desirable.

Our analysis in this note follows the lines of Heston [5]. The formula that we obtain forms a
direct extension of Heston’s pricing formula for call options, which can quickly be evaluated.

2 A semi closed-form analytic formula for call option prices
Let C(t, s, v, r) denote the price of a European call option at time t ∈ [0,T ] given that at this time the
asset price equals s, its variance equals v and the interest rate equals r.

From standard no-arbitrage arguments it follows that C satisfies the parabolic partial differential
equation (PDE)

0 =
∂C
∂t
+ 1

2 s2v
∂2C
∂s2 +

1
2λ

2v
∂2C
∂v2 +

1
2σ

2 ∂
2C
∂r2 + ρλsv

∂2C
∂s∂v

+rs
∂C
∂s
+ κ(η − v)

∂C
∂v
+ (θ(t) − ar)

∂C
∂r
− rC, (2.1)
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for 0 ≤ t < T , s > 0, v > 0, −∞ < r < ∞. This PDE can be viewed as a time-dependent advection–
diffusion–reaction equation on an unbounded, three-dimensional spatial domain. The payoff of a
call option yields the terminal condition

C(T, s, v, r) = max(0, s − K), (2.2)

where K > 0 is the strike price of the call option. Further, a boundary condition at s = 0 holds,

C(t, 0, v, r) = 0 (0 ≤ t < T ). (2.3)

We note that at v = 0 no condition is specified.
It is convenient to first apply a change of variables. Define

Ĉ(t, x, v, r) = C(t, ex, v, r). (2.4)

Then Ĉ satisfies the PDE

0 =
∂Ĉ
∂t
+ 1

2 v
∂2Ĉ
∂x2 +

1
2λ

2v
∂2Ĉ
∂v2 +

1
2σ

2 ∂
2Ĉ
∂r2 + ρλv

∂2Ĉ
∂x∂v

+(r − 1
2 v)

∂Ĉ
∂x
+ κ(η − v)

∂Ĉ
∂v
+ (θ(t) − ar)

∂Ĉ
∂r
− rĈ (2.5)

for 0 ≤ t < T on the spatial domain (x, v, r) ∈ R × (0,∞) × R with terminal condition

Ĉ(T, x, v, r) = max(0, ex − K). (2.6)

As in [5], we guess a solution of the form similar to the Black–Scholes formula:

Ĉ(t, x, v, r) = exP1(t, x, v, r) − KB(t, r)P2(t, x, v, r). (2.7)

Here B(t, r) denotes the time-t value of a zero-coupon bond that pays off 1 at maturity, given that at
time t the short rate equals r. It satisfies the PDE

0 =
∂B
∂t
+ 1

2σ
2 ∂

2B
∂r2 + (θ(t) − ar)

∂B
∂r
− rB (2.8)

for 0 ≤ t < T, r ∈ R and a semi closed-form solution is given by

B(t, r) = eb(t,r) , (2.9a)

b(t, r) = −
r
a

(
1 − e−a(T−t)

)
−

1
a

∫ T

t
θ(s)

(
1 − e−a(T−s)

)
ds

+
σ2

2a2

(
T − t +

2
a

e−a(T−t) −
1

2a
e−2a(T−t) −

3
2a

)
. (2.9b)

By linearity, the guess (2.7) satisfies the PDE (2.5) if its two constituent terms satisfy (2.5). As such,
P1 satisfies the PDE

0 =
∂P1

∂t
+ 1

2 v
∂2P1

∂x2 +
1
2λ

2v
∂2P1

∂v2 +
1
2σ

2 ∂
2P1

∂r2 + ρλv
∂2P1

∂x∂v
+

(r + 1
2 v)

∂P1

∂x
+ [κ(η − v) + ρλv]

∂P1

∂v
+ (θ(t) − ar)

∂P1

∂r
, (2.10)
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and by invoking (2.8), P2 satisfies

0 =
∂P2

∂t
+ 1

2 v
∂2P2

∂x2 +
1
2λ

2v
∂2P2

∂v2 +
1
2σ

2 ∂
2P2

∂r2 + ρλv
∂2P2

∂x∂v
+

(r − 1
2 v)

∂P2

∂x
+ κ(η − v)

