
Bisseling, Rob H.Sparse Matrix Computations on Bulk Synchronous Parallel ComputersThe Bulk Synchronous Parallel (BSP) programming model is studied in the context of sparse matrix computations.As a case study, a BSP algorithm is developed for sparse Cholesky factorisation.(This paper appeared in: G. Alefeld, O. Mahrenholtz, and R. Mennicken (Eds.), Proceedings ICIAM'95. Issue 1.Numerical Analysis, Scienti�c Computing, Computer Science, Akademie Verlag, Berlin, 1996, pp.127-130.)1. IntroductionSparse matrix computations are at the heart of many scienti�c computing applications. Much could be gainedif we were able to accelerate such computations by e�ciently using parallel computers. This is a di�cult task,however, because these computations are mostly irregular. Therefore, sparse matrix computations can bene�t frombetter parallel programmingmodels, but they also form a litmus test for any new model: sparse matrix computationswill separate the useful models from the useless ones.The Bulk Synchronous Parallel (BSP) model was recently proposed by Valiant [7]. It attempts to simulta-neously achieve portability and e�ciency in parallel computations and thereby to enable general purpose parallelcomputing [3]. This goal is in sharp contrast with the current state of a�airs, which can be characterised by: aparallel software industry that is virtually non-existent; parallel hardware vendors that disappear at an alarmingrate; promises of high performance computing that are ful�lled for only a few applications.Recent developments indicate that the goal of general purpose parallel computing can be achieved. An im-portant development is that shared memory primitives become available for parallel computers with distributedmemory. Examples of these are remote write (`put' or `store') operations and remote read (`get' or `fetch') opera-tions. These are one-sided communication operations that only involve the initiating processor, and therefore theyare more e�cient and conceptually simpler than traditional message passing, which involves an active sender and anactive receiver. A set of independent one-sided communications must be followed by global synchronisation of theprocessors to ensure memory integrity. The bulk-synchronisation required by one-sided communications is identicalto that of the BSP model. Therefore, we may view the BSP model as providing a theory for the use of one-sidedcommunications.The aim of this paper is to show how the BSP model can be used in developing and analysing an algorithmfor parallel sparse Cholesky factorisation. The Cholesky factor L of a real symmetric positive de�nite matrix A isde�ned as the lower triangular matrix that satis�esA = LLT : (1)We assume that A is sparse, and that A has been ordered to maintain sparsity during the factorisation. We alsoassume that all structural information, such as the sparsity pattern of L and the corresponding elimination tree,is available at the start of the computation. Therefore, we are only concerned with the numerical part of thefactorisation.2. The BSP modelA BSP computer consists of a number of processors, each with its own memory, a communication network thatprovides access to other processor's memories, and a mechanism for global synchronisation. Reading from or writingto memory is fast if the operation is local and it is slower if the memory location belongs to a di�erent processor.There is no distinction in access time between di�erent non-local memories. This implies that the communicationnetwork can be viewed as a black box, where the network topology is hidden in the interior. This property is essentialfor achieving portability. Previous work [2] has shown that direct control over data distribution is crucial to achievinge�ciency for sparse matrix computations on BSP computers with realistic system parameters. Therefore, we willignore the alternative approach based on memory hashing [7].A BSP algorithm consists of a number of supersteps. A superstep is either a number of computation stepsor an h-relation, both followed by a global synchronisation. An h-relation is a communication procedure whereeach processor sends at most h data to other processors and receives at most h data. Note that two di�erent



communication patterns may have the same h; in that case, the cost function of the BSP model does not distinguishbetween them. The cost function of the BSP model is the basis for complexity analysis of algorithms and forperformance prediction of implementations. There exist a few variants of the cost model, which di�er by at most asmall constant factor. The variant presented here was proposed in [2]. Its main virtue is simplicity.The cost of an h-relation, including the cost of synchronisation, isTcomm(h) = hg + l; (2)where g and l are machine dependent parameters and the cost unit is the time of a oating point operation (op).This cost is charged because of the expected linear increase of communication time with h. The processor thatsends/receives the maximum number of elements determines h and hence the communication cost. Asymptotically,for large h, the time of an h-relation is the product of the maximum number of elements sent into or received fromthe communication network and the time g needed to send or receive one element. We can also view g as the ratiobetween the global computation throughput and the global communication throughput. The linear cost functionincludes a nonzero constant because initiating an h-relation incurs a �xed cost. This �xed cost includes: the cost ofglobal