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Introduction

The Study Group Mathematics with Industry is an occasion for companies, non-profit
organisations and government institutes to pose problems to University Mathemati-
cians, who then try their best to solve these questions in teams during an intensive
study week. These are the scientific proceedings of the 106th European Study Group
Mathematics with Industry that took place Monday 26 January–Friday 30 January
2015 in Utrecht, The Netherlands. A total of 61 Mathematicians made a big ef-
fort to crack six diverse problems from industry during this week. On Monday, the
companies presented their questions and the participants divided themselves into six
groups, each devoted to one of the questions. On Friday each group presented the
solution they had come up with during the week. Most participants were Mathemati-
cians working for one of the Dutch Universities, but some participants also came from
(much) further. Mathematicians from Belgium, Bosnia-Herzegovina, Brazil, Bulgaria,
Georgia, Germany, Macedonia and the United Kingdom travelled to the Netherlands
specifically for the purpose of taking part in the study group.

In the present volume, you will find the scientific reports of each of the six teams
that give the details of the solutions that the teams came up with during the week.
These reports were written by the participants themselves after the week had finished.
There is also an accompanying volume with popular proceedings. These were written
by science journalist Anouck Vrouwe, based on the presentations, scientific reports
and interviews with the participants and company representatives. The popular pro-
ceedings were written in Dutch and are aimed at a general audience, while the current
volume is aimed at experts and expose the full details of the approaches chosen by
the study group participants.

The six questions came from a diverse range of companies and needed very different
mathematical approaches. The Royal Netherlands Meteorological Institute (KNMI)
asked what is the best way to combine a number of weather predictions into one “super
model” (SUMO). The company Mobidot asked for the help of the Mathematicians in
better analyzing the travel behaviour of people using an app that runs on their mobile
phones. Philips Healthcare wanted to lower the costs of MRI scans by constructing
a good image using fewer measurements than are presently used. The Netherlands
Cancer Institute (NKI) asked the participants for radiation treatment programs that
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run over multiple weeks and that adapt to changes in the patient, such as the changing
position of the tumor due to weight loss or gain of the patient. The British NM group
wanted methods to place power poles and power lines in such a way that all demands
(such as minimal cost and minimal inconvenience for the people that live in the area)
are met as much as possible. The company SKF asked for the most efficient way to
test the reliability of the ball bearings they produce. In each of the six problems from
industry, the participants managed to arrive at least at a partial solution, and in some
cases to a complete solution that can immediately be used in practice.

This year, the study group could count on considerable attention from the media.
Amongst others, the national radio show EenVandaag devoted items to the study
group on three different days with short interviews with participants and company
representatives. The local TV station RTV Utrecht also covered the study group, and
the magazine Technisch Weekblad devoted an article to the study group.

To conclude, we would like to thank everyone that helped make the study group into
the big success that it was. In the first place of course we thank our main sponsors the
Netherlands Organisation for Scientific Research (NWO) and the Technology Founda-
tion (STW) for their generous contribution. We thank the Royal Dutch Mathematical
Society (KWG) for their financial contribution. We also thank the participating com-
panies for taking part in the week and for offering challenging Mathematical problems
from the cutting-edge of their operations. We thank Faidra Barba for graphic design.
We thank Jean Arthur, Ria Bekkering and Cécile Lemette for secretarial support and
Monica van de Garde for bringing our event to the attention of the press. Finally, we
of course also wish to thank the participants for their effort and enthusiasm in finding
solutions to the problems proposed by the companies.

Utrecht, November 2015

Rob Bisseling
Martin Bootsma
Jason Frank
Ross Kang
Tobias Müller
Alessandro Sbrizzi
Cristian Spitoni
Paul Zegeling (the organizers)
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Abstract

Weather forecasting relies on mathematical models that exhibit chaotic
behavior. This renders the solution of these models very sensitive to er-
rors in the model, to choices of the initial conditions and to truncation
errors in the numerical solution procedure. Over the course of the past
decade, various meteorological institutes in Europe have developed differ-
ent atmosphere models. Each of these models has its strengths and weak-
nesses. The principle behind the so-called Super Modeling approach is to
merge these existing models into a single larger model to combine com-
mon strengths while overcoming individual weaknesses. This approach
was initially proposed and developed by the KNMI in the Netherlands
to improve the reliability of its weather forecasts. The task formulated
for this Study Group problem was to reevaluate the Super Modeling ap-
proach and to formulate recommendations for its future development.

1 Introduction

Meteorological institutes are continually seeking to improving their weather
forecasts. Research is directed towards minimizing the discrepancy between
mathematical models predicting atmospherical conditions and actual measure-
ments. These mathematical models typically require the solution of systems of
non-linear ordinary differential equations that allow for solutions with a chaotic
behavior. Thus any solution procedure is prone to errors in the modeling, in
the initial conditions and in the numerical time integration procedure. This
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has lead to the development of different models by various European institutes
with their own strengths and weaknesses. None of these models is currently
accredited of giving the best overall simulation results.

To overcome the absence of a universally best weather simulation environ-
ment, the Dutch meteorological institute KNMI in collaboration with partner
institutes pioneered an approach in which different models are combined into
a larger model. This combination aims at exploiting the strength of differ-
ent approaches while overcoming individual weaknesses. Weather models are
combined by synchronizing their outputs, i.e., by penalizing the deviation of
a single model from a common prediction of a time evolution. The guiding
principle is that the common realization agrees better with reality than each
of the individual ones. The underlying idea of synchronization [1] is known to
play an important role in e.g. social sciences (e.g. in the common start and
ending of applause for a performance) and in biology (e.g. in the migration
of flocks). The KNMI and partners coined their approach the Super Modeling
(SUMO) approach [2].

Given its recent development, the SUMO approach generates a large number
of interesting research questions. Examples include:

• weather forecasting models describe the time evolution of an n-dimensional
state vector. It is not a-priori clear how many and which components of
this state vector should be coupled in order to obtain synchronization.
Neither is clear whether this set should change in time. A mechanism to
enforce synchronization using a small (and possibly time-dependent) set
of components would be beneficial to have;

• in their studies, the KNMI and partners enforced synchronization by con-
straining the norm of the difference between state vectors corresponding
to the individual models. This mechanism is referred to as linear nudg-
ing. It is not a-priori clear whether this mechanism is optimal and what
alternative synchronization mechanism should be considered;

• it not immediately clear what value the coupling coefficient in a linear
nudging technique should have and what strategies could be developed
to obtain these values by matching with previously recorded data as in
see [3];

• it is intuitively clear that a very weak coupling of M individual models
results in a super model exhibiting the M individual dynamic behaviors.
A very strong coupling on the other hand results in a super model with
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a single dynamic that is somehow the average of the individual dynam-
ics leading to incorrect results. The idea is that intermediate coupling
strengths are most appropriate. However, KNMI and partners have ob-
served that for certain choices of intermediate coupling strength a system
with new dynamics arise. So-called ghost-attractors arise with predicted
outcome: always nice weather in Europe. The question was to find an
explanation for this.

The Study Group was asked to consider the above issues. The Lorenz-63 model
will be used as an illustrative example and guide in the numerical studies.

This report is structured as follows. This Introduction will be followed by
three main sections. In Section 2 we consider a technique based on coupling
restricted to unstable directions in the tangent space. In Section 3 we consider
the coupling of three copies of the Lorenz model. In Section 4 we study the
appearance of ghost attractors. In Section 5 we study alternative coupling
approaches. Conclusions finally are drawn in Section 6.

2 Dynamical Properties of Imperfect Models and the
Supermodel

The true state of a physical system is assumed to be given by a set of obser-
vations {ti, P (ti)}, where P (t) denotes the state vector of the truth system
at time t. Available are a set of imperfect models for which the values of pa-
rameters can be obtained by fitting the model to the observations. The study
focuses on systems with chaotic dynamics, which are described as follows by
the system of differential equations

dx

dt
= f(x) (1)

in a n-dimensional state space. Let x(t) = p(t) be a chaotic solution, then
other trajectories nearby this chaotic orbit are analyzed by making use of the
tangent linear system. By substituting

x(t) = p(t) + v(t)

into (1) and preserving only the linear terms one obtains the tangent linear
system

dv

dt
= F [p(t)] v(t) with F [p(t)] = {∂fi(p(t))/∂xj}n×n (2)
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in which v(t) denotes the perturbation from p(t). The matrix F has time-
dependent eigenvalues. Their averages over a full orbit are called the Lyapunov
exponents. For dissipative systems the sum of these exponents is negative. The
orbit p(t) is chaotic if at least one of the exponents is positive. It means that
in certain parts of the state space at least one eigenvalue must be positive and
that an orbit must pass such a region from time to time in order to have a
chaotic orbit.

The Lorenz-63 model is given by

dx1
dt

= σ(x2 − x1), (3)

dx2
dt

= x1(ρ− x3)− x2, (4)

dx3
dt

= x1x2 − βx3. (5)

From the Lorenz-63 system it is known that in the 3D state space near the
origin such a region exists. There the velocity of the trajectories has a large
component in the direction of the x3-axis, so a bundle of trajectories moves in
a direction of x3 and exhibits after passage of the origin a strong tendency to
diverge. This means that, if one wants to perturb a chaotic orbit p(t), one has
to do that in a direction perpendicular to the x3-axis. In order to synchronize
two imperfect (Lorenz-63) models, which both pass in a similar manner the
region near the origin, one has to apply a coupling of the form

dx1
dt

= f1(x) + c1(y1 − x1)
dy1
dt

= g1(y) + c1(x1 − y1) (6)

dx2
dt

= f2(x) + c2(y2 − x2)
dy2
dt

= g2(y) + c2(x2 − y2) (7)

dx3
dt

= f3(x) + c3(y3 − x3)
dy3
dt

= g3(y) + c3(x3 − y3) (8)

where f(x) and g(y) may differ in just the values of the model parameters.
Thus, for the Lorenz-63 system any vector c = (c1, c2, 0) may give rise to syn-
chronisation for the two coupled imperfect models. Also the size of the coupling
vector c may play a role. The best coupling vector is found by composing the
super model

S(t; c) = [x(t; c) + y(t; c)]/2 (9)

and find the best fit of this model to the available observations {ti, P (ti)}.
For higher dimensional systems such computations may need too much time.
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Then one may concentrate on the eigenvector that corresponds with the largest
(positive) eigenvalue. Together with the eigenvector, that corresponds with
the eigenvalue equal to zero, it spans the most unstable manifold of the chaotic
orbit, see Figure 1. In the direction of the flow given by the vector dp/dt
a perturbation v(t) is neither damped nor does it tend to explode, so in that
direction the system is neutrally stable and yields therefore an eigenvalue equal
to zero. Thus, one may take the eigenvector that corresponds with the largest
eigenvalue as the coupling vector c with the appropriate length or choose its
projection in the space perpendicular to dp/dt.





t = t0 

p(t0) 

Figure 1: Dynamics of the trajectories near the chaotic orbit, being a stable
strange attractor. There the 3D state space can be decomposed in two man-
ifolds together with the vector p(t). Near a point p(t) on the attractor these
manifolds are planes which are spanned by the eigenvector p(t) and each of
the two other eigenvectors. Depicted is the case that the two manifolds are
unstable. For chaos it suffices that only one of the manifolds is unstable.

3 First numerical exploration of a coupled Lorenz-63
system

In this section, we study the following system of two identical Lorenz models
with different initial data and linear coupling:
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ẋ1 = σ(y1 − x1) + Cx1 (x2 − x1)
ẏ1 = x1(ρ− z1)− y1
ż1 = x1y1 − βz1
ẋ2 = σ(y2 − x2) + Cx2 (x1 − x2)
ẏ2 = x2(ρ− z2)− y2
ż2 = x2y2 − βz2

(10)

where we choose σ = 10, ρ = 28 and β = 8
3 . This is a typical choice of

parameters that is used often for the Lorenz system; chaos is found and the
famous butterfly attractor arises.

It has been shown recently, see [2], that limited information exchange between
two identical Lorenz systems can lead to synchronization of the model states
even when the systems are initialized from very different initial conditions and
differ slightly in parameter values. The ability to synchronize with the truth
measures the quality of the model.

Through trial and error, it has been found that often just a part of the state
space vectors need to be exchanged between the models in order for the models
to synchronize on a common solution.

