Chapter 1
An Improved Algorithm for Parallel Sparse LU
Decomposition on a Distributed-Memory Multiprocessor

Jacko Koster* Rob H. Bisseling'

Abstract

In this paper we present a new parallel algorithm for the LU decomposition of a
general sparse matrix. Among its features are matrix redistribution at regular intervals
and a dynamic pivot search strategy that adapts itself to the number of pivots produced.
Experimental results obtained on a network of 400 transputers show that these features
considerably improve the performance.

1 Introduction

This paper presents an improved version of the parallel algorithm for the LU decomposition
of a general sparse matrix developed by van der Stappen, Bisseling, and van de Vorst
[9]. The LU decomposition of a matrix A = (A4;;, 0 < 4,5 < n) produces a unit lower
triangular matrix L, an upper triangular matrix U, a row permutation vector m and a
column permutation vector p, such that

(1) Aoy = (LU)5, for 0 < 4,5 < n.

We assume that A is sparse and nonsingular and that it has an arbitrary pattern of nonzeros,
with all elements having the same (small) probability of being nonzero. A review of parallel
algorithms for sparse LU decomposition can be found in [9].

We use the following notations. A submatriz of a matrix A is the intersection of several
rows and columns of A. The submatrix A[l,J], I,J C {0,...,n — 1}, has domain I x .J.
If I = {i}, we use A[¢,J] as shorthand for A[{¢},J]. The concurrent assignment operator
¢,d := a,b denotes the simultaneous assignment of a to ¢ and b to d. For any (sub)matrix
A, nz(A) denotes the number of nonzeros in A. For any set I, |I] is the cardinality of I.

Our algorithm is aimed at a distributed-memory message-passing MIMD multiprocessor
with an M x N mesh communication network. We identify each processor in the mesh with
a pair (s,1), 0 < s < M, 0 <t < N. A Cartesian distribution [1] of A is a pair of
mappings (¢,) that assigns matrix element A;; to processor (¢;,1;), with 0 < ¢; < M
and 0 < 9; < N. For processor (s,t), the set I(s) denotes the local set of row indices
I(s)={i:i€IA¢; =s}. Similarly, J(t) ={j:j € J A; =t}

*CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France (Jacko.Koster@cerfacs.fr). Part of
this work was done while this author was employed at Eindhoven University of Technology.

'Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, the Netherlands
(bisseling@math.ruu.nl). Part of this work was done while this author was employed at Koninklijke/Shell-
Laboratorium, Amsterdam.

2 KoOSTER AND BISSELING

2 The PARPACK-LU algorithm

In this section we briefly describe the previous algorithm [9], which we refer to as
PARPACK-LU. This algorithm assigns the nonzero matrix elements to the processors
according to the grid distribution defined by

(2) pi=tmod M A ¢, =imod N, for 0 <i < n.

Each step of the algorithm consists of a pivot search, row and column permutations,
and a multiple-rank update of the reduced matriz A[I,I]. At the beginning of a step,
I =Ak,...,n— 1}, where k is the number of pivots processed so far.

The pivot search determines a set S of m pivots from the reduced matrix with the
following three properties. First, each element (¢, j) from S satisfies the threshold criterion

(3) |Aij| > u - max | A,

where u is a user-defined parameter, 0 < u < 1[4, Ch. 9]. This ensures numerical stability.
Second, the elements of 5 have low Markowitz cost, to preserve sparsity. The Markowitz
cost of a nonzero element A;; in a submatrix A[I, J] equals (nz(A[l, j])—1)(nz(A[Z, J])—1).
Third, the elements of S are mutually compatible [2, 3], i.e.,

(4) Ai,j’ =0 A Ai’,j = 07 for (ivj)v(ilvj/) €5 A (27]) 7£ (ilvj/)‘

The compatibility of the pivots enables the algorithm to process them in one step and to
perform a single rank-m update of the reduced matrix.

After the pivot search, the rows and columns of the matrix are permuted such that the
m x m submatrix A[lg,Is], Is = {k,...,k4+ m — 1}, turns into a diagonal submatrix with
the m pivots positioned on the diagonal. This is followed by the rank-m update, which
contains the bulk of the floating point operations. In this part, the set Ig is subtracted
from I, each multiplier column j in A[I, Ig] is divided by the corresponding pivot value A;;
and the matrix product A[[l, Is]- A[ls, I] is subtracted from A[I,I].

3 The new algorithm

An outline of the new algorithm is given below; a detailed description and a program text
can be found in [7].

AvLcoriTHM 1 (Parallel LU decomposition).
I(s),J(t):={i:0<i<nA@g,=s},{j:0<j<nAY =t}
L,UKk:=0,0,0;
while £ < n do begin
find pivot set S = {(4,,j,) 1k <r <k+m};
Is,Js i ={i, k<r<k4+m}{j:k<r<k+m}
I(s), J(t) :==I(s)\ Is, J(t) \ Js;
register pivots in m and p;
perform multiple-rank update;
store multipliers in I and pivots and update rows in U;
k:=k+m;
row-redistribute(A, L);
col-redistribute(A, U)

end;

row-permute(L, 7);

col-permute(U, p).