synchronisation; (part of) the cost of ensuring that all communicated data have arrived at their destination(processors must do this before they can declare themselves ready for synchronisation); and communication startupcosts. We lump all these costs into one parameter l. This parameter l is similar to but not identical with thelatency L of the original BSP model [7]. We call l, by a slight abuse of language, the synchronisation cost of asuperstep. Approximate values for g and l of any particular machine can be obtained by benchmarking a range offull h-relations (i.e., h-relations where each processor sends and receives exactly h data), with reals as data. Thismethod of benchmarking produces an upper bound on the cost of actual h-relations.The cost of a computation superstep with an amount of work w, including the cost of synchronisation, isTcomp(w) = w + l: (3)The amount of work is de�ned as the maximum number of ops performed by any processor in the superstep. Thevalue of l is taken to be the same as that of a communication superstep, despite the fact that the �xed cost isless; global synchronisation is still necessary, but the other associated costs disappear. The advantage of having oneparameter l is simplicity: the total synchronisation cost of an algorithm can be determined by simply counting thesupersteps.The total cost of a BSP algorithm is an expression of the form a + bg + cl [2]. A BSP computer can becharacterised by four parameters [3]: the number of processors p, the single-processor speed s, the computa-tion/communication throughput ratio g, and the synchronisation cost l. By analysing the complexity of an algorithmand, independently, benchmarking a computer for its BSP performance, we can predict the execution time of animplementation of the algorithm on that computer. Of course, the accuracy of the prediction depends on how theBSP cost function reects reality, and this may di�er from machine to machine.E�cient implementations of the BSP model are currently being developed. One such implementation is theOxford BSP library [5]. This public-domain library is available for many architectures, including clusters of UNIXworkstations, shared memory multiprocessors such as the Silicon Graphics Challenge, and massively parallel com-puters with distributed memory such as the Cray T3D. To give an impression of the wide range of BSP performance:we recently benchmarked a cluster of 16 SUN 4/20 workstations using the Oxford BSP library as: p = 16, s=0.41Mop/s, g = 524, l = 35011. Miller [4] benchmarked a Cray T3D as: p = 256, s= 10 Mop/s, g = 4, l = 360.3. AlgorithmTo derive a parallel algorithm, it is necessary to start with a suitable sequential algorithm. We start with aso-called submatrix Cholesky algorithm, since it exhibits more potential parallelism than other algorithms. Eachstep of a sequential sparse Cholesky algorithm contains little work, since the number of nonzeros involved is small.Several steps must be combined to achieve bulk in a computation and hence to obtain more potential parallelism.One method of doing this is layered defoliation of the elimination tree [1]. (The nodes of this tree correspond tothe columns of L; a child in the tree must be computed before its parent.) The leaves of the tree are numbered�rst; they form the �rst layer. The leaves are then deleted from the tree, and the new set of leaves forms the secondlayer, and so on. The computations in one layer can be taken as one basic step of the sequential algorithm. Sincethese computations are independent and involve a relatively large amount of work, they can be used to design BSPsupersteps.Figure 1 presents a layered sequential algorithm. For each layer l, ml columns of L are computed and thenused to update the current matrix A. The current total number of columns computed is K. The algorithm expresses



Algorithm SEQ-CHOL. Input A, output A = L.K := 0;for l := 0 to nlayer � 1 do(0) m := ml;for all k : K � k < K +m do akk := pakk;(2) for all k : K � k < K +m dofor all i : K +m � i < n ^ aik 6= 0 do aik := aik=akk;(0') for all k : K � k < K +m dofor all j : K +m � j < n ^ ajk 6= 0 dofor all i : j � i < n ^ aik 6= 0 do aij := aij � aikajk;K := K +m;Figure 1: Layered sequential algorithm for sparse Cholesky factorisationsparsity by statements of the form `aik 6= 0'. In an implementation, such testing is avoided by using a suitablesparse datastructure, e.g. a collection of sparse column vectors. The statement labels correspond to supersteps ofthe parallel algorithm.The parallel algorithm, see Fig. 2, is derived as follows. (It is a based on a previous algorithm for a square meshof processors [1].) First, we choose a data distribution. Assume a two-dimensional numbering P (s; t) of processors,with 0 � s < M and 0 � t < N , where p = MN is the number of processors. A Cartesian distributionaij 7�! P (�0(i); �1(j)) (4)limits the amount of communication in most linear algebra computations, since it partitions rows and columnsamong processor sets of limited size: the sets contain at most max(M;N ) processors. This distribution schemeis su�ciently general to allow optimisation for load balancing and communication reduction. The computationsupersteps are obtained by distributing the work according to the data distribution. This gives the computationsupersteps (0), (2), and (0'). (Superstep (0') can be combined with superstep (0) of the next layer, to save onesuperstep.)The communication supersteps are obtained by following a need-to-know principle. For example, in superstep(1), the