A first question is whether the coupling should be symmetric in the phase space
variables. For us symmetric coupling for a system means that the coupling
constant for one variable in the first model must be the same as the coupling
constant for the same variable in the second model. In terms of the system
(10) it means that Cx1 = Cx2 . For three systems with different parameters it
was demonstrated in [2] that couplings need not be symmetric.

Indeed, we could experimentally show that the solutions of two identical Lorenz
models with different initial condition need to be coupled only in the x-variables,
and the coupling does not have to be of the same strength in both equations.
For the above coupled model (10), a total coupling strength of at least 9 was
necessary, and synchronisation happened both when this coupling strength was
imposed in only in one of the models, so either Cx1 > 9 and Cx2 = 0, or Cx1 = 0
and Cx2 > 9, or when the coupling strength was achieved cumulatively, i.e.
with Cx1 + Cx2 > 9

An important question is: given two identical Lorenz Models with different
initial conditions, which are the coupling strengths that lead to synchronization
without essentially changing the dynamics?
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Using a straight-forward implementation of two identical Lorenz models in
Mathematica, we verified the following values: Synchronization happens for a
cumulative coupling strength of above 9, with the critical values being Cx1 = 8
and Cx2 = 1, where a long time has to pass until the solutions synchronize: Only
after t = 60 do we observe a sufficiently small error in the x-coordinates, which
is then still several orders of magnitude bigger than in the symmetric case. For
example, for Cx1 = 10 = Cx2 , the error falls below 10−6 for t > 20.

Figure 2: Error for Cx1 = 10 = Cx2

Figure 3: Error for Cx1 = 20 and Cx2 = 10

In terms of an upper bound on the coupling constants, we observed an unex-
pected robustness of the dynamics: Even for quite high values like Cx1 = 20
and Cx2 = 10, synchronization seems to happen for times t > 30, but sudden
spikes in the error |x1(t) − x2(t)| of order 10−6 keep appearing in irregular
intervals.

These results are stable and not sensitive even to significant changes of the
initial conditions (i.e. of values of ±20 per phase space coordinate).

We observed experimentally that the achieved synchronization is lost even
when the parameters of the Lorenz models are changed slightly. For exam-
ple, choosing β = 3 instead of β = 8

3 in one model destroys the effect com-
pletely.
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4 Stability analysis of ghost attractors

4.1 Introduction

It has been observed [4] that coupling multiple models to form a super model
may lead to the super model getting “stuck" in a certain part of phase space
(such that it is always nice weather in Europe). In the context of a number of
coupled Lorenz models, this can lead to all models being fixed at two points
close to the unstable fixed points in the Lorenz butterfly [4]. In this case some
models will be in a point on one wing, some others will lie on the other wing.
The precise position of the points where they are fixed depends on the exact
formulation of the super model.

We analyse this behaviour by considering a simpler model in which we couple
identical models. We then analyse the fixed points and their stability. In case
a fixed point is stable we can conclude that there is a set of initial conditions
for which the supermodel converges to this fixed point solution.

4.2 The model and our simplifying ansatz

We consider N +M coupled Lorenz63 models all with the same choice of the
coefficients, with linear and uniform coupling and standard parameters, leading
to the following equations (with i = 1, 2, ..., N +M)

ẋi = 10(yi − xi) + C
N+M∑

j=1

(xj − xi)

ẏi = xi(28− zi)− yi + C
N+M∑

j=1

(yj − yi)

żi = xiyi −
8

3
zi + C

N+M∑

j=1

(yj − yi).

(11)

Since we know from [4] that these oscillators may get stuck into a situation
in which there are N oscillators in some fixed point and M other oscillators
also together in one (possibly different) point, our approach now consists of
finding all possible fixed points under the assumption that the oscillators are
stuck in at most two points, for given C, N and M . If we label one fixed point
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by (x
(1)
∗ , y

(1)
∗ , z

(1)
∗ ) and assume that M oscillators are stuck in this point, and

the other by (x
(2)
∗ , y

(2)
∗ , z

(2)
∗ ) where N oscillators are stuck. Then the equations

simplify to

ẋi = 10(yi − xi) + CM(x
(1)
∗ − xi) + CN(x

(2)
∗ − xi)

ẏi = xi(28− zi)− yi + CM(y
(1)
∗ − yi) + CN(y

(2)
∗ − yi)

żi = xiyi −
8

3
zi + CM(z

(1)
∗ − zi) + CN(z

(2)
∗ − zi).

(12)

An important remark is that these equations are only consistent in case the
oscillators lie actually exactly in these points. Hence, at these fixed points our
system of equations reduces to M copies of

0 = ẋ
(1)
∗ = 10(y

(1)
∗ − x(1)∗ ) + CN(x

(2)
∗ − x(1)∗ )

0 = ẏ
(1)
∗ = x

(1)
∗ (28− z(1)∗ )− y(1)∗ + CN(y

(2)
∗ − y(1)∗ )

0 = ż
(1)
∗ = x

(1)
∗ y

(1)
∗ −

8

3
z
(1)
∗ + CN(z

(2)
∗ − z(1)∗ )

(13)

and N copies of

0 = ẋ
(2)
∗ = 10(y

(2)
∗ − x(2)∗ ) + CM(x

(1)
∗ − x(2)∗ )

0 = ẏ
(2)
∗ = x

(2)
∗ (28− z(2)∗ )− y(2)∗ + CM(y

(1)
∗ − y(2)∗ )

0 = ż
(2)
∗ = x

(2)
∗ y

(2)
∗ −

8

3
z
(2)
∗ + CM(z

(1)
∗ − z(2)∗ ).

(14)

We can now consider the system consisting of (one copy of each of) (13) and
(14). The solutions of this combined system and the Jacobian at these fixed
points can be found using Mathematica. From the eigenvalues of this Jacobian
conclusions about the stability of the fixed points van be determined.

4.3 Stability analysis

We did the stability analysis for (13) and (14) for the parameter values C = 0.6,
N = 8 and M = 12 and also for C = 0.2, N = 1 and M = 19.

For the first parameter set, C = 0.6, N = 8 and M = 12, we find 9 fixed
points, of which 2 are stable. The fixed points can be categorized as follows: 3
unstable fixed points at the unstable fixed points of the original single system
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(i.e. at the origin and wings)1. There are also emergent fixed points that arise
through the interactions between the oscillators. These can be separated into
a pair of stable fixed points on the wings and two pairs of unstable fixed points
with one group of oscillators on a wing and another group close to the origin.
The stable fixed points on the wings also emerged in the simulations done in
[4]. In figure 4 we depict all fixed points, together with a sample trajectory of
one Lorenz63 model for reference.

Figure 4: The fixed points for the parameters C = 0.6, N = 8 and M =
12. The single system fixed points are in black, the unstable emergent fixed
points where N oscillators can be are green, the unstable emergent fixed points
where M oscillators can be are red, the stable emergent fixed points where
N oscillators can be are blue, the unstable emergent fixed points where M
oscillators can be are orange and a sample trajectory of one Lorenz63 model
is depicted in purple.

For the second parameter set, C = 0.2, N = 1 and M = 19, we find only 5
fixed points, none of which are stable. We retain the fixed points of the single
system (which should not be too surprising) and we also retain two emergent
unstable fixed points, where there are 19 oscillators close to the origin and

1This corresponds to all systems being synchronized at an identical fixed point, such that
the couplings terms are all zero.
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one oscillator in a wing. Since there are no stable fixed points here, it is not
surprising that configurations in which 19 oscillators balance out one have not
been observed in the simulations [4]. In figure 5 we again depict all fixed points
and a sample trajectory of one Lorenz63 model for reference.

Figure 5: The fixed points for the parameters C = 0.2, N = 1 and M = 19.
The single system fixed points are in black, the unstable emergent fixed points
where N oscillators can be are green, the unstable emergent fixed points where
M oscillators can be are red and a sample trajectory of one Lorenz63 model is
depicted in purple.

Our analysis can in principle be applied to any values of C, N and M in
order to find any possible ghost attractors. We have found that for more
balanced values of N and M there are more fixed points and they may be
stable. We observed that for very skewed distributions (all stable and some
unstable) fixed points disappear. This analysis could possibly be extended to
more complicated configurations of oscillators than a division into two groups.
An extension to more complicated models could also be of practical use. An
interesting open question that remains is how the unstable emergent fixed
points influence the dynamics of the coupled system.
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Figure 6: Simulation results for a Lorentz ’63 based supermodel. a. Integra-
tion lines of the synchronised supermodel and two families of critical points
that were obtained for various values of coupling strength C: stable (magenta)
and unstable (blue). b. Time dynamics of x-variables depicts the synchroni-
sation process leading to a steady state solution that is not featured by the
original Lorentz ’63 model.

5 A search for improved coupling mechanisms

Let a supermodel

ẋi,j(t) = Li(xi,j(t))−
∑

k 6=j
Cj,k(xi,j(t)− xi,k(t)), i = 1, . . . ,m, j = 1, . . . , n;

(15)
be composed of n instances of autonomous basic models,

ẋi(t) = Li(xi(t)), i = 1, . . . ,m. (16)

Here Cj,k > 0, are constants, that define the strength of connection for each
couple of models. It is known that in some cases the dynamics of the synchro-
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Figure 7: Time dynamics of x-variables of Lorenz ’63 based supermodel with
Gaussian kernel coupling, The synchronisation process leads to a chaotic but
synchronous solution

nised supermodel (15) may be different from the dynamics of the basic model
(16). For instance, numerical analysis show extra stable critical points appear
in Lorentz’63 based supermodel as in Figure 6. One possible way to overcome
the issue is to define the coupling mechanism to be active only locally, when
a pair of submodels are close enough in the state space. This can be done by
redefining (15) as

ẋi,j(t) = Li(xi,j(t))−
∑

k 6=j
Cj,kφj,k(|xi,j(t)− xi,k(t)|)(xi,j(t)− xi,k(t)),

i = 1, . . . ,m, j = 1, . . . , n;

(17)

where φ(x), x ≥ 0 is a smooth function with a maximum at x = 0 that is
finite supported or decays on infinity as o(x−1). A good candidate for φ(x) is
a Gaussian kernel, φ(x) = e−x

2/σ2
j,k . Numerical simulations for a supermodel

containing 10 identical Lorenz’63 models coupled with the Gaussian mecha-
nism (17) reveal that although synchronisation process takes more time, the
synchronised solution is not a steady state one, as can be seen in Figure 7.
Note, the price to pay for using this approach is an extra parameter σj,k that
together with Cj,k should be estimated by an optimisation/machine learning
process.

6 Conclusions

Meteorological institutes are keen to increase the reliability of their weather
forecasts. They are faced with the challenge that the underlying mathemat-
ical models exhibit chaotic behavour and are therefore hard to analyze and
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solve. To overcome this challenge, the KNMI and partners have developed the
super-modeling approach in which a set of models with different strengths and
weaknesses are coupled. We were asked to look into this approach and for-
mulate recommendations for its future development. We found that coupling
the state space variables in the hyper plane perpendicular to the orbit can be
sufficient to obtain synchronization of the different models. The new dynamics
of the super model was briefly looked into. Coupling mechanisms that differ
from linear nudging were studied and coupling by Gaussians was found to be
effective in particular circumstances. Overall, more research is required to ob-
tain a better understanding of the super modeling approach to obtain more
reliable weather forecasts.
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Inferring transportation modes from smartphone
sensors
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Christian Reinhardt (University of Leiden)

1 Introduction

Transportation in urban areas poses big challenges related to sustainability,
safety and health of residents. A key step to improving policymaking in these
respects is to collect and analyse data on how current resources are used, so
that inefficiencies may be identified and addressed. The abundance of mobile
devices makes it very attractive to harness the advanced data collection abilities
of smartphones to tackle this question.

1.1 Mobidot problem statement

Mobidot b.v. develops software that can be implemented in smartphone appli-
cations to provide automated capturing and analysis of mobility traces of in-
dividuals via smartphone sensors. Their customers are businesses and govern-
ment organisations interested in quantifying and improving the travel patterns
of their employees or constituents, especially by providing those individuals
with knowledge that motivates them to make safe, sustainable and healthy
mobility choices.

The platform developed by Mobidot utilizes efficient real-time data acquisition
using smartphone sensors, coupled with a central analysis server that cleans the
raw data and compares it with available databases to infer travel trajectories
and modes.
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The problem formulated for the Study Group focuses on advancing the quality
of data derivation. Mobidot infers the route, role, objective and mode of
transportation from smartphone sensor data. Smartphones possess a variety of
sensors, including GPS, mobile telephone (4G) and wi-fi signals, accelerometer
and gyroscope sensors, etc. that could be used to determine the motion and
position of the user, when coupled with geographic databases and known public
transport tables.