∂P2

∂v
+

[
θ(t) − ar + σ2 ∂b

∂r

]
∂P2

∂r
. (2.11)

Further, (2.6) yields for the PDEs (2.10), (2.11) the terminal conditions

P j(T, x, v, r) = 1 (x > ln K) , P j(T, x, v, r) = 0 (x < ln K) (2.12)

for j = 1, 2, respectively.
From the undiscounted, multidimensional version of the Feynman–Kac Theorem (cf. [7]) it fol-

lows that the solutions P1, P2 to (2.10), (2.11) with (2.12) can be written as expectations of the
indicator function corresponding to (2.12), and thus can be regarded as probabilities1. We next de-
rive semi closed-form formulas for P1 and P2 by solving for their characteristic functions. From
these characteristic functions the probabilities P1, P2 can be retrieved with the inversion theorem
(cf. [4, 5]):

P j(t, x, v, r) =
1
2
+

1
π

∫ ∞

0
Re

[
e−iu ln K f j(t, x, v, r; u)

iu

]
du for j = 1, 2 (2.13)

where i2 = −1.
The Feynman–Kac theorem directly yields that the functions f1, f2 satisfy the same PDEs (2.10),

(2.11), respectively, but with the terminal condition

f j(T, x, v, r; u) = eiux. (2.14)

For f1 we guess a solution of the form (cf. [5])

f1(t, x, v, r; u) = exp[F1(t; u) +G1(t; u)v + H1(t; u)r + iux]. (2.15)

Substituting this into the PDE (2.10), it follows by perusal of the coefficients of v, r and 1 that (2.15)
is a solution if the functions F1, G1, H1 satisfy the system of ordinary differential equations (ODEs)

F′1(t) + κηG1(t) + θ(t)H1(t) + 1
2σ

2H1(t)2 = 0 , (2.16a)

G′1(t) + 1
2 ui − 1

2 u2 + (ρλui + ρλ − κ)G1(t) + 1
2λ

2G1(t)2 = 0 , (2.16b)
H′1(t) + ui − aH1(t) = 0 , (2.16c)

with the terminal condition F1(T ) = G1(T ) = H1(T ) = 0.

For f2 we guess a solution of the form (cf. [2, 5])

f2(t, x, v, r; u) = exp[F2(t; u) +G2(t; u)v + H2(t; u)r + iux − b(t, r)]. (2.17)

Substituting this into the PDE (2.11) and using (2.8),(2.9), it follows analogously as above that (2.17)
is a solution if the functions F2, G2, H2 satisfy the system of ODEs

F′2(t) + κηG2(t) + θ(t)H2(t) + 1
2σ

2H2(t)2 = 0 , (2.18a)

G′2(t) − 1
2 ui − 1

2 u2 + (ρλui − κ)G2(t) + 1
2λ

2G2(t)2 = 0 , (2.18b)
H′2(t) + ui − aH2(t) − 1 = 0 , (2.18c)

1We omit the details, which are completely analogous to those explained in [5].



104 Proceedings of the 58th European Study Group Mathematics with Industry

with the terminal condition F2(T ) = G2(T ) = H2(T ) = 0.

The equations (2.16c), (2.18c) are easy to solve. Let δ1 = 0, δ2 = 1. Then

H j(t; u) =
ui − δ j

a

(
1 − e−a(T−t)

)
for j = 1, 2. (2.19)

The equations (2.16b), (2.18b) are identical2 to the first line of equation (A7) in [5] and closed-form
solutions were obtained in loc. cit. For completeness, we include these formulas here. Let

α = κη , β1 = κ − ρλ , β2 = κ , γ1 =
1
2
, γ2 = −

1
2

and for j = 1, 2

d j =

√
(β j − ρλui)2 − λ2(2γ jui − u2) , g j =

β j − ρλui + d j

β j − ρλui − d j
.