IMPROVED PARALLEL SPARSE LU DECOMPOSITION 3

In the search for pivot candidates, we vary the number ncol of matrix columns searched
per processor column, on the basis of the estimated density of the reduced matrix. In the
first steps of the algorithm, the reduced matrix is still sparse and the candidate pivots will
most likely be compatible and hence most of them will become pivots. As the computation
proceeds, fill-in causes the reduced matrix to become gradually denser. Consequently,
the probability of nonzero elements being compatible decreases and expensive searches for
large sets of candidate pivots will yield only relatively few compatible pivots. Therefore,
for higher densities of the reduced matrix, we decrease ncol. When the reduced matrix
becomes so dense that the pivot search repeatedly produces only one pivot, the algorithm
switches to a simple search for only one pivot.

The PARPACK-LU algorithm distributes the work load by maintaining the grid
distribution and performing explicit row and column permutations [1, 6] at every step.
Therefore, it often requires the exchange of rows between processor rows, and similarly
for columns, because many of the explicit permutations cannot be performed locally. This
induces a certain amount of added communication time. When implicit permutations [8]
are used, the rows and columns of the matrix remain in place. The matrix elements are
addressed indirectly and no communication for row or column movements is required. This,
however, may lead to a poor load balance, depending on the sequence of pivot choices.

We distribute the load by redistributing the reduced matrix at regular intervals such
that |J(¢)| < [(n—k)/N| for all t and |I(s)| < [(n — k)/M], for all s. It suffices to move
columns from processor columns (%,) for which |J(¢)| > [(n —k)/N] to processor columns
for which |J(¢)] < [(n — k)/N], and similarly for the rows of the matrix. The number of
columns to be sent left and right is determined using the criterion: a column to be disposed
of is sent in the direction that has the least average surplus per processor column. The
first processor column that has space available accepts a passing column. This heuristic
reduces the distance over which the rows and columns are communicated. The column
redistribution by processor column (x,t) is done as follows:

ALGORITHM 2 (Column redistribution).

if redistribution needed then begin
ceiling := [(n — k)/NT;
surplus := |J(t)| — ceiling;
if surplus > 0 then determine n;, n, > 0 such that n; + n, = surplus

else n;,n, :=0,0;

redistribute (n,, right);
redistribute (ng, left)

end;

The theoretical analysis of [9] shows that the unordered two-dimensional doubly linked
list is the best local data structure for parallel sparse LU decomposition, among several
plausible candidates. We use this data structure for the implementation of the new
algorithm; the previous algorithm was implemented using the ordered two-dimensional
singly linked list. The present data structure facilitates insertion and deletion of nonzeros.

4 Experimental results

The parallel computer used for our experiments (and those of [9]) is a Parsytec SuperCluster
FT-400 consisting of a square mesh of 400 INMOS T800-20 transputers. The new algorithm
is implemented in ANSI C with extensions for communication and parallelism. This

4 KoOSTER AND BISSELING

TABLE 1

Time (in s) of LU decomposition on p processors using a static pivot search strategy.

Matrix p=1 p=4 p=9 p=16 p=25 p=49 p=100 p=400
IMPCOL B 0.25 0.19 0.16 0.15 0.13 0.13 0.12 0.13
WESTO0067 0.32 025 0.24 0.19 0.19 0.18 0.16 0.18
FS 541 1 8.8 397 2.65 2.24 1.89 1.53 1.28 1.14
STEAM?2 489 16.1 9.75 6.22 5.27 3.83 3.07 2.51
SHL 400 2.51 1.68 1.28 1.09 094 0.79 0.71 0.61
BP 1600 478 3.38 2.69 2.45 2.20 1.96 1.79 1.63
JPWH 991 125. 43.6 20.6 12.6 11.2 7.06 5.64 4.28
SHERMAN1 17.1 11.5 7.18 5.87 4.35 2.97 2.79 2.42
SHERMAN2 1294. 108. 64.7 46.1 30.1 13.6
LNS 3937 1430. 128. 82.9 55.7 34.6 20.5
GEMAT11 419 218 15.6 12.6 10.9 8.78 7.40 5.71

implementation allows us to use the parallel program also for experiments on an ordinary
sequential computer. We did not optimise the parallel program for these sequential runs.
The sequential experiments were performed on a SUN SPARC10 model 30 workstation.
The test set of sparse matrices that we use for our experiments is taken from [9]. It consists
of eleven unsymmetric matrices from the Harwell-Boeing sparse matrix collection [5].