The volume of monitoring and data recording must be weighed agains battery
drain, and consequently a sensing strategy must be devised to optimise infor-
mation gathering with minimal energy usage. The first objective of the problem
posed to the Study Group was to optimise data measurement versus battery
usage, by (1) devising and optimal scheduling plan for sensing, detecting mode
changes, (2) developing a method to locally filter and compress relevant infor-
mation at the mobile site, and (3) developing a method to infer motion from
incomplete data. A second objective posed to the Study Group was to detect
obvious errors in the trip analysis and minimise false inferences.

For the Study Group Mathematics with Industry, Mobidot provided relevant
data to develop data deduction improvements and test approaches and meth-
ods. This included sample smartphone multi-sensor data, sensor energy usage
stats and samples of resulting anonymised mobility profiles.

1.2 Work plan of the Study Group

The Study Group initially began work on several fronts and eventually con-
verged on two most promising lines of investigation. The first of these was
an improvement to transportation mode identification using high-resolution
accelerometer measurements to try to identify transportation mode signatures
from vibrational data (bicycling rhythms, motor frequencies, etc.). Related to
this, the second investigation line was a sensing strategy that would accom-
modate taking such high-resolution accelerometer readings without excessively
straining battery charge.

In this paper we propose approaches to dealing with the above challenges. In
Section 2, we focus on devising a sensing strategy that is both energy efficient
and provides enough data to sense multimodal traveling. This in particular
necessitates the detection of changes in the transportation mode. To this end
high resolution data is crucial to reliably deduce changes. We propose to
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supplement the currently used GPS/localization sensing with high-resolution
accelerometer data in a three stage sampling procedure. This keeps both energy
consumption low and prediction power high.

Once data is acquired it is necessary to infer motion signatures from it. This
means that we need to process the time series data obtained from the measure-
ments in a way that enables us to reliably distinguish between different modes
of transportation. Current approaches use for example frequency analysis via
Fourier transform methods. Here we investigate the use of Wavelet transform
methods that provide local frequency information on time series signals. Us-
ing wavelet analysis, each time signal is efficiently converted into a distinct
two dimensional signature, which in turn could be used to train a learning
algorithm to distinguish different transport modalities. In Section 3 we dis-
cuss the use of Haar wavelets in some detail and stress how they are useful to
detect characteristic changes in time series data. In Section 4 we show some
sample applications of this method to accelerometer data taken from different
modes of transportation. A powerful feature of the Wavelet approach is the
great variety of available basis wavelets that enable one to look for changes
with specific structures. We use as a second example the Mexican hat wavelet
to analyse the same accelerometer data and discover characteristic structures
for the different modes of transportation. The results suggest that further re-
search might lead to powerful prediction tools via the ’right’ choice of wavelet.
Finally, in Section 5, we mention a method to determine the specific moment
of modality change from accelerometer data stored on the phone.

2 Sampling algorithm

In subsequent sections we discuss ideas about improving modality sensing by
incorporating high-frequency accelerometer data. Modality changes are rare,
however, and it is unnecessary to continually probe and analyse accelerometer
data throughout a commuter trajectory. At the same time, sampling should
be done as sparsely as possible to minimize battery drain. In this section we
discuss a possible scheme for acquiring high resolution accelerometer readings
through irregular short bursts.

We propose 3 modes of data sampling:
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- burst: high frequency sampling for a fixed short duration
- cruise: variable frequency sampling
- sleep: low frequency sampling, only when stationary

Switching between the modes is indicated in the scheme below:

Burst

t >
TB

γ
<
|a|

Cruise
∆
x

=
0

Sleep
∆x 6= 0

Burst mode is a new feature for Mobidot and its main purpose is to enable
high frequency sampling for modality detection from accelerometer data. In
this mode, both accelerometer data and GPS data are collected. The Burst
mode lasts for a fixed amount of time TB seconds and the time step between
two consecutive measurements is short ∆tB. After Burst mode, the system
always goes to Cruise mode.

Cruise mode is a medium frequency sampling mode to track the trajectory
and to detect sudden changes, which call for a change back to Burst mode.
The sampling frequency of cruise mode is adaptive, depending on the change
in acceleration as derived from the GPS data. When Cruise mode is evoked
after a Burst, the time step starts at ∆tmin.

Each time step later, the stepping time is adapted: ∆t = max(∆tmin, f(a)).
The function f is linear with acceleration a in m/s2. So f(a) := ∆tmax − c ∗
(a− amin), where c = ∆tmax−∆tmin

amax−amin
.

This is shown schematically in the figure below.

f(a)∆tmax

∆tmin

amin amax

In Cruise mode only GPS data is collected. The system can leave Cruise mode
when:
- location is stationary for a time span longer than TS : go to Sleep mode
- there is a sudden change in acceleration |a| > γ: go to Burst mode
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Sleep mode is only invoked when the device is stationary. This mode is char-
acterised by low frequency sampling ∆tS . When significant location change is
detected, the system goes immediately into burst mode, to detect the modality
of the new trip.

The mode switching is demonstrated in the following algorithm:

if mode==Burst
∆t = ∆tB
if T > TB

mode =Cruise
end

elseif mode ==Cruise
∆t = max(∆tmin, f(a))
if ∆x == 0 and Tstationary > TS

mode=Sleep
elseif |a| > γ

mode =Burst
end

elseif mode==Sleep
∆t = ∆tS
if ∆x > 0

mode =Burst
end

end

3 Discrete Wavelet Transform

In a practical application such as Mobidot’s smartphone app, a continuous
function f is often sampled at a finite set of discrete time points. Let us define
the function values as xi = f(ti) where the ti = i∆t, i = 0, . . . , n − 1 are n
equidistant sample times.

Time series analysis is a large field. The Study Group has investigated the
use of wavelet analysis as a potentially efficient means of transforming discrete
accelerometer data into a form suitable for training a learning algorithm to
distinguish transport modality.
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Analysis of a discrete time series requires a discrete version of the wavelet
transform, and we will explain this for the simplest possible wavelet, the Haar
wavelet. This wavelet is based on computing sums and differences of neigh-
bouring function values, thereby representing both averages and differences.
The averages give a smoothed version of the time series, with hopefully more
reliable statistics, whereas the differences reveal whether a significant change
has occurred over time.

One level of the wavelet transform is defined by

y2i = x2i + x2i+1, y2i+1 = x2i − x2i+1, for i = 0, . . . , n/2− 1. (1)

We denote this by dwt1(x, n), where the output y overwrites the input x,. We
can also carry this out on the first k components of the vector x of length n,
in which case we write dwt1(x, k).

In the complete Discrete Wavelet transform (DWT), all differences are recorded
and then they remain unchanged afterwards. For the sums, however, the pro-
cedure is repeated, but now with half the previous length. This is facilitated
by first permuting the vector y by an even-odd sort, giving

zi = y2i, zi+n/2 = y2i+1, for i = 0, . . . , n/2− 1. (2)

We denote this by sort(y, n), again assuming the output z overwrites the input
y. The complete DWT is given as Algorithm 1.

Algorithm 1 Discrete Haar wavelet transform
Require: x: vector of length n, with n = 2m.
Ensure: y: vector of length n, y = DWT(x, n).

while n > 1 do
dwt1(x, n) ;
sort(x, n) ;
n := n/2;

return x;

As a result of executing the DWT, we obtain an output vector y with

y0 = x0 + . . .+ xn−1, (3)

so that y0/n equals the average of all the input values. The next value

y1 = (x0 + . . .+ xn/2−1)− (xn/2 + . . .+ xn−1) (4)
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indicates whether a significant change in mean value can be detected between
the first half of the time series and the second half. The other values yi give
such change information at more detailed levels of accuracy.

The total number of additions and subtractions in the DWT algorithm for the
Haar wavelet equals n+n/2 + · · ·+ 2 ≈ 2n, which is significantly smaller than
the 5n log2 n floating-point operations (additions, subtractions, and multipli-
cations) that would be needed for a standard radix-2 Fast Fourier Transform.
For example, for n = 1024 the Haar wavelet transform is a factor 25 cheaper
than the FFT. Note that the Haar wavelet does not need any multiplications
(in contrast to the commonly used Daubechies wavelet), making it particu-
larly cheap. Its use would lead to a much lower energy consumption in case
the transform is computed on a smartphone.

4 Application of wavelet analysis

A Fourier transform of a signal in time only gives information on what frequen-
cies are present in the total signal and thus the time-domain is lost. The wavelet
transform provides a way to preserve the time-domain while also obtaining in-
formation about the frequency domain. The wavelet transform is most easily
understood from the formula of the continuous wavelet transform

Ψ(τ, s) =
1√
s

∫
f(t)w

(
t− τ
s

)
dt,

where τ is the location of the window over which we integrate, s is the scale, and
w(t) is the wavelet, for example the Haar wavelet as shown in Figure 1.

In this section we apply the theory of the wavelet to the accelerometer data
collected by Study Group. However, first we apply wavelet analysis to an
example.

Consider the signal composed of two cosine functions

f(t) = 2 cos(20πt) + cos
(

50
√

2πt
)
. (5)

This function is sampled on t ∈ [0, 2] with steps of size 10−3, leading to n =
2000 data points:
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The wavelet transform is performed with the Haar wavelet using Mathematica
and is shown in the lower left in Figure 1. Each box, numbered 1 to 7 in
the plot, contains the same t-axis shown in the above image, namely t× 103 ∈
[0, 2000]. As explained each level of refinement corresponds to convolution with
the Haar wavelet at a different scale. The signal is thus compared to the Haar
wavelet at each scale. In turn, each scale can be seen as a trade-off between
frequency resolution and time resolution. In Figure 2 we compare the wavelet-
transforms of each of the two cosines in the function f(t) individually. Here we
can see that at the sixth level of refinement there is a clear distinction between
the two. The weight in the Haar transform of the complete function thus
indicates that on this scale of the data the function contains a prominent slowly
oscillating component. For each scale we can determine the energy fraction:
{0.003, 0.012, 0.046, 0.138, 0.228, 0.385, 0.156, 0.0321}, where the energy of each
scale is determined by the sum of squares of the values. The energy fraction
can be used to rank the dominant contribution in the signal.

Although the Haar-wavelet transform is computationally very efficient, other
wavelets can be tailored to find specific signals in data. For example, if we were
to use the Meyer-wavelet the two oscillatory signals are clearly distinguishable
as shown on the right-hand side of Figures 1 and 2. This suggests that we
might use wavelets to pick out certain features in the Mobidot data specific to
bicycles, trains or buses, by optimizing the wavelet basis for specific transport
modes.

Next we apply the wavelet transform to the one-component of the 3-axis ac-
celerometer data acquired by team member Jason Frank using a third party
smartphone App. It is important to stress that a much more thorough data ac-
quisition program is needed to characterise transport modes accurately. Here
we provide only a random sample of time series data to indicate that differ-
ences can be discerned. Furthermore, our sampling rate was approximately
100–150 samples per second, which may be too low for detecting mechanical
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Figure 1: Left: The Haar wavelet (top) and the Haar transform of f(t) (bot-
tom). Right: The Meyer wavelet (top) and the Meyer transform of f(t) (bot-
tom).
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Figure 2: Left: The Haar-wavelet transform of the first (top) and second
(bottom) term of f(t). Right: Similarly, but for the Meyer wavelet.

vibrations in automobiles and buses. For visualisation purposes we will use
the continuous wavelet transform with the Mexican-hat wavelet:
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The time series data and its wavelet transform are shown in Figure 3. The
results are shown with the scale (refinement) on the vertical axis and time
on the horizontal axis. Each horizontal line in the image shows the absolute
value of the wavelet transform with darker colours corresponding to larger
magnitudes (cf. the amplitudes of the functions shown in Figure 2). Thus the
image shows the dominant contribution to the wavelet transform at a particular
scale.