Then the solutions to (2.16b), (2.18b) are given by

G j(t; u) =
β j − ρλui + d j

λ2

[
1 − ed j(T−t)

1 − g jed j(T−t)

]
for j = 1, 2. (2.20)

The equations (2.16a), (2.18a) can finally be solved by integration. Using the result from [5] for the
integral of G j, it follows that

F j(t; u) =
α

λ2

{
(β j − ρλui + d j)(T − t) − 2 ln

[
1 − g jed j(T−t)

1 − g j

]}
+

ui − δ j

a

∫ T

t
θ(s)

(
1 − e−a(T−s)

)
ds

+
σ2

2

(
ui − δ j

a

)2 (
T − t +

2
a

e−a(T−t) −
1
2a

e−2a(T−t) −
3
2a

)
(2.21)

for j = 1, 2. Of course, for many functions θ the integral in (2.21) may be explicitly computed.
The formulas (2.4), (2.7), (2.9), (2.13), (2.15), (2.17), (2.19), (2.20), (2.21) together constitute

the semi closed-form pricing formula for European call options under the hybrid asset pricing model.
This pricing formula is easily seen to be a proper extension of Heston’s formula, upon considering
θ(t) ≡ ar0 and σ = 0.

If the integrals in (2.9b), (2.21) involving θ(s) can be explicitly computed, the pricing formula
consists of two single integrals over u, see (2.13). Otherwise, one has an additional single integral
over s, ∫ T

t
θ(s)

(
1 − e−a(T−s)

)
ds .

Note the useful property that the latter integral does not depend on u. In all cases, the pricing formula
can be quickly approximated to any accuracy with a suitable numerical integration method. For a
discussion of some computational issues relevant to the pricing formula, we refer to the paper [1] on
the Heston formula.

2With the proper change of notation and removing a typo in [5].
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Finally, we remark that two issues are not addressed in this note, namely whether the solution
obtained above is unique and whether it satisfies the condition (2.3). These two issues are left for
future research. We note that it is plausible that the probability P2(t, x, v, r) in (2.7) vanishes as
x→ −∞, and therefore that (2.3) holds. But, this requires a careful analysis of course.
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Characteristic function of the hybrid
Heston–Hull–White model

Fang Fang∗ Bas Janssens†

In our contribution the goal is to find the analytic solution of the characteristic function (ch.f.)
of xT , given the initial data under the hybrid Heston–Hull–White model. That is, we want to find a
closed form expression for

Φ(ω; x0, v0, r0) := E(exp(iωxT )|x0, v0, r0).

A first observation on the model is the following: If xt satisfies

dxt = (rt −
1
2 vt)dt +

√
vtdW̃1,t ,

then S t = exp(xt) satisfies the Heston–Hull–White model, as can be seen by applying Itô’s lemma.
This paper has a twofold aim:

- Solve the problem under the assumption ρ13 = ρ23 = 0.

- Solve the problem under the assumption ρ23 = 0, and under the additional assumption that
κη = λ2/4, in which case

√
vt is governed by an Ornstein–Uhlenbeck process.

It is organized as follows: in section 1, we decompose the three correlated Wiener processes into
three independent ones, and establish some notation. In section 2, we eliminate two noises by
exploiting the Gaussianity of the rt-distribution, as well as the fact that xt does not occur on the r.h.s.
of the equations. In section 3, we obtain the ch.f. of xT in the aforementioned two cases.

1 Reformulating the Model
With the assumption that ρ23 = 0, we can write W̃i,t, i = 1, 2, 3, as a sum of independent processes
Wi,t:

W̃3,t = W3,t

W̃2,t = W2,t

W̃1,t = α1W1,t + α2W2,t + α3W3,t,

where α2 = ρ12, α3 = ρ13, and α2
1 + α

2
2 + α

2
3 = 1. Thus the model is reformulated as

dxt = (rt −
1
2 vt)dt + α1

√
vtdW1,t + α2

√
vtdW2,t + α3

√
vtdW3,t (1.1)

dvt = κ(η − vt)dt + λ
√

vtdW2,t (1.2)
drt = (θ(t) − art)dt + σdW3,t . (1.3)

∗Technische Universiteit Delft, f.fang@ewi.tudelft.nl
†Universiteit Utrecht, janssens@math.uu.nl
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Equation (1.2) gives
√

vtdW2,t = (dvt − κ(η − vt)dt)/λ. Insert it into (1.1) to obtain

dxt = rtdt +
(
α2κ

λ
− 1

2

)
vtdt −

α2κη

λ
dt +

α2

λ
dvt + α1

√
vtdW1,t + α3

√
vtdW3,t (1.4)

(cf. [1].) We introduce the notation

Rt :=
∫ t

0
rsds and Vt :=

∫ t

0
vsds .

Equation (1.4) is then integrated to

xT − x0 = RT +

(
α2κ

λ
− 1

2

)
VT −

α2κη

λ
T +

α2

λ
(vT − v0) + α1

∫ T

0

√
vtdW1,t + α3

∫ T

0

√
vtdW3,t.

From now on, unless otherwise specified, all expectations are understood to be conditioned on x0, r0
and v0, i.e.

E(X) := E(X|x0, v0, r0).

Using the tower property of conditional expectations, we have

Φ(ω; x0, v0, r0) = E
{
E

[
eiω(xT−x0)|RT , {vs; s ∈ [0,T ]}

]}
= E

{
exp (iω[RT +

(
α2κ

λ
− 1

2

)
VT −

α2κη

λ
T +

α2

λ
(vT − v0)])

× E

[
exp (iω[α1

∫ T

0

√
vtdW1,t + α3

∫ T

0

√
vtdW3,t])|RT , {vs; s ∈ [0,T ]}

] }
.

(1.5)

Note that vt and RT are only driven by their own noises, but Φ(ω) is still driven by all three Wiener
processes.

2 Elimination of Two Noises
As the title suggests, two driving noises will be eliminated in this section.

2.1 Distribution of RT

The dynamics of the interest rate rt can be rewritten as follows:

drt = (θ(t) − art)dt + σdW3,t

d(eatrt) = eatθ(t)dt + eatσdW3,t

rτ = e−aτr0 +

∫ τ

0
θ(s)ea(s−τ)ds + σ

∫ τ

0
ea(s−τ)dW3,s.

Thus for RT :=
∫ T

0 rτdτ, we have nested integrals. Fubini’s theorem yields∫ T

0

(∫ τ

0
θ(s)ea(s−τ)ds

)
dτ =

1
a

∫ T

0
θ(s)

(
1 − ea(s−T )

)
ds.



Characteristic function of the hybrid Heston–Hull–White model 109

For the stochastic part, we have∫ T

0

(∫ τ

0
ea(s−τ)dW3,s

)
dτ =

1
a

∫ T

0

(
1 − ea(s−T )

)
dW3,s.

Patching these together, we obtain

RT = Fr0,a,θ(T ) +
σ

a

∫ T

0

(
1 − ea(s−T )

)
dW3,s, (2.1)

with

Fr0,a,θ(T ) :=
r0

a

(
1 − e−aT

)
+

1
a

∫ T

0
θ(s)

(
1 − ea(s−T )

)
ds .

Since the Itô integral in (2.1) is a weighted Wiener process, RT has a Gaussian distribution with
mean F(T ) and variance

Var(T ) :=
σ2

a2

∫ T

0

(
1 − ea(s−T )

)2
ds =

σ2

a2 (T −
2
a

(1 − e−aT ) +
1
2a

(1 − e−2aT )).

2.2 The Correlation
Recall the expression for Φ in (1.5). Let us first focus on the inner expectation, which is conditioned
on RT and the complete path {vs}0≤s≤T .

We fix a function w : [0,T ] → R+ such that vs = w(s) and introduce the notation Wi( f ) :=∫ T
0 f (s)dWi,s.

Since there is no restriction on xs, the process W1,t is still a Wiener process. With fixed vs = w(s),
the random variable W1,t(

√
w) is just a weighted Brownian motion. For W3,t however, there is a

restriction, since we have fixed RT . When we define g(s) := (1 − ea(s−T )), we have fixed

W3,t(g) =
a
σ

(RT − Fr0,a,θ(T )) .

Apart from the fixed x0 , r0 and vs, this is the only relevant restraint. And since W3,t( f ) is independent
from W3,t(g) if f ⊥ g we simply decompose

W3,t(
√

w) = W3,t(
√

w‖) +W3,t(
√

w⊥)

with
√

w‖ =
〈
√

w, g〉
〈g, g〉

g and
√

w⊥ =
√

w −
〈
√

w, g〉
〈g, g〉

g.