The user of the program has to specify six input parameters. The parameter ncolg is the
initial number of matrix columns that is searched for pivot candidates by each processor
column. The parameter u is used for threshold criterion (3). Pivot candidates with a
Markowitz cost higher than aMy,;, + § are discarded. Here o and f are input parameters,
and Mpyin is the lowest Markowitz cost of a pivot candidate. After nlast successive pivot
searches produce only one pivot, a switch is made to a single-pivot strategy. Fach time a
multiple of f pivots has been processed, the matrix is redistributed.

First, we repeated the experiments from [9, Table 4] to compare the performance of the
new algorithm to that of the PARPACK-LU algorithm. The standard static pivot search
procedure in [9] is most closely approximated by fixing ncol = 1, and using v = 0.1, a = 4,
3 =0, and nlast = co. The matrix is redistributed at every step, i.e., f = 1, to mimic the
explicit row and column permutations of the PARPACK-LU algorithm. This experiment
allows us to examine the effect of choosing a different data structure, without regard to
other improvements. Table 1 shows the time needed for parallel LU decomposition on
a square mesh of p transputers. A comparison with the results for the PARPACK-LU
algorithm [9] shows that the new algorithm is superior. It outperforms the previous one
for small p, with a gain of up to a factor of 2.4 (for SHERMANI and p = 1). For large
p, the two algorithms perform equally well, because communication time, which dominates
for such p, is similar.

To investigate the influence of the pivot strategy, we replaced the standard pivot strategy
of [9] by a dynamic one: ncoly = 10 and at the end of each step ncol is adjusted according
to

ifm> w then ncol := ncol + 1 else ncol := ncol — 1

This strategy strives for generating twice as many pivot candidates as pivots. This way, a
relatively large set of pivot candidates, each with a reasonable probability of becoming a
pivot, is used in constructing the pivot set, while the time required for the compatibility
checks is kept within bounds. (The other parameters in this experiment are v = 0.1, @ = 4,

IMPROVED PARALLEL SPARSE LU DECOMPOSITION 5

TABLE 2
Time (in s) of LU decomposition on a sequential computer and on p processors of a parallel

computer, using a dynamic pivot search strategy.

Matrix SPARCI0O p=1 p=16 p=100 p= 400
IMPCOL B 0.19 0.1 0.10 0.11
WEST0067 027 0.18 0.15 0.14
FS 541 1 1.25 799 1.86 1.08 0.96
STEAM?2 7.05 45.6 6.88 2.55 1.95
SHL 400 0.12 077 046 0.39 0.36
BP 1600 0.48 301 127 1.06 0.96
JPWH 991 13.9 822 13.0 4.34 2.57
SHERMAN1 2.98 18.8 453 2.00 1.54
SHERMAN2 206. 1145, 127. 259 10.6
LNS 3937 277. 1405. 120. 332 16.4
GEMATI1 4.13 26.6 6.68 4.54 3.83

8 =10, nlast = 25, and f = 100.) Table 2 shows that the dynamic pivot search strategy
is superior. We attribute this mainly to the higher rank m of the matrix updates, which
leads to less frequent synchronisation of the processors. Even for p = 1 there is a gain: for
example, the computing time is reduced by a factor of three for the matrix SHL 400. This
confirms the theoretical analysis from [9] that multiple-rank updates are beneficial also in
sequential sparse LU decomposition algorithms.

References

[1] R. H. Bisseling and J. G. G. van de Vorst, Parallel LU decomposition on a transpuler network,
Lecture Notes in Computer Science 384, Springer-Verlag, New York, 1989, pp. 61-77.

[2] D. A. Calahan, Parallel solution of sparse simultaneous linear equations, Proc. 11th Annual
Allerton Conf. on Circuits and System Theory, 1973, pp. 729-735.

[3] T. A. Davis and P.-C. Yew, A nondelerministic parallel algorithm for general unsymmelric
sparse LU factorization, STAM J. Matrix Anal. Appl., 11 (1990), pp. 383-402.

[4] T. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, UK, 1986.

[5] 1. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matriz test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1-14.

[6] G. A. Geist and C. H. Romine, LU factorization algorithms on distributed-memory multipro-
cessor architectures, STAM J. Sci. Stat. Comput., 9 (1988), pp. 639-649.

[7] J. Koster, Parallel solution of sparse systems of linear equations on a mesh network of
transputers, Final Report, Institute for Continuing Education, Eindhoven University of
Technology, Eindhoven, The Netherlands, July 1993.

[8] A. Skjellum, Concurrent dynamic simulation: multicompuler algorithms research applied
to ordinary differential-algebraic process systems in chemical engineering, Ph. D. Thesis,
California Institute of Technology, Pasadena, CA, May 1990.

[9] A. F. van der Stappen, R. H. Bisseling, and J. G. G. van de Vorst, Parallel sparse LU
decomposition on a mesh network of transputers, STAM J. Matrix Anal. Appl., 14 (1993),
pp. 853-879.