It is clear that the bicycle shows distinctive features when analysed with this
wavelet, which indicates that bicycles might be discernible. The car in general
has high energies at low frequencies, while the train and bus are relatively quiet.
A possible way to train mode-detection using wavelet analysis on the Mobidot
data would be to record a sample of accelerometer data of fixed length of
time, and subsequently apply the Haar transform to see if distinctions between
different modes of transport can be identified based on which scales contain the
largest energy fraction. If the Haar wavelet does not provide a clear distinction
between modes of transport one could start to train on different wavelets. Using
combinations of Haar wavelets one could potentially develop a training method
which varies the wavelet form until an optimum wavelet is found. However,
since Mobidot would like the wavelet transform with the optimum wavelet to
be implemented on the mobile device, there will in general be a competition
between the ease of detection and the computational cost.

5 Determine specific moment of transportation modal-
ity change

Continual recording of GPS location would prohibitively drain smartphone
battery charge. Therefore Mobidot collects GPS data at regular intervals de-
pending on detected movement. As a result it is hard to determine the exact
starting time of a trip. If a change is detected one can only guess the starting
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Figure 3: Accelerometer data and Mexican-hat wavelet transform for four dif-
ferent modes of transport.
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Figure 4: Visual representation of mode change detection via accelerometer
sensor.

time via interpolation methods.

To overcome this problem the Mobidot application could augment GPS up-
date requests with accelerometer data. The accelerometer in smartphones is a
background application that is used for to detect gestures in the device. One
can think of horizontal or vertical display switching or the natural 3D shadow
effects for icons. Assuming the accelerometer is already running continuously,
we can collect and store this data temporarily. After a certain time interval,
the location detector can give an update about the current location. When no
location change is detected, the accelerometer data can be deleted. However,
if there is a significant change between the current and previous location we
can analyse the accelerometer data of that time interval. This time interval
can be analysed via the wavelet transform proposed in Section 4 to determine
the moment of mode change.

This method can be used to detect the start of a trip, but it can also detect
a change in transportation mode. To give a better overview of the method
a graphical representation is shown in Figure 4. The left figure indicates the
update method when the phone is in stationary mode. The right one represents
a regular check to see changes in transportation type within a trip. Via small
bursts of high frequency accelerometer data as described in Section 2 a mode
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change can be detected. If a change is detected we can use the temporarily
stored accelerometer data from the phone and track at which moment the
change took place.

6 Conclusions

We have reported on preliminary research to improve transport modality sens-
ing using smartphone data acquisition. Our primary conclusions are:

• High resolution accelerometer data exhibits noticeable differences among
different modalities such as bicycle, automobile, bus and train. Possibly
this approach could be combined with currently used location service
data to improve modality inference.

• Wavelet transforms offer an inexpensive and potentially powerful ap-
proach to obtain local frequency information on accelerometer signals.
A more thorough multi-scale application of wavelets yields distinctive
pictures of transport signals, that could be used to train learning algo-
rithms.

• Accelerometer data may be effectively sampled in short, high-resolution
bursts. These acquisitions can be incorporated in a multi-phase sensing
strategy to preserve battery charge.

• The wavelet approach and multi-phase sensing strategy can be combined
to improve the detection of mode changes during transit.
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Abstract

The physical anatomy of cancer patients who receive radiotherapy
treatment may change over time due to e.g. weight loss and tumor de-
formation. The treatment plan for the patient is based on a CT scan
that is made approximately one week prior to treatment. However, when
the anatomy of the patient has changed, the treatment plan may no
longer be optimal. How can adjustments to the treatment plan be made
when changes in the anatomy of the patient are observed? In this paper
we report on this ‘cancer treatment’ problem posed by the Netherlands
Cancer Institute. We formulate the problem as an optimization problem.
Different deformations are investigated for a toy model and optimization
methods are tested on this model. We consider three different optimiza-
tion algorithms, with a main focus on the Gauss-Newton method. This
method turns out to work relatively well for some specific deformations
in our simple model. Other methods are also considered and their ad-
vantages and disadvantages are described, keeping in mind more realistic
situations than we consider here.

keywords: adaptive radiotherapy, dose planning, deformations, optimiza-
tion, Gauss-Newton, Particle Swarm

1 Introduction

This paper reports on findings of the ‘cancer treatment’ problem, as posed by
the Netherlands Cancer Institute (NKI) at the Study Group Mathematics with
Industry 2015, held at Utrecht University. Every year, 469 per 100.000 inhab-
itants over 18 years in The Netherlands are diagnosed with cancer. Around
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fifty percent of cancer patients are still alive five years after the diagnosis and
the number of treatment with radiotherapy increases [5]. The Netherlands
Cancer Institute (NKI) is a national center dedicated to cancer and plays an
important role as a national and international center of scientific and clinical
expertise, development and training. One of their ongoing research topics is
on improving the efficacy of radiotherapy treatment plans.

If a person is scheduled to receive radiotherapy treatment, a CT scan is made
prior to the treatment. The time between the CT scan and the actual treatment
is usually between one and two weeks. The CT scan is made to obtain detailed
information about the tumor and the surrounding area. Using this information,
an accurate though time intensive optimization method is used to acquire the
optimal settings of the machine and the corresponding dose distribution. To
explain these terms, a closer look at the treatment settings is needed.

LINAC head
CBCT

Figure 1: Treatment settings. Image courtesy of Rene Tielenburg.

Figure 1 shows the treatment set-up. In this set-up the patient lies on the
treatment table. The radiation source is located in the LINAC (linear acceler-
ators) head. Within this head there are leaves, the settings of which determine
the shape of the beam that radiates the patient. This head rotates around the
table. At every rotation step, the settings of the leaves within this device, are
adjusted such that after a full rotation the optimal dose is delivered. An opti-
mal treatment is defined to mostly affect the tumor, whereas the surrounding
tissue, especially the vital organs, should be left alone as much as possible to
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avoid damaging healthy tissue.

The actual treatment based on the treatment plan derived from the CT scan
ideally starts one (but maximum two) week(s) after the CT scan was made.
In this period, the anatomy of the patient may have changed, causing a lot of
differences compared to when the CT scan was taken, such as changes in the
size of the tumor, weight loss of the patient, posture changes and many other
deformations and changes. Thus, applying the original treatment plan to the
patient may lead to a sub-optimal dose distribution.

To avoid large amounts of healthy tissue being targeted by radiotherapy, the
current procedure is to take another scan of lesser quality of the patient right
before the treatment starts. This scan is taken with the imaging device CBCT
(cone beam CT) which is part of the treatment device (Figure 1). If the
outcome of this scan differs substantially from the data of the CT scan, the
treatment is stopped and the entire procedure starts all over, i.e. another CT
scan and subsequently a new treatment plan is made. If the deformations are
small, the original treatment is applied to the patient.

NKI asked us to developed or propose a method that determines the optimal
settings of the leaves using the initial correct dose, the initial data from the
CT scan and the data of the CBCT. These new settings have to be obtained
within a few minutes because the treatment has to be applied directly after
the scan of the CBCT.

In Section 2, we formulate the problem as an optimization problem. In sec-
tion 3 three different methods to solve this optimization problem are proposed
to solve this type of problem: the Gauss-Newton method, evolutionary al-
gorithms (with a focus on the Particle Swarm optimization algorithm), and
a gradual deformation based approach. In Section 4, four different tumor-
deformation scenarios are considered and the Gauss-Newton is used to solve
the optimization problem for these scenarios.1 The Particle Swarm optimiza-
tion is applied to one of the four scenarios and compared to the result obtained
with Gauss-Newton. Finally, in Section 5 conclusions and recommendations
are presented.

1After the study week it was discovered that there was a mistake in the code that we had
worked with. We corrected this afterwards and the results presented in these proceedings
are the results for the corrected code. As a bonus, finding this mistake also greatly improved
our results.
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2 Formulation of the problem

2.1 The optimization problem

The problem put forward by the NKI is essentially an optimization problem,
so we formulated it as such. More specifically, we approached it as a non-linear
least squares problem of the form

arg min
φ

‖D(φ, P1)−Dδ‖2. (1)

Here φ denotes the configuration of the linear accelerator, P1 is a set of parame-
ters describing the patient during treatment and D(φ, P1) is the dose delivered
to this patient when the configuration φ is used. The dose Dδ, which we try
to approximate, is similar to the dose absorbed by the undeformed patient
under the original plan, but has been transformed using the deformation of
the patient

We proceed by providing a more detailed description of the variables φ and P ,
as well as the dose function D and the target dose Dδ.

2.2 Variables and parameters

During a treatment session, the LINAC head moves around the patient, stop-
ping at Nstops different positions along the way. At each position, the opening
formed by the multileaf collimator can be adjusted by changing the positions
of its 2Nleaves leaves. We denote the positions of the j-th pair of leaves while
the head is at position i by αij and βij , and the time the head stays at posi-
tion i by τi (Figure 2). These variables are subject to the linear constraints
αmin ≤ αij ≤ βij ≤ βmin and τi ≥ 0. For the machine used by the NKI,
Nstops = 90 and Nleaves = 40, which means that the total number of variables
is 2NstopsNleaves +Nstops = 7290. This number can be doubled by having the
LINAC head make two passes, so that it stops at every position twice.

For our purposes, the patient is effectively described by a density function
ρ(r) and an attenuation function µ(r). Together with the configuration of
the device, these determine how much energy is absorbed at every point in
the patient’s body. For the sake of brevity, we write φ = (α, β, τ) for the full
configuration of the linear accelerator and P = (µ, ρ) for the relevant data
concerning the patient.
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Figure 2: Overview of the leaf configuration.

2.3 The dose function

The total dose absorbed by a point r inside the patient’s body during a treat-
ment session is the sum of the contributions of all rays passing through the
multileaf collimator.

If we ignore partial transmission through the rounded edges of the leaves, the
total dose absorbed at a point r is given by

D(φ, P )(r) =

Nstops∑

i=1

τi

Nleaves∑

j=1

∫ βij

αij

∫ ηi

ηi−1

di(ξ, η, P )(r) dη dξ, (2)

where di(ξ, η, P ) is the dose delivered per unit time by an infinitesimally small
(conical) beam going through the point (ξ, η) in the collimator while the emitter
is at position i. The dose function is integrated over the opening formed by each
pair of leaves, subsequently a sum over all leaf pairs and all emitter positions
is taken.

The full expression for the infinitesimal dose di(ξ, η, P )(r) also involves multi-
ple integrals, so finding the full dose profile D(φ, P ) in this way can be quite
time consuming. Since this will need to be done at least several times during the
optimization process and time is a relevant constraint, the use of approximate
methods is in order. Two popular methods are the collapsed cone algorithm,
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which is described in detail in [1], and the analytic pencil beam kernel approach
detailed in [6].

We have employed the analytic pencil beam kernel approach, which is the
simpler of the two. This method approximates di(ξ, η;P ) by a simple analytic
expression. The approximation relies on a large number of assumptions, both
about the patient and the emitter: the patient is assumed to be homogeneous
and flat, and the emitter is assumed to produce a beam which is parallel,
uniform and incident normally to the patient. Nevertheless, this approach
appears to be accurate to less than 2% when applied to actual treatment plans
in regions where the dose gradient is small [6].

2.4 The deformation

The CT scan made prior to treatment is used to determine the parameters
P0 = (µ0, ρ0) that best describe the patient at this time. The attenuation
µ0 is measured directly, and ρ0 can be inferred from knowledge about human
anatomy. This data is used to determine a treatment plan, which in particular
involves a configuration φ0 for the linear accelerator such that the applied dose
D0 = D(φ0, P0) is suitable for treatment of the tumor.

The problem is that this preliminary scan may no longer be accurate during
treatment because the patients will have naturally undergone some deforma-
tions of the types described in the introduction and is now described by a new
set of parameters (P1, µ1). A new scan can be made on the spot to determine
the new attenuation profile µ1, which can in many situations be used to derive
a displacement vector field δ that describes the deformation that the patient
has undergone to go from P0 to the new configuration P1. This vector field as-
signs to every point r in the deformed patient a displacement vector δ(r) such
that the corresponding point in the original patient is, at least approximately,
r+ δ(r). More specifically, it is such that the set of parameters Pδ = (µδ, ρδ),
with

µδ(r) = µ0(r + δ(r)), ρδ(r) = ρ0(r + δ(r)),

closely approximates P1.
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2.5 The objective function

Since solving the original optimization problem again for the deformed situa-
tion is unfeasible due to time constraints, another approach is called for. The
approach we took is to use the deformation field δ to deform the original dose
distribution D0 = D(φ0, P0) along with the patient, and to attempt to find a
new configuration φ such that the delivered dose D(φ, P1) approximates the
deformed distribution Dδ as closely as possible. This deformed dose distribu-
tion is defined in the same way as the deformed density and attenuation, and
is thus given by

Dδ(r) = D0(r + δ(r)).