Thus, for fixed vs and RT , we know that W3,t(
√

w) is Gaussianly distributed with mean

a
σ

(RT − Fr0,a,θ(T )) ×
〈
√

w, g〉
〈g, g〉

and variance

〈
√

w⊥,
√

w⊥〉 = 〈
√

w,
√

w〉 −
〈
√

w, g〉2

〈g, g〉
,

where 〈g, g〉 = T − 2
a (1 − e−aT ) + 1

2a (1 − e−2aT ). If we define

µT :=
∫ T

0
(1 − ea(s−T ))

√
vsds ,
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we have

W3,t(
√

w) ∼ N
 aµT

σ〈g, g〉
(RT − F(T )) , VT −

µ2
T

〈g, g〉

 .
Recall that W1,t, W2,t and W3,t are independent Wiener processes. The process Rt is only driven

by W3,t, and vt only by W2,t. For fixed RT and vs = w(s), we therefore know that W1,t(
√

w) and
W3,t(

√
w) are independent Gaussians. The conditional characteristic function (CCF) of their sum,

φ(ω; RT , vs) := E
[

exp
(
iω(α1W1,t(

√
w) + α3W3,t(

√
w))

)
|RT , {vs; s ∈ [0,T ]}

]
,

is therefore the product of the individual CCF’s for α1W1,t(
√

w) and α3W3,t(
√

w). These we know;
the characteristic function of a Gaussian with mean µ and variance u is

fµ,u(ω) = exp (iµω −
u
2
ω2) .

Adding the means and variances of the two independent Gaussians, we write

φ(ω; RT , vs) = f
α3

aµT
σ〈g,g〉 (RT−F(T )),(α2

1+α
2
3)VT−α

2
3
µ2

T
〈g,g〉

(ω)

which only depends on RT , µT and VT .
Returning to (1.5), we have

Φ(ω; x0, v0, r0) = E
[

exp (iω
(
RT +

(
α2κ

λ
− 1

2

)
VT −

α2κη

λ
T +

α2

λ
(vT − v0)

)
)

× exp (iω
(
α3

aµT

σ〈g, g〉
[RT − F(T )]

)
)

× exp (− 1
2ω

2
(α2

1 + α
2
3)VT − α

2
3
µ2

T

〈g, g〉

)] . (2.2)

We now use the tower rule to get an inner expectation conditioned on µT , VT and vT . That is:

Φ(ω; x0, v0, r0) = E(. . .) = E(E(. . . |µT ,VT , vT )).

Recall that RT is independent of VT , vT , or µT . So what remains as the inner expectation is
E(eiωc(RT−F(T ))|µT ,VT , vT ), with c = (1 + α3

a
σ〈g,g〉µT ). Since RT − F(T ) is N(0, σ

2

a2 〈g, g〉)-distributed,
we have

E(exp (iωc(RT − F(T )))|µT ,VT , vT ) = f0, σ2

a2 〈g,g〉
(cω) = exp (−

σ2

2a2 〈g, g〉c
2ω2) .

In writing this out, the term − 1
2

α2
3

〈g,g〉µ
2
Tω

2 mysteriously vanishes;

Φ(ω; x0, v0, r0) = exp (iωF(T ) − iω
α2κη

λ
T − 1

2ω
2σ

2

a2 〈g, g〉)

×E
[
eiω α2

λ (vT−v0) × eiω[( α2κ
λ −

1
2 )+ 1

2 iω(α2
1+α

2
3)]VT × eiω[iωα3

σ
a ]µT

]
. (2.3)

We simplify the expression by introducing the notations

C0 := eiωF(T )−iω α2κη
λ T− 1

2ω
2 σ2

a2 〈g,g〉, C1 :=
α2

λ
,
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C2 :=
α2κ

λ
−

1
2
+

1
2

iω(α2
1 + α

2
3), C3 := iωα3σ/a,

and
ZT − Z0 := C1(vT − v0) +C2VT +C3µT . (2.4)

Thus we have
Φ(ω; x0, v0, r0) = C0E

[
exp (iω(ZT − Z0))

]
. (2.5)

Therefore, finding the ch.f. of xT at ω is equivalent to finding the ch.f. of ZT −Z0 at ω (where Zt still
depends on ω through the constants Ci(ω)).