pivot element akk is fetched by the processors that need it for divisions in superstep (2). This is expressed byusing the boolean variable col-emptys(k) which is true if the set of local column nonzeros faik j k < i < n ^ �0(i) =s ^ aik 6= 0g is empty. In a sparse computation, the information about communication requirements may be availableonly at the sender, or only at the receiver. For this reason, the initiator may sometimes be the sender and sometimesthe receiver. For example, the receiver initiates in superstep (1). This is an improvement over previous work [1]where the pivot element is sent to all processors that might need it, i.e. to the processors P (�; t).In superstep (5), parts of rows k and columns k are fetched, but only if both row and column are needed; thisimproves on the indiscriminate broadcast of the previous algorithm [1]. Here, only the boolean information on theemptiness of rows and columns must be broadcast. This is done in superstep (4). The row and column distributionmay be di�erent, in particular since this prevents diagonal load imbalance [2,6]. (If �0 = �1, processors P (s; s)are overloaded, e.g. in superstep (0).) In superstep (3), the columns k are transposed, to gather sets of nonzerosaccording to the distribution function �1, instead of �0.The BSP model guides us in developing algorithms, but it also provides us with a tool for complexity analysis.For example, we can roughly estimate the total cost of the Cholesky algorithm byTp � 2nc2p + 2ncpp g + 6nm l; (5)where n is the matrix size, c the average number of nonzeros per column of L, m the average number of columns perlayer. Here, we haven taken M = N = pp. The cost estimate is based on the contributions of the most expensivesupersteps, (5) and (0'), and on a count of the total number of supersteps.4. ConclusionA generic BSP algorithm has been presented which performs communication on the basis of the need-to-know: theonly values sent are nonzeros, and they are sent only to processors that need them. Suitable preprocessing canproduce a distribution that requires less communication during the subsequent factorisation. The algorithm can



Algorithm BSP-CHOL for processor P (s; t)K := 0;for l := 0 to nlayer � 1 do(0) m := ml ;for all k : K � k < K +m ^ �0(k) = s ^ �1(k) = t do akk := pakk;(1) for all k : K � k < K +m ^ �1(k) = t doif not col-emptys(k) then fetch akk from P (�0(k); t);(2) for all k : K � k < K +m ^ �1(k) = t dofor all i : K +m � i < n ^ �0(i) = s ^ aik 6= 0 do aik := aik=akk;(3) for all k : K � k < K +m ^ �1(k) = t dofor all i : K +m � i < n ^ �0(i) = s ^ aik 6= 0 dostore aik at P (�0(k); �1(i));(4) for all k : K � k < K +m ^ �1(k) = t do store col-emptys(k) at P (s; �);for all k : K � k < K +m ^ �0(k) = s do store row-emptyt(k) at P (�; t);(5) for all k : K � k < K +m doif not col-emptys(k) ^ not row-emptyt(k) thenfetch faik j k < i < n ^ �0(i) = s ^ aik 6= 0g from P (s; �1(k));fetch faik j k < i < n ^ �1(i) = t ^ aik 6= 0g from P (�0(k); t);(0') for all k : K � k < K +m dofor all j : K +m � j < n ^ �1(j) = t ^ ajk 6= 0 dofor all i : j � i < n ^ �0(i) = s ^ aik 6= 0 do aij := aij � aikajk;K := K +m;Figure 2: BSP algorithm for sparse Cholesky factorisationfully bene�t from this. As a default distribution, we can use the function akk 7�! P (k mod p) and then renumberthe processors to obtain two-dimensional processor identi�ers. The distribution of the matrix then determines thedistribution of the complete matrix. This method is expected to work well because it e�ectively randomises thecomputations. Furthermore, the distribution function can be computed by a simple formula, which implies thatall processors can compute the location of any data. For irregular distributions, such information must be storedin a table which may be distributed or replicated. Work on an implementation of the algorithm is in progress.Experimental results will be published elsewhere.AcknowledgementsI would like to thank Frank van der Stappen for numerous discussions on the BSP model. I thank Tom Cheatham, Amr Fahmy,Satish Rao, Dan Stefanescu, Pilar de la Torre, and Leslie Valiant for their hospitality and for many interesting discussionsduring my recent visit to the US. Furthermore, I acknowledge partial support of this work by the NCF/Cray Research UniversityGrants Program.5. References1 Bisseling, R.H., Doup, T.M., Loyens, L.D.J.C.: A parallel Interior Point algorithm for linear programming on anetwork of transputers; Ann. OR 43 (1993), 51{86.2 Bisseling, R.H., McColl, W.F.: Scienti�c computing on bulk synchronous parallel architectures; preprint 836, Dept.Mathematics, Utrecht University, Dec. 1993.3 McColl, W.F.: General purpose parallel computing; in: Gibbons, A., Spirakis, P. (eds.): Lectures on Parallel Compu-tation; Cambridge University Press, Cambridge 1993, 337{391.4 Miller, R.: A library for bulk synchronous parallel programming; in: General Purpose Parallel Computing; BritishComputer Society Parallel Processing Specialist Group 1993, 100{108.5 Miller, R., Reed, J.: The Oxford BSP library users' guide, version 1.0; Oxford Parallel, Oxford 1993.6 Rothberg, E., Schreiber, R.: Improved load distribution in parallel sparse Cholesky factorisation; in: Supercom-puting `94; IEEE Computer Society 1994.7 Valiant, L.: A bridging model for parallel computation; Comm. ACM 33 (1990), 103{111.Addresses: Rob H. Bisseling, Mathematics Department, Utrecht University, P.O. Box 80010,3508 TA Utrecht, The Netherlands. E-mail: Rob.Bisseling@math.ruu.nl.WWW: http://www.math.ruu.nl/people/bisseling