While this distribution may not be optimal for the deformed patient P1, it
should be as acceptable as the original dose distribution D0 was for the unde-
formed patient P0.

Formulated as an optimization problem, we look for a configuration φ, close
to φ0, that minimizes the distance between the corresponding dose D(φ, P1)
and the target dose Dδ. This is the solution to the non-linear least squares
problem

arg min
φ

‖D(φ, P1)−Dδ‖2, (3)

which uses the square integral norm

‖∆‖2 =

∫∫∫

V
∆(r)2 d3r.

The precise form of the objective function in equation (3) depends on how the
dose distribution D is discretized. If a rectangular grid Λ = {rijk | i, j, k} is
used, then

‖D(φ, P1)−Dδ‖2 =
∑

i,j,k

(
D(φ, P1)(rijk)−Dδ(rijk)

)2

up to some (immaterial) constant factor.

3 Methods

In this section we discuss three different methods to apply to the optimization
problem described in Section 2. The three methods are compared to each



42 SWI 2015 Proceedings

other and pro and cons are discussed. Finally, in Section 3.4, we describe the
simplified model that we considered during the study week. This model was
used in our investigations in Section 4.

3.1 Gauss-Newton type methods

Since the optimization problem (3) is a non-linear least squares problem, one
can try to solve it using the Gauss-Newton algorithm, or similar algorithms
such as Levenberg-Marquardt. A description of these algorithms can be found
in many textbooks, such as [3] or [4]. These algorithms require the compu-
tation of the first order partial derivatives of the dose D(φ, P ) with respect
to the components of φ = (α, β, τ), but no second order derivatives. They
are fast when applied to problems which are only mildly non-linear, which
one might expect to be the case for very small deformations, but can be slow
otherwise.

Without any modifications, the Gauss-Newton algorithm is not very reliable
as it is not even guaranteed to converge to a local minimum. Damped ver-
sion of Gauss-Newton, such as the Levenberg-Marquardt algorithm, avoid this
problem by effectively taking smaller steps when necessary. Convergence to an
insignificant local minimum is an inherent possibility for all algorithms of this
type.

In the Gauss-Newton method the dose function D(φ, P1) is approximated
around the initial guess φ0 by its first order approximationD(φ0, P1)+JD(φ0, P1)(φ−
φ0) and solving the linear least square problem

arg min
φ

‖D(φ0, P1) + JD(φ0, P1)(φ− φ0)−Dδ‖2. (4)

This process is repeated, taking the solution from the previous iteration as the
new initial guess.

Fortunately, the derivatives required for these algorithms are relatively easy to
compute, as the parameters αij and βij only appear in the boundaries of the
integrals in equation (2) and the dose is manifestly linear in τi. The partial
derivatives with respect to αij and βij are given by

∂D(φ, P )

∂αij
= −τi

∫ ηi

ηi−1

di(αij , η;P ) dη
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and
∂D(φ, P )

∂βij
= τi

∫ ηi

ηi−1

di(βij , η, P ) dη

respectively. Computing these should be significantly less costly than com-
puting D(φ, P ) itself as the domain of integration in these expressions is 1-
dimensional, rather than 2-dimensional.

The derivatives with respect to the variables τi are given by

∂D(φ, P )

∂τi
=

Nleaves∑

j=1

∫ βij

αij

∫ ηi

ηi−1

di(ξ, η, P ) dη dξ.

Note that these do not need to be computed separately, as these integrals
should already have been evaluated to determine the dose D(φ, P ).

The Jacobian matrix JD(φ, P ) which contains all of these partial derivatives
has 2NstopsNleaves +Nstops columns (which is 7290 for the NKI set-up), while
the number of rows depends on the discretization of D. It will have one row
for every voxel if a grid is used, and most of its entries will be zero in this case
since ∂

∂αij
D(φ, P )(r) is only non-zero if the ray from the emitter to r passes

near to the edge of the leaf corresponding to the variable αij (and similarly
for ∂

∂βij
D(φ, P )(r)). This sparsity can be used to speed up the computation

of JD(φ, P ), as well as any matrix operations applied to it.

Closed leaf pairs should be given extra attention, since the point at which
they are closed does not affect the dose and is thus rather arbitrary. When it
becomes necessary to open a pair of leaves that was previously closed, these
algorithms will only discover this if the point at which an opening should be
created is already close to the (arbitrary) leaf edge positions. Closed leaf pairs
should therefore always be positioned such that their edges project onto a point
in the patient where a high dose is required, or close to neighboring leaf pairs
which are already open. It may be necessary to consider different positions for
such leaf pairs while running the algorithm and opening them where doing so
would produce the greatest improvement to the objective function.

Since the derivatives of D with respect to αij and βij add up to zero whenever
αij = βij , the Jacobian JD(φ, P1) will not have full column rank for configura-
tions with closed pairs of leaves. While this is not hugely problematic, it can
lead to the Gauss-Newton algorithm prescribing large (unnecessary) changes
to the position of closed leaf pairs. One way to avoid this is by keeping the
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center 1
2(αij + βij) fixed (and only varying the size of the opening) whenever

αij = βij at any particular iteration step.

Newton’s method, which works by repeatedly making a second order approxi-
mation of ‖D(φ0+Φ, P1)−Dδ‖2 in Φ, might also be worth considering. Unlike
the Gauss-Newton algorithm, Newton’s method is guaranteed to converge lo-
cally and this convergence is significantly faster (quadratic, rather than linear).
The major disadvantage to this approach is that it requires taking derivatives
of D up to second order. In our situation, at least when using the analytic
pencil beam kernel approach, the second order derivative of D should still
be manageable. While there are in principle (2NstopsNleaves +Nstops)

2 mixed
second order partial derivatives, almost all of these are again zero. Note in
particular that ∂2

∂αij∂βi′j′
D(φ, P1) = 0 for all pairs (i, j) and (i′, j′) and that

∂2

∂αij∂αi′j′
D(φ, P1) can be non-zero only if (i, j) = (i′, j′).

3.2 Evolutionary algorithms

The wide variety of tissues in a patient causes inhomogeneities with respect
to attenuation properties and the pencil beam function may be not accurate
enough. As a result of these complexities, the surface of the objective function
may be very irregular, which may cause methods based on Gauss Newton
to end up in local minima. This may lead to inappropriate settings for the
treatment. Whether this is the case needs to be investigated.

A possible way to deal with such complexities and avoid local minima, if they
occur, is by applying other types of optimization algorithms. One could for
instance think of evolutionary computation as a class of optimization methods
that are metaheuristic with stochastic elements [2]. These methods can be ap-
plied to any type of objective function, since they are used as a black box: no
derivatives are needed. Examples of these type of methods are evolutionary al-
gorithms or swarm type algorithms. Evolutionary computation generally con-
sists of a set of individuals, where for each individual the fitness (objective func-
tion value) is evaluated. The algorithm then selects/replaces/moves/breeds
from (depending on the algorithm) these individuals iteratively, to eventually
close in on the optimal solution. In the study week we considered one such evo-
lutionary algorithm in more detail, the so-called Particle Swarm optimization
(PSO).

The PSO considers a group of individuals, uniformly distributed around an
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initial guess of parameter values. For each individual, the objective function
is calculated. Then in each iterative step, the position (parameter values) of
each individual is updated. An individual moves in the direction of its current
velocity, the best position this individual found so far and the best position
the complete group found so far, with some randomness included.

3.3 Gradual deformations

In this project, we also designed another method based on the Gauss-Newton
method that might avoid drifts to inappropriate solutions and be nearly as fast
as the Gauss-Newton method. The idea is based on the fact that there are
two scans of the patient: the first CT scan used for the treatment plan and
one obtained directly before treatment. So, between those two time points,
the patient has deformed slowly. During the optimization procedure, we can
artificially deform the original patient situation P0 = (µ0, ρ0) to the deformed
situation Pδ = (µδ, ρδ), in Ns steps by using Pi = (µi, ρi), with

µi(r) = µ0(r + n
Ns
δ(r))

ρi(r) = ρ0(r + n
Ns
δ(r))

for n ∈ {1, 2, ..., Ns}. The desired dose distribution Dn at step n is defined as
the goal dose distribution at deformation step n:

Dn = D0(r + n
Ns
δ(r)).

Now, every deformation step n, we may use Gauss-Newton (or any another
optimization algorithm) iteratively to find the settings φn that minimize:

‖D(φn, Pn)−Dn‖2. (5)

Subsequently, these settings are used as an initial guess for the next deforma-
tion step n + 1. The concept behind this algorithm is that finding optimal
settings for small deformations might be much easier and faster, and we can
better take the correct path from original settings to optimal settings, avoiding
drifts to an inappropriate solution.

3.4 Toy model

In the study week we focused on a simple model of the optimization problem to
test our different methods, in particular the Gauss-Newton algorithm described
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in Section 3.1. In this model we assume the following. First of all, the patient is
assumed to be a 2D square lattice with a convex-like tumor. The beam is fixed
at one point and the beam direction is orthogonal to the patient plane, i.e. the
beam is right above the patient. So, we ignore that the LINAC head can travel
around the patient with different durations at each stop. The optimization
problem then reduces to the optimization of the leaf configuration only. This
specific setting that we chose for the problem is visualized in Figure 3 below.

Figure 3: Model setting

Here, for a specific dose requirement D there is a leaf configuration φ which
ensures that the patient gets the required dose. The goal is then to deform the
tumor in a simple way and check whether the algorithm outputs a configuration
which gives the same dose distribution, but modified according to the tumor
deformation. For example, by simply shifting the tumor to the right as seen in
Figure 4, we expect the optimization algorithm to output a configuration for
the leaves such that the dose profile follows the same shift.

Aside of the qualitative behavior of the solution, we were also interested in
computing the error with respect to some measure. For simplicity, we chose a
relative error defined in the following way

Err(D̃,D) =

√√√√√
∑N

i=1

∑M
j=1

(
D̃(i, j)−D(i, j)

)2

∑N
i=1

∑M
j=1 D̃(i, j)2

(6)

where D̃ is the desired dose, D is the dose corresponding to a configuration
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Figure 4: Simple deformation and desired dose profile

given by the optimization algorithm and both N and M correspond to the
dimensions of the patient computational domain.

4 Results

In this section we mainly consider the Gauss-Newton algorithm for the opti-
mization problem described in Section 3.4. For the purpose of this project,
we chose a 40-by-40 pixels computational domain and a beam emitter with
10 pairs of leaves. Then we assumed for each scenario that at the beginning
of the treatment, the patient presents a diamond-shaped tumor. Four qual-
itatively different deformations of the tumor were considered: vertical shift,
lateral shift, diagonal shift, and a shrinkage of the tumor. For each setting, we
considered the classical Gauss-Newton algorithms over 20 steps and at each
step we recorded the error defined through Equation (6).

Finally, we applied the PSO to the vertical shift of the tumor. For this algo-
rithm we used a matlab code2 with 10 individuals and 50 iteration steps.

2Particle_Swarm_Optimization.m c© Pramit Biswas. Downloaded from
http://www.mathworks.com/matlabcentral/fileexchange
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4.1 Vertical shift deformation

Figure 5 shows the results for a downward shift of the tumor by 4 pixels. A
good solution was found after about seven iterations, which took about 46
seconds to run. After that no further improvements were observed, and the
relative error between the desired dose and the dose that is actually realised
stabilises at about 19.7%. It is uncertain whether the final solution is a global
minimum for the objective function. The speed of convergence definitely seems
promising for real-life applications.

Original dose profile

10 20 30 40

5

10

15

20

25

30

35

40

Gauss-Newton Method dose profile

10 20 30 40

5

10

15

20

25

30

35

40

Target dose profile

10 20 30 40

5

10

15

20

25

30

35

40

Leaf configuration

10 20 30 40

5

10

15

20

25

30

35

40

Gauss-Newton step
0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error for classical Gauss-Newton Method

Figure 5: Gauss-Newton algorithm for the vertical shift case of the tumor. The
first plot shows the original dose profile, the target profile after the shift, the
profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.