Integrating dvt over [0,T ] gives

vT − v0 =

∫ T

0
κ(η − vs)ds +

∫ T

0
λ
√

vsdW2,s.

Substituting this into (2.4) yields

ZT − Z0 =

∫ T

0

[
C1κ(η − vs) +C2vs +C3g(s)

√
vs

]
ds +C1

∫ T

0
λ
√

vsdW2,s. (2.6)

Equivalently, the dynamics of Zt read

dZt =
[
C1κη + (C2 −C1κ)vt +C3g(t)

√
vt

]
dt +C1λ

√
vtdW2,t. (2.7)

We have a small subtlety here. In principle, g(s,T ) depends both on s and on T . In the dynamics
of Zt, this would give rise to terms involving ∂g/∂T . We circumvent this problem by defining, for
each fixed T , a process t 7→ Ẑ(T )t which is defined according to equation (2.7), in which g(s,T ) has
fixed T . Then ZT = ẐT (T ). From now on, we work with equation (2.7), omitting the hats.

All in all, we are left with Zt, which is driven by a single noise, W2,t.

3 Analytic Solution
We denote the ch.f. of ZT conditioned on Ft by

Ψt(ω;Ft) := E
[
exp (iωZT ) |Ft

]
.

By definition, Ψt is a martingale: E [dΨt |Ft] = 0. It is clear that Ψt depends only on Zt, vt,
√

vt, t.
Therefore, Itô’s lemma yields, setting τ = T − t:

dΨ(ω; Zt, vt,
√

vt, τ) = −
∂Ψ

∂τ
dt +

∂Ψ

∂Zt
dZt +

∂Ψ

∂vt
dvt +

∂Ψ

∂
√

vt
d
√

vt +
1
2
∂2Ψ

∂Z2
t

(dZt)2

+
1
2
∂2Ψ

∂v2
t

(dvt)2 +
1
2
∂2Ψ

∂
√

vt
2 (d
√

vt)2 +
∂2Ψ

∂Zt∂vt
dZtdvt

+
∂2Ψ

∂Zt∂
√

vt
dZtd

√
vt +

∂2Ψ

∂vt∂
√

vt
dvtd
√

vt. (3.1)

Given the dynamics of
√

vt, this gives rise to a PDE for Ψ. We proceed with the two cases in which
we can solve this.
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3.1 Case 1: ρ23 = 0 and ρ13 = 0

This is essentially the Heston model. Indeed, it is immediately clear from equation (1.1) that xt =

xH,t + Rt − r0t, where xH,t denotes the logarithmic price in the Heston model. Therefore,

Φ(ω; x0, v0, r0) = χ(ω)ΦH(ω; x0, v0, r0),

with χ(ω) = eiωF(T )−iωr0T− 1
2ω

2 σ2

a2 〈g,g〉 the characteristic function of RT − r0T .

3.2 Case 2: ρ23 = 0 and κη = λ2/4

We will now solve a different set of equations:

dxt = (rt −
1
2 vt)dt + ΘtdW̃1,t (3.2)

dΘt = −βΘtdt + δdW2,t (3.3)
drt = (θ(t) − art)dt + σW3,t (3.4)

The relevance is as follows: if we set B2,t :=
∫ t

0 sn(Θs)dW2,s, with sn(x) the sign of x, then t 7→ B2,t
is again a Wiener process by Levy’s Martingale characterization of Brownian motions. We then see
that vt = Θ

2
t satisfies (the 2nd equation of) the hybrid Heston–Hull–White model for the particular

case κη = λ2/4.
Indeed, dΘ2

t = (δ2 − 2βΘ2
t )dt + 2δΘdW2,t and dW2,t = sn(Θt)dB2,t, so that

dvt = (δ2 − 2βvt)dt + 2δ
√

vtdB2,t.

(Recall that
√

vt = |Θt | = sn(Θt)Θt.) This requires λ = 2δ, κ = 2β and κη = δ2, and thus
κη = λ2/4. This subclass of the model, in which Θt is an Ornstein–Uhlenbeck process, was in fact
Heston’s way of justifying the more general model [2]. Notice that we have changed

√
vt into Θ in

equation (3.2). This seems to be essential unless ρ13 = 0.
We change to a new measure, under which Θt is simply Brownian motion [3]. Define the Radon-

Nikodym derivative as

Mτ = exp(−Yτ) := exp
(
−

∫ τ

0

−βΘt

δ
dW2,t −

1
2

∫ τ

0

β2Θ2
t

δ2 dt
)
.