4.2 Lateral shift deformation

For a lateral deformation, we considered a 4 pixel movement to the right. A
decent solution is found after about 10 iterations, after a runtime of about
80 seconds. The final error is about 21.9%, as shown in Figure 6. What is
interesting to note is that the bottom part of the opening is missing in the final
dose leaf configuration because this pair of leaves was closed in the first iteration
step at a point which was too far away from the shifted tumor. By moving
the closed leaf pair to a point inside the tumor and resuming the algorithm
a relative error of about 6.9% is obtained. (This lower error is explained by
the fact that a lateral shift of the tumor can be precisely compensated by a
corresponding shift of all leaf positions.)
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Figure 6: Gauss-Newton algorithm for the lateral shift case of the tumor. The
first plot shows the original dose profile, the target profile after the shift, the
profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.

4.3 Diagonal shift deformation

The case of a diagonal shift correspond to a combination of both vertical and
lateral changes of the tumor. In our case we chose a 4 pixel deformation in
both rightward and downward directions. As expected from the lateral and
the vertical case (Figure 7) we see a similar but slightly higher error of 23.8%
at the last iteration step after a total runtime of 157 seconds and 20 iterations
(the error does not decrease significantly after that). The sudden decrease at
the end is due to closed leaf pair that is suddenly opened and could have been
found at an earlier stage.

4.4 Size deformation

For the last deformation, we considered a different scenario. Before we only
focused on directions in which the tumor can move during the treatment,
but in this case we are looking at a size deformation. This particular type
of deformation can be justified through the fact that one expects, or hopes,
the tumor to shrink during the treatment and thus, the leaf configuration
should change accordingly. More precisely, we considered a 50% decrease in
size without any lateral or vertical movement involved. After about 7 iterations
and 48 seconds of simulation we see the outcome presented in Figure 8. This
time the error was about 27.1%.
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Figure 7: Gauss-Newton algorithm for the diagonal shift case of the tumor.
The first plot shows the original dose profile, the target profile after the shift,
the profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.
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Figure 8: Gauss-Newton algorithm for the shrinking case of the tumor. The
first plot shows the original dose profile, the target profile after the shift, the
profile after the last Gauss-Newton step and the configuration of the leaves.
The second plot presents the error evolution throughout the iteration steps.
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4.5 Partical Swarm: vertical shift

Figure 9: PSO applied to downward shift. Shown is dose profile before opti-
mization (old), after optimization (solution) and shifted dose (goal).

Figure 9 shows that the PSO algorithm works quite well for this shift. However,
the solution seems to be less accurate then the one obtained by the Gauss-
Newton method (Figure 5). The PSO algorithm with these setting also took
approximately half an hour to run, much longer than Gauss Newton. This
long duration is caused by the large number of expensive function evaluations,
namely for each individual and each iteration. However, it might be profitable
to use such black box algorithm, because one does not need to compute more
derivatives when the number of parameters increases, but then again, one
might need more individuals in PSO. Fortunately, PSO, and other evolutionary
computations, can be sped up by employing parallel computing. However, this
was outside the scope of the study week.

5 Discussion, conclusions and recommendations

We formulated the problem posed to us by the NKI as an optimization problem.
We considered a simplified model: a two-dimensional rectangular patient and
tumor and used the pencil beam approach to calculate the dose distribution.
Obviously, this is unrealistic but it is a good starting point from a mathematical
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point of view. Instead of considering all possible machine settings we only
focused on the settings of the leaves. In the model, the deformations that
were considered were simple so that the optimal settings were known. We
tested several algorithms to see how good they were at finding these optimal
settings.

We considered three numerical optimization methods. First we examined the
Gauss-Newton method which we applied to four different scenarios: vertical,
lateral, diagonal shifts, and tumor shrinkage. As discussed in Section 4, the
Gauss-Newton method already appears to work rather well for all types of
deformations that were considered. It may nevertheless be advisable to switch
to a similar, but more robust, algorithm such as Levenberg-Marquardt. The
position of closed leaf pairs is a potential problem for such algorithms.

Another algorithm that we discussed were evolutionary-type algorithms, in
particular the PSO. We applied the PSO to the scenario of a vertical shift of
the tumor. For our particular test case, the solution obtained through the PSO
was less accurate than that of the Gauss-Newton method (compare Figure 5
to Figure 9). It also took a much longer running time, which is not feasible for
real life situations. On the other hand, the PSO has the advantage that it can
escape from local minima, unlike to the Gauss-Newton method. Faster and
eventually more accurate results with the PSO algorithm might be obtained if
parallel computing is used (this was outside the scope of the study week).

Finally, we also proposed a method, which we call a gradual deformation
method. This method might be much easier and faster than the PSO. An
additional advantage of this method is that it might avoid drifts to inappropri-
ate solutions (local minima). Testing this approach was unfortunately outside
the scope of the study week.

One of the ideas that came up during the study week was on adding a penalty
term to the minimization problem. The rationale behind this is that deforma-
tions will typically not be very large and therefore the optimal settings should
be somewhat close to original settings as well. More specifically, one could
try to add a penalty term γ ‖φ− φ0‖2 to the objective function, changing the
optimization problem (1) to

arg min
φ

‖D(φ, P1)−Dδ‖2 + γ ‖φ− φ0‖2.

for some number γ > 0 (where one should normalize both terms so that they
become unitless). Doing this will ensure that φ does not stray too far from the
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original configuration φ0 during the optimization process. Unfortunately there
was no time during the study week to work this out further. We considered
the minimization problem with γ = 0, i.e. no penalty term was included in our
results. This penalty term deserves further investigation.

Further investigations can be directed at the improvements of our approach by
considering a more realistic model than the toy model discussed in Section 3.4.
This model should take into account all settings of the machine (such as the
larger number of leaves, the rotation steps and the time spent at each angle)
and a description of the patient which is more faithful to reality.
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1 Introduction

Power lines are integral to one of our most important infrastructure systems:
the power supply network. They are run all over the world, across all kinds
of landscape. While they are vital to our day-to-day life, they also have some
negative influence on the environment, the view, and on other man-made struc-
tures. Building cost-effective power lines with limited environmental and social
impact is a critical task. This paper considers a problem introduced by the
British company NM Group, which specialises in surveying and planning for
power line infrastructure. The main question which NM Group posed and
which we address in our report is the following.

“How can we find a power line route of minimum cost?”

The cost of building a power line route is determined by many factors, not
all of which are purely material. In order to specify these costs, NM Group
has identified a few main factors, all of which are later incorporated into the
mathematical model we study.

1. Occupation of an area by power line structures.

(a) SVETIG.
We assume that for each specific area of land the negative influ-
ence (cost) of existing infrastructure and landscape can be cat-
egorised. The categories, the so-called SVETIG factors, are So-
cioeconomic/Political, Vegetation, protected Environment, Terrain,
technical Infrastructure, and Geotechnical. The way that this is
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quantified is out of scope for this report, and for modeling purposes
we may assume these are arbitrary positive weights in the plane,
over which we integrate.

(b) Structure type.
Aside from the attributes of the area itself, the type of structure
also may be taken into account, depending on the granularity. In
particular, the area can be passed over with heavy electric cables
suspended in the air or it can be occupied by the base of a power
line support tower. Clearly the presence of a support tower is more
disruptive than that of a suspended cable.

2. Material construction costs.
The more lengthy the power line is, the more costly the materials used
for that line, in linear proportion. For costs associated with the con-
struction and placement of towers, two further (multiplicative) penalty
factors come into play.

(a) The distance between two consecutive towers. (“Stretch penalty”)
When building a power line, the cables go straight from the top of
one tower to the top of the next, i.e. along a straight line segment
in the plane. In the third dimension, however, gravity takes its toll
in terms of both the weight and sag of the suspended wire between
those towers. Therefore, the further apart two consecutive towers
are placed, the greater must be the load-bearing capacity and height
of the two towers. Extremely long distance between consecutive
towers is highly costly or impossible. Rarely is a very long span
required, when there are no other options, for instance if the power
line must cross a river or canyon.

(b) The angle between the incoming and outgoing lines of a tower. (“An-
gle penalty”)
When the power line segments supported by one tower form a
sharper angle (with respect to the plane), the weight of the cables
exerts a force on the tower roughly in the direction of the angle’s
bisector. To counteract this force, some counterbalance or rein-
forcement of the tower is necessary. For instance when the angle is
roughly 180°, only a simple tower is needed, whereas if the angle is
off by more than 10°, then a stronger type of tower must be used.
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In fact, the penalty factor is more akin to a step function, due to
the need for increasingly robust types of tower.

1.1 Discretisation and macro/micro separation

For practical reasons, the problem as stated above must be discretised — that
is, the spatial region under consideration is dissected using a regular grid, each
cell of which is assigned a weight according to an amortised SVETIG factor.
Moreover, NM Group deemed it necessary to make a separation into two levels
of discretisation, the second of which may be interpreted to be a refinement of
the first. Naturally, we refer to the first as the macro scale problem and the
second as the micro scale problem. Later, the reader doubtless will notice that
the macro and micro level problems are qualitatively distinct, and as such there
could be justifiable objection about whether the combination of solutions to
these two sub-problems constitutes an overall solution to the original problem
as stated above. However, in our work we have taken this separation heuristic
as given, partly because it is justified by the limitations of data-acquisition
resources, and partly because we also propose heuristic and/or approximative
approaches due to computational difficulties inherent to the global problem.
It is worth noting that in our report we have independently chosen the type
of tessellation — be it hexagonal, triangular, square — out of convenience,
though with suitable routine modifications our methods apply to any regular
grid pattern, at either scale. In summary, we split the problem as follows:

1. Macro scale.
At this level, NM Group has indicated that the overall area of consider-
ation is typically a region of about 100 by 100 kilometres. This area is
divided into cells of approximately 2 kilometres in diameter. The desired
output of this sub-problem is a “rough” routing consisting of a connected
sequence of macro cells, which we refer to as a corridor.

2. Micro scale.
The small subset of the cells identified at the macro scale are examined
more closely for the micro scale problem. The selected macro cells are
divided according to a finer grid consisting of micro cells at most 50
metres in diameter. The desired output of this sub-problem is the overall
desired minimum cost power line route.
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A major reason for the two-layer separation of the problem is based on costs
incurred by NM Group for determining the SVETIG weighting factors. The
SVETIG factors applied to the macro cells are inferred from cheap or free
satellite-based imagery and mapping data. By contrast, it is assumed that,
after the specific desired macro cells are identified, special surveillance missions
are carried out over those regions, with the aid of lasers mounted on helicopters
and similar (in particular, rather costly) data-acquisition methods, in order to
determine the more detailed SVETIG factors used at micro scale.

Since the micro level data is gathered and formulated by NM Group itself, there
is some flexibility in the defined size of micro scale cells. Naturally, the quality
of the solution may improve by using a finer tessellation on input; however,
much more computation time might be required to obtain the output.

1.2 Routing costs at different scales

As alluded to above, we permit significant differences in treatment of the prob-
lem when considered at different scales.

From the macro viewpoint, one may interpret it that we are unable to “see”
precise details of the routing: we need not account for the most accurate length
of the route, the specific number of towers placed, nor the corresponding angles.
Instead, we only roughly account for the presence and SVETIG impact of
power line routing through a given macro cell. As we will see later, this macro
problem reduces to a relatively simple minimum cost path problem, solved
efficiently using Dijkstra’s algorithm.

For the micro viewpoint, we narrow in on the output of the macro scale solu-
tion, i.e. we restrict attention to the subset of macro cells identified in the first
step and divide them into smaller cells. Here, more intricate aspects of the
routing problem come into effect. Specifically, for a placement of the towers
at the centres of some micro cells, we calculate the cost of the corresponding
power line routing by incorporating all the detailed cost contributions. That
means we consider not only the (detailed) SVETIG factors, but also structure
type, inter-tower distances, and angles at support towers.

Although essentially any reasonable mathematical combination of the cost fac-
tors described above can be handled by our method, we assume for concrete-
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ness and simplicity that the following cost functions apply for routing through
a given micro cell:

• The cost of placing a tower is

– the material unit cost of a support tower

– multiplied by the SVETIG factor for placing a tower in that cell

– multiplied by the stretch penalty

– multiplied by the angle penalty.

• The cost of suspending power line is

– the material cost per unit length of power line

– multiplied by the SVETIG factor for suspending power line in that
cell

– multiplied by the length of power line intersecting that cell.

We require no special assumptions about the unit costs, SVETIG factors, or
penalty functions, except merely that they are fixed or monotone (decreasing
with respect to angle or increasing with respect to stretch length) and that
they are provided to us beforehand by NM Group.

1.3 Avoidance of “rubberbanding”

As a side remark, it is worth noting that NM Group originally gave a slightly
different formulation of the power line routing problem. They had suggested
to split the problem into three sub-problems, the macro and micro layers fol-
lowed by an ad hoc “rubberbanding” protocol. Essentially, this delays all angle
penalty considerations until the end. In other words, they suggested first to
find a micro solution excluding angle considerations, and then afterwards to
run a local perturbation procedure to fix and compensate for any undesirable
angle penalties.

In our work, we have circumvented the need for (or at least limited the benefit
of) this local adjustment procedure by directly incorporating angle penalties
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into the mathematical model. Of course, because of discretisation, there is
still the possibility of cost saving by “rubberbanding” upon the output of our
suggested algorithms, but typically this saving will be of less interest as it will
be much smaller than it was for their original approach. In order to eliminate
as much as possible the potential “rubberbanding” savings, the discretisation
could be made as fine as possible, but this would at the same time increase
computational requirements. We in fact recommend NM Group survey accord-
ing to micro cells that are the size of a tower’s base (rather than 50 metres in
diameter).

1.4 Outline and overview

In this report, we are mainly concerned with algorithmic solution strategies for
the above discretised problem. That is, subject to pre-determined unit costs,
SVETIG factors, and penalty functions, we demonstrate how to effectively
compute the desired optimal power line route, by solving first the macro and
then the micro level sub-problem. We first show that the macro level problem
can be solved both exactly and efficiently by a relatively straightforward appli-
cation of Dijkstra’s algorithm; we describe this solution in Section 2. We then
show that the micro level problem can be solved both exactly and efficiently
using a more involved modification and application of Dijkstra’s algorithm; we
describe this solution in Section 3. The efficiency for the exact micro level
solution is of a theoretical nature (i.e. the computational problem is solvable
in polynomial time), and unfortunately our algorithm in unvarnished form is
unlikely to produce timely solutions for the problems typically encountered by
NM Group in practice. We therefore found it appropriate to propose various
potential practical approaches to solving the micro level problem which we
describe in Section 4.

2 Macro step efficient exact solution

In the macro step a corridor is to be found. Within this corridor lies the
minimum cost path that connects the start and end points of the power line
route. Afterwards, more detailed information about the corridor is gathered.
Our algorithm will find the minimum cost corridor.
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First an auxiliary weighted graph is built, then a minimum cost path in this
graph is found by applying for example Dijkstra’s shortest path algorithm [2].
We describe how to construct the weighted graph such that the shortest path
output is a minimum cost corridor. Moreover, the output corridor minimises
the Euclidean length of a polygonal curve between its end cells, optimised over
all such polygonal curves whose corners lie only at the centres of cells.

The previous algorithm used by NM Group was based on finding the minimum
cost path in a graph with weight on each of the vertices. In the hexagonal grid
this graph is obtained by letting every hexagon be a vertex which is connected
to all its neighbouring hexagons (see Figure 1). A problem that arises is that
the two paths connecting the top-left and bottom-right hexagons in Figure 2
both go through the same number of hexagons. If every hexagon has the same
cost, the algorithm of Dijkstra might well select the top-right path. When the
actual power line is built it will not necessarily pass through the centers of
the hexagons. Therefore the other path turns out to be much cheaper, as the
eventual total length is shorter. Hence, our first goal is to devise an algorithm
that selects a path of minimum cost and takes into account some measure of
Euclidean length of the path.

Figure 1: Each hexagon gets one
vertex inside and every vertex is
connected with the six vertices in
the six neighbouring hexagons.

Figure 2: The two paths con-
necting the top-left and bottom-
right hexagons go through the same
number of hexagons.
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2.1 Hexagonal grid

Instead of changing the algorithm, a different graph is constructed. The new
graph also encodes the Euclidean distance between the two neighbours in a
path as a cost. We will first describe how the graph is obtained and then show
why a minimum cost path algorithm will output the desired path.

Each hexagon gets six vertices inside which are cyclically connected forming a
new hexagon. Let v(h, e) be the vertex in the hexagon h closest to border-edge
e. Let h∗ be the neighbouring hexagon on the edge e, see Figure ?? where e is
the dashed edge between the hexagons h and h∗.

v(h∗, e)

h

h∗

e

v(h, e)

Figure 3: Left: Each hexagon (in cyan) gets a hexagon inside, where each
corner is a vertex. Each vertex is connected with an undirected edge to its
neighbours in the hexagon and with a directed edge to and from the closest
vertex in the neighbouring hexagon. Right: the vertices inside a hexagon are
labeled v(h, e) for begin in hexagon h closest to border e of the hexagon.

There is a directed edge from v(h, e) → v(h∗, e) having weight equal to the
cost of the hexagon h∗, i.e., the weight of the hexagon it enters. There is
also an edge from v(h∗, e) → v(h, e) having weight equal to the cost of the
hexagon h, again the weight of the hexagon it enters. Each interior edge in
the hexagon has very small weight. Let cmin be the cost of the hexagon with
minimal cost, and n the number of hexagons. Then every edge interior to a
hexagon is assigned a weight cmin/(3n).

A minimum cost path in this graph is a minimum cost path on the map. More-
over, for each inner polygon in this path, the distance between the centers of
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its two neighbours is taken into account as a measure of the length of the path.
In Figure 4 two examples are given that illustrate how the distance measure
works. Let xh be the distance between the center points of the neighbours of
a hexagon h, that is interior to a path. The sum of xh over all inner hexagons
h of the path is less for the red paths than for the black paths. The red paths
are also of lower cost than the black paths since there are less interior edges
used.

Figure 4: The path on the left (in red) is of lower cost, as it uses fewer interior
edges.

2.2 Square grid

In a similar way as for the hexagonal grid, an auxiliary graph can be con-
structed for the square grid. A minimum cost path in this graph relates to
a minimum cost routing in the square grid. Each square gets four vertices
inside, cyclically connected. Each vertex has an outgoing edge to the vertex
in the next square. This edge gets the weight of entering the neighbouring
square. Let cmin be the cost of the square with minimal cost, and n the num-
ber of squares. Then every edge interior to a hexagon is assigned a weight
cmin/(2n).

Finding a minimum cost path in this graph gives a minimum cost path on the
map such that expensive squares are avoided and the path takes into account
some measure of Euclidean length of the path.
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3 Micro step exact solution

The corridor that is obtained in the macro-step is now filled in with more detail.
We assume that the grid on top of the map is fine, that is, the area covered
by one polygon (triangle, square or hexagon) is close to the area needed to
build a post. This ensures that we do not have to take into account where
in a polygon the post is placed, each post will be placed in the centre of a
polygon. For each polygon we now consider the more specific costs as defined
in Section 1.2.

In Section 3.1 we will describe how to build an auxiliary graph, with costs on
the edges, such that a minimum cost path in this graph gives a minimum cost
solution to the micro problem. Dijkstra’s algorithm can be used to find such
a minimum cost path in the auxiliary graph. In Section 3.2 we will show that
there is a bijection between the paths in the auxiliary graph and the routings
in the micro corridor. Moreover we show that the minimum cost paths in the
auxiliary graph are in bijection to the minimum cost routings in the micro
corridor. In Section 3.3 we describe how to calculate the costs on the edges of
the auxiliary graph in the case of a square grid. We conclude by discussing the
complexity of Dijkstra’s algorithm on the auxiliary graph in Section 3.4.

3.1 Preprocessing for Dijkstra’s algorithm

We assume that the maximal distance between two towers is bounded by some
value K. This is a valid assumption, as there is a value for which the cost that
comes from the distance between two consecutive posts becomes too high to be
feasible or reasonable. Recall that this cost is denoted by stretch penalty. We
will construct a directed graph such that a minimum cost path in this graph
describes a minimum cost route in the original grid.

Suppose that from a polygon we can reach k other polygons with one stretch,
i.e., the two polygons are consecutive posts in a path. Note that this includes
steps of all lengths up to the maximum length K (see Figure 5). Recall that
the posts are placed in the centre of a polygon and the maximum distance
between two posts is thus K. Therefore, the set of reachable polygons from a
polygon p is the set of polygons with centre point at distance at most K from
the centre point of p.
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Figure 5: The dark square (hexagon) represents the current location, the lighter
areas represent the possible landing spots coming from the dark area.

Let A be the starting point, B be the target point and let p be any polygon.
For each polygon p let n1, . . . , nk be the reachable polygons. We introduce k
dummy vertices for p. Each dummy vertex is labeled (p, nl) for l = 1, . . . , k. A
dummy vertex (p, nl) represents that the current location is p and this location
is reached by coming from nl. For A there is only one vertex introduced,
denoted by (a, ∅), which is the starting point of the path. For B there is a
vertex (b, j) for all polygons j from which B can be reached and a vertex (∅, b)
which is the end point of the path.

The vertex (a, ∅) has only outgoing edges: (a, ∅)→ (m, a) for every reachable
polygonm = 1, . . . , k of A. The vertex (∅, b) has only incoming edges: (m, b)→
(b, ∅) for every reachable polygon m = 1, . . . , k of B. For every other vertex
(p, nl) there is a directed edge to (nm, p) for each reachable polygon m =
1, . . . , k. A small example is given in Figure 6. The weight on such an edge
between (p, i) and (j, p) represents the costs made for placing a post in p.

The costs involved in placing a post in p between i and j are:

• the material unit cost of a support tower;

• multiplied by the cost of the placement at p (the SVETIG factor);

• multiplied by the cost of the angle structure needed at p;

• multiplied by the stretch penalty, which depends on the maximum of the
two distances between p and i and between p and j.

There are also costs of suspending the power line. On an edge (p, i) → (j, p)
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1 2 3

4 5 6

7 8 9

10 11 12

(5,2) (5,4) (5,6) (5,8)

(2,5) (4,5) (6,5) (8,5)

Figure 6: Part of the graph that is built: the square labeled 5 can stretch to any
of its direct neighbours 2, 4, 6 and 8, therefore the vertices (5, 2), (5, 4), (5, 6)
and (5, 8) are introduced. From each of these there is a directed edge to all
the reachable neighbours: (2, 5), (4, 5), (6, 5) and (8, 5).

we incorporate the suspending costs between p and j. The suspending costs
between i and p will be taken into account in the edge that ends in (p, i).

Recall that the suspending costs per polygon are:

• the material cost per unit length of power line;

• multiplied by the SVETIG factor for suspending the power line in this
polygon;

• multiplied by the length of the power line intersecting this polygon.

All the relevant information for the placing costs in p and the suspending costs
between p and j is known at the time of selecting the edge (p, i) → (j, p).
Therefore, all the costs can be incorporated on this edge.

The outgoing edges of (a, ∅) are charged in the same way, the placing of the
post in A and the suspending costs between A and the target. The incoming
edges of (∅, b) are only charged with the placing cost of the tower in B. In
Section 3.3 we will describe in detail how to calculate the costs on an edge in
the case of a square grid.

The directed graph has at most k dummy vertices for each polygon in the grid.
The polygons on the boundary will give rise to strictly less than k dummy
vertices. Suppose the grid has m polygons. Then the graph will have approx-
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imately k ·m vertices. Each vertex has at most k outgoing edges. Therefore
the resulting graph will have approximately k2 ·m edges.

On the resulting directed graph, Dijkstra’s algorithm or any other shortest
path solver can be applied to obtain the minimum cost route in the original
grid. We will discuss the running time of this algorithm later in Section 3.4.
First we will show that there is a bijection between a minimum cost path in
the directed graph and a minimum cost routing in the grid.

3.2 Validation

Let A and B be the points that need to be connected by a power line. Let
P be the collection of paths that connect A and B, such that the distance
between two neighbouring posts is at most K. Let k be the maximum number
of polygons at distance at most K. Let D be the directed graph obtained as
described in the previous section, where (a, ∅) and (∅, b) represent A and B
and D is such that at most k polygons are at distance at most K. Let Q the
set of directed paths from A to B in D.

Claim. There is a bijection φ between P and Q such that for every pair p ∈ P
and φ(p) = q ∈ Q the costs of p and q are equal.

Proof. Let p ∈ P be a path fromA toB using the polygonsA = i0, i1, . . . , im, im+1 =
B. We show how to obtain q = φ(p). Start with q = ((a, ∅), (i1, a)). For every
step between two polygons ij and ij+1 in p, the distance is at most K. There-
fore, the directed edge (ij , ij−1) → (ij+1, ij) must exist in D and we can add
(ij+1, ij) to q. Last, we add (∅, b) to q and we have q ∈ Q.