Substitute
∫ τ

0 ΘtdW2,t by 1
2δ

[
(vτ − v0) +

∫ τ

0 2βΘ2
t dt − δ2τ

]
, we have

Yτ = −
β

2δ2 (vτ − v0) −
β2

2δ2 Vτ +
β

2
τ.

By Girsanov’s theorem, if E
[
exp

(∫ T
0

β2

δ2 vtdt
)]
< ∞, then

B̂τ :=
∫ τ

0

−βΘt

δ
dt +W2,τ; τ ≤ T

is a Brownian motion w.r.t. dQ = MT dP, where P denotes the old measure. Moreover, in terms of
B̂t, the process Θt has the representation of

dΘt = δdB̂t.
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Thus
dvt = dΘ2

t = 2ΘtdΘt + dΘ2
t = 2δΘtdB̂t + δ

2dt.

The derivation of equation (2.7) goes through word for word in this new system, except that all
√

v’s
are replaced by Θ’s. (In particular, µ should be defined as µt =

∫ t
0 g(s)Θsds.) We obtain

dZt =
[
C1κη + (C2 −C1κ)Θ2

t +C3g(t)Θt

]
dt +C1λΘtdW2,t. (3.5)

For the expectation w.r.t. P, one has

EP
[
exp(iω(ZT − Z0))

]
=

∫
Ω

exp (iω(ZT − Z0)) M−1
T dQ

=

∫
Ω

exp (iω(ZT − Z0)) exp(YT )dQ := EQ
[
exp(iω(Z̃T − Z̃0))

]
,

with (we use vt for Θ2
t and Vt for its integral)

Z̃T − Z̃0 = (C1 + i
β

2ωδ2 )(vT − v0) + (C2 + i
β2

2ωδ2 )VT +C3µT − i
β

2ω
T,

and

dZ̃t =

[
C1δ

2 + (C2 + i
β2

2ωδ2 )vt +C3g(t)Θt

]
dt + (2δC1 + i

β

ωδ
)ΘtdB̂t.

Let us then set τ := T − t. Our ansatz for Ψ will be

Ψ(Z̃t, vt,Θt, τ) = exp
[
C(τ) + D(τ)Θt + E(τ)vt + iωZ̃t

]
, (3.6)

with initial conditions
C(0) = 0,D(0) = 0 and E(0) = 0.

For this we have
∂Ψ

∂τ
/Ψ =

∂C
∂τ
+
∂D
∂τ
Θt +

∂E
∂τ

vt,
∂Ψ

∂Z̃t
/Ψ = iω,

∂Ψ

∂vt
/Ψ = E,

∂Ψ

∂Θt
/Ψ = D,

∂2Ψ

∂Z̃2
t
/Ψ = −ω2,

∂2Ψ

∂v2
t
/Ψ = E2,

∂2Ψ

∂Θ2
t
/Ψ = D2,

∂2Ψ

∂vt∂Z̃t
/Ψ = iωE,

∂2Ψ

∂Θt∂Z̃t
/Ψ = iωD,

∂2Ψ

∂Θt∂vt
/Ψ = DE.

Substituting these into (3.1), factoring out Ψ and remembering E(dΨ) = 0, we come to the following
equation:

0 =
(
−
∂C
∂τ
+ iωC1δ

2 + δ2E + 1
2δ

2D2
)

+vt

(
−
∂E
∂τ
+ iωC4 −

1
2ω

2C2
5 + 2δ2E2 + 2iωδC5E

)
+Θt

(
−
∂D
∂τ
+ iωC3g(t) + iωδC5D + 2δ2ED

)
, (3.7)
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with C4 := C2 + i β2

2ωδ2 and C5 := 2δC1 + i β
ωδ

. Since (3.7) has to hold for every vt and Θt, we obtain
three ODEs:

−
∂C
∂τ
+ iωC1δ

2 + δ2E + 1
2δ

2D2 = 0 (3.8)

−
∂E
∂τ
+ iωC4 −

1
2ω

2C2
5 + 2δ2E2 + 2iωδC5E = 0 (3.9)

−
∂D
∂τ
+ iωC3g(t) + iωδC5D + 2δ2ED = 0 . (3.10)

With γ := δ
√
−2iωC4, we find

E(τ) = e+
1 − exp[2δ2(e+ − e−)τ]

1 − e+
e−

exp[2δ2(e+ − e−)τ]
, (3.11)

D(τ) =
iωC3eγτ

e+
e−

e2γτ − 1
×

((1
γ

(e−γτ − 1) −
1

a + γ
(e−(a+γ)τ − 1)

)
+ e+

e−

(1
γ

(eγτ − 1) −
1

γ − a
(e(γ−a)τ − 1)

))
, (3.12)

C(τ) = (e+ + iωC1)δ2τ −
1
2

log( e+
e−

e2δ2(e+−e−)τ − 1) +

1
2

∫ τ

0
D2(s)ds . (3.13)

We briefly sketch how to arrive at this. Reformulate (3.9) as

d
dτ

[
log(E − e+) − log(E − e−)

]
= 2δ2(e+ − e−),

with e± =
−iωC5±

√
−2iωC4

2δ . This yields (3.11). For (3.12), we first solve the homogeneous equation

dD0

dτ
= iωδC5D0 + 2δ2ED0.

Explicitly,

D0(τ) = exp(iωδC5τ + 2δ2
∫ τ

0
E(s)ds),

and1 ∫ τ

0
E(s)ds = e+τ −

1
2δ2 log(

e+
e−

e2δ2(e+−e−)τ − 1).

Thus

D0(τ) =
exp((2δ2e+ + iωδC5)τ)

e+
e−

exp(2δ2(e+ − e−)τ) − 1
.

From ‘variation of constants’, we see D(τ) = iωC3D0(τ)
∫ τ

0 g(T − s)D−1
0 (s)ds, with g(T − s) = (1 −

e−as). The result of this laborious but simple integration is shown above. (One uses 2δ2(e+−e−) = 2γ
and 2δ2e±+ iωδC5 = ±γ.) The result for C(τ) is obtained by integration, where we have left the term∫ τ

0 D2(s)ds intact.
Substituting the above into (3.6) and (2.5), we obtain the analytic solution for ch.f. of xT given

x0, v0 and r0.
1In principle, the logarithm should be interpreted carefully, in the sense that the function should not jump at branch cuts.

However, since it occurs inside an exponential eventually, this remark belongs in a footnote.
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4 Conclusion
Towards a solution to the problem of finding the characteristic function of the Heston–Hull–White
model, we have made the following observations:

- With ρ13 and ρ23 equal to zero, the problem is essentially equivalent to Heston’s model, and
can be solved.

- With ρ23 = 0 and κη = λ2/4, but with arbitrary ρ13, the problem can also be solved. This is an
extension of the model by Stein and Stein [4]. It is tractable because the process underlying
the volatility is an Ornstein–Uhlenbeck process, and not a Bessel process as in the Heston
model. This is exactly the special case used by Heston to motivate the general model.

With only ρ23 = 0, the problem seems to be less simple. Still, we have been able to eliminate two
out of three driving noises, which may result in faster numerical simulation.

Acknowledgement
We would like to thank Coen Leentvaar for valuable discussion.

References
[1] M. Broadie, Ö. Kaya, ‘Exact Simulation of Stochastic Volatility and other Affine Jump Diffu-

sion Processes’, Operations Research 54, 217–231 (2006).

[2] S.L. Heston, ‘A Closed-Form Solution for Options with Stochastic Volatility with Applications
to Bonds and Currency Options’, Rev. Financial Stud. 6, 327–343, (1993).

[3] J. Pitman, M. Yor, ‘A Decomposition of Bessel Bridges’, Z. Wahrscheinlichkeitstheorie verw.
Gebiete 59, 425–457, (1982).

[4] E.M. Stein, J.C. Stein, ‘Stock Price Distributions with Stochastic Volatility; An Analytic Ap-
proach.’ Rev. Financial Stud. 4, 727–752 (1991).