On the other hand, every path q ∈ Q is mapped to a path φ−1(q) = p ∈ P.
Let q be the path:

(a, ∅)→ (i1, a)→ . . .→ (ij , ij−1)→ (ij+1, ij)→ . . .→ (b, im)→ (∅, b) .

The path p can be obtained from q by selecting the path in P that consecutively
visits the polygons A, i1, . . . , im, B. This path must exist in P since all steps in
q imply that the consecutive posts are at most at distance K from each other.

Let p ∈ P and φ(p) = q ∈ Q. The costs of the polygons used (with placing a
post or by suspending over it) in p are the same as in q. The distances between
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two subsequent posts and the angles at the posts are also the same in p as in
q. Therefore, the cost of p must be equal to the cost of q.

It follows that if p is a minimum cost path in P then φ(p) = q must be a
minimum cost path in Q. Therefore, the solution that a minimum cost path
algorithm will give when applied to the directed graph, is a minimum cost path
within the macro corridor for the original problem.

3.3 Calculation of costs

In this section we will describe how to calculate the cost of an edge in the
directed graph. We will consider the case of a square grid, the calculations can
be done for a hexagonal grid as well, if necessary. In the square grid we let the
topleft corner be the origin. We start by introducing some notations.

• p, q, r, . . . generally denote points in the Euclidean plane, which are the
center point of the squares sp, sq, sr, . . . respectively.

• i, j generally denote the horizontal respectively vertical distance from the
origin, and therefore also indicate a column (i) and a row (j).

• cS(p, q) is the cost function of the wires going over the area between p
and q, say the suspension costs.

• cP(p, q, r) is the cost of placing a post in q coming from p and going to
r, which is the landing cost of the tower for the given angle.

We consider the edge (sq, sp)→ (sr, sq), this denotes that we have subsequent
post in p then q and then r. The weight of this edge is:

cS(q, r) + cP(p, q, r) .

When (sq, sp)→ (sr, sq) is chosen, the costs of everything that has to do with
the post in sq is charged as well as the cost of the wiring on top of the squares
between q and r.

For the incoming edges to (∅, sB), there is only the costs of placing a post in
B:

(sB, sq)→ (∅, sB) has cost cP(q,B, ∅) .
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3.3.1 Calculation of suspension costs

The function cS depends on the material cost, the SVETIG factors of the
polygons over which the suspending takes place and the length of the power
line over such a polygon. To capture this in the definition of cS we introduce
some notation.

• lpq is the line on which p and q lie.

• crosV(pq, x) is the crossing of the line lpq with the vertical at coordinate x,
crosH(pq, y) is the crossing of the line lpq with the horizontal at coordinate
y.

• Sij , Sp represent the SVETIG factor of the squares sij and sp respectively.

• len(pq) is the length of the line-segment between p and q and len(sij , pq)
is the length of the line lpq in the square sij .

• W represents the cost of the wire per length factor.

The value cS(p, q) is calculated by summing over all columns in which the line
segment appears (i), then over the rows in which the line segment appears in
the i-th column (j). The sum then consists of the length of the line segment
within square sij (len(sij , qr)) times the weight of the square sij . If necessary,
the additional costs of the wires of length len(p, q) can be added. Formally, we
have the following expression:

cS(p, q) = len(pq) ·W +

dqxe∑

i=bpxc

crosV (pq,i+1)∑

j=crosV (pq,i)

Sij · len(sij , pq) .

We will now explain how to calculate the crossing points and the length of the
line-segment in a particular square. Any point on the line that goes through p
and q is described with:

lpq(t) = (q − p)t+ p .

The line segment between p and q is given by varying t from 0 to 1. To obtain
a value for crosV(pq, i), we use the time t∗ such that the x-coordinate of lpq(t)
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is i. Here êy denotes the vertical unit vector.

crosV(pq, i) =





py if t∗ ≤ 0
qy if t∗ ≥ 0
lpq(t

∗) · êy otherwise

For every square sij the point of entry (en) and the point of exit (ex) of the
line lpq are computed. The length of the line-segment in the square is then
equal to the Euclidean distance between en and ex, that is,

len(sij , pq) = ||en − ex||2 .

3.3.2 Calculation of tower costs

The function cP depends on the material cost of a support tower, the SVETIG
factors of the polygon in which the tower is built, the angle structure that is
needed for this tower and the stretch penalty. To capture this in the definition
of cP we introduce some notation.

• P (q) represents the cost of placing a post in sq.

• L(p, q, r) represents the stretch penalty, that is, the extra costs at q
induced by the maximum distance between q and its two neighbours.

• A(p, q, r) represents the angle penalty that depends on the angle at q.

Using this notation, we calculate the cost of placing a post in q coming from p
and going to r as:

cP(p, q, r) = P (q) · L(p, q, r) ·A(p, q, r) .

Both L and A are step functions.

The function L depends on the maximum of len(pq) and len(qr). There is a
table that contains the value of L(p, q, r) given max(len(pq), len(qr)) < ` for
different values of `.

The angle at q can be computed using the coordinates of p, q and r. Consider
the two vectors ~a = (px − qx, py − qy) and ~b = (rx − qx, ry − qy). The angle
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at q is the same as the angle between the two vectors. The angle between two
vectors, denoted by θ, can be computed using the default dot product

~a ·~b = ||~a||2||~b||2 cos(θ)

where ~a ·~b represents the dot product between two vectors. Let px, py (respec-
tively qx, qy and rx, ry) represent the coordinates of p (respectively q and r)
then the angle at q is given by:

cos(θ) =
~a ·~b

||~a||2||~b||2
=

(px − qx)(rx − qx) + (py − qy)(ry − qy)√
(px − qx)2 + (py − qy)2

√
(rx − qx)2 + (ry − qy)2

.

The function A depends on the angle at q. There is a table that contains the
value of A(p, q, r) given that the angle at q is at most α for different values of
α.

3.4 Complexity of solving shortest path problems

In the previous section we have described how the problem can be formulated
as a minimum cost path problem in a directed graph. This is equivalent to a
weighted shortest path problem in a directed graph. There are several algo-
rithms known that solve this problem in polynomial time. An example is the
famous algorithm of Dijkstra [2]. Dijkstra’s original algorithm has a running
time of O(|V |2) where |V | denotes the number of vertices in the graph.

The implementation due to Fredman and Tarjan [3] is asymptotically the
fastest known shortest-path algorithm for directed graphs with non-negative
weights. This algorithm has time complexity O(|E| + |V | log(|V |)) and space
complexity O(|V |2), where |E| is the number of edges. Consider the graph we
have built in the previous sections. The graph has k2m edges and km vertices,
where k is the number of reachable neighbours andm is the number of polygons
in the micro corridor. This relates to a running time of O(k2m+ km log(km))
and space requirement of O(k2m2).

Let us briefly consider the rough boundaries of a problem that could arise in
practice (as we were informed by NM Group). Suppose that the grid consists of
squares and each square covers 20×20 square metres. The distance between A
and B is approximately 50 kilometres and the micro corridor is approximately
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50 kilometres long and 4 kilometres wide. This yields m ≈ 2500 × 200 =
500, 000. Suppose the distance between two posts is at most 2 kilometres.
Recall that k is the number of squares whose centre point lies within distance
K = 2 kilometres, from the centre point of some chosen square. For a square
grid k can be found using the solution to the so-called Gauss circle problem:
“How many lattice points are there in a circle with radius r that is centred at
the origin”. For bounded radius this number can be found using the following
formula [7]:

N(r) = 1 +
∞∑

i=0

(⌊
r2

4i+ 1

⌋
−
⌊

r2

4i+ 3

⌋)
.

In our case the lattice points are the centres of the squares, therefore one unit
relates to 20 metres. The radius in units is 2000/20 = 100 and N(100) =
31, 417. In this example the directed graph will have approximately 500, 000×
31, 417 ≈ 15.8 billion vertices and even more edges.

Although we have shown that the micro level problem can be solved efficiently
in theory, the above rough calculation suggests that in practice it may be
prohibitively expensive, both in terms of computational time and memory
storage requirements, to obtain an exact solution. In the next section, we
will describe some heuristic algorithmic strategies which could be efficient in
practice.

4 Heuristics and metaheuristics

In this section, we propose a set of simple heuristics that have the purpose
of quickly providing solutions to the micro level problem. First, we present
the main ideas and the algorithmic description of constructive heuristics that
try to build initial paths. Then, we propose several improvement heuristics
based on quick perturbations of paths. Finally, we describe ways of combining
the proposed heuristics by using a metaheuristic, namely the Tabu Search
strategy.

To describe the heuristics, we use the following nomenclature and notation.
Let N be the number of polygons used in the micro step, so that H =
{h1, h2, . . . , hN} is the set of polygons. We assign each polygon to a unique pair
(i, j) that corresponds to its grid position. This way we may conveniently refer
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to a polygon hk ∈ H as h(i,j) by using this map. We assume the grid is given
by nR rows and nC columns, such that nR × nC = N . We denote by hS and
hE the starting and ending polygons of the problem, respectively. In addition,
(iS , jS) and (iE , jE) are the grid positions of hS and hE , respectively.

4.1 Constructive heuristics

The first heuristic we propose is a greedy algorithm that starts from hS and
iteratively selects other polygons as landing points until hE is reached. This
constructive heuristic, called CH1, is detailed in Algorithm 1. Note that we
use the function movecostij(p, q) to compute the total cost of jumping from
any polygon h(i,j) to another reachable polygon h(p,q). Such cost can be im-
plemented as described in Section 3.3. This heuristic goes from one polygon
to another only if there are no obstacles between them. There is no guarantee
of finding a feasible path at the end of the heuristic (we provide some ways of
getting rid of this disadvantage ahead in this section).

A tentative way of improving heuristic CH1 would be to allow infeasible jumps,
i.e. going from one polygon to another even though there are obstacles be-
tween them. To be consistent with the optimisation objective, such infeasible
jumps should incur penalisation costs. With this in mind, we propose a second
constructive heuristic, called CH2, which is similar to CH1 except for allow-
ing infeasible paths. CH2 is presented in Algorithm 2. Note that we use the
function movecostinfeasij(p, q) to compute the cost of jumping from a poly-
gon h(i,j) to a reachable polygon h(p,q). This function is similar to that used
in Algorithm 1, but has to incorporate additional costs to penalise infeasible
jumps.

The third constructive heuristic, CH3, works in a different way in relation to
the two previous ones. It starts with the path (iS , jS)→ (iE , jE) even though
this may be infeasible (due to obstacles or a large number of jumps). Then,
new polygons are inserted in the path iteratively, in order to improve the total
cost of the path. The heuristic is defined in Algorithm 3.

In all the algorithms presented above, we can introduce randomness with the
aim of improving their performance. This can be done in many different ways
and we mention a few in the following, without going into details. One first
idea is to insert random perturbation costs in the computation of the moving
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PATH = {(iS , jS)};
(i, j) = (iS , jS);
end_reached = 0;
while i ≤ nR and j ≤ nC and end_reached = 0 do

set h(i,j) as the current landing point;
w = 3;
candidates = 0;
while candidates = 0 and w ≤ nR do

for r = 1 to w do
for s = -w to w do

if i+ r ≤ nR and 1 ≤ j + s ≤ nC and move is feasible then
if i+ r = iE and j + s = jE then

ars = −1;
end_reached = 1;

else
ars = movecostij(i+ r, j + s);

end
candidates = 1;

end
end

end
w = w + 1;

end
if (candidates = 0) then

STOP: no solution found;
end
(r̂, ŝ) = argminr,s{ars};
update total costs;
i = i+ r̂;
j = j + ŝ;
add (i, j) to PATH;

end
return PATH as solution;

Algorithm 1: Constructive heuristic 1 (CH1).
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PATH = {(iS , jS)};
(i, j) = (iS , jS);
end_reached = 0;
w = 3;
while i ≤ nR and j ≤ nC and end_reached = 0 do

set h(i,j) as the current landing point;
for r = 1 to w do

for s = -w to w do
if i+ r ≤ nR and 1 ≤ j + s ≤ nC then

if i+ r = iE and j + s = jE then
ars = −1;

else
ars = movecostinfeasij(i+ r, j + s);

end
candidates = 1;

end
end

end
(r̂, ŝ) = argminr,s{ars};
update total costs;
i = i+ r̂;
j = j + ŝ;
add (i, j) to PATH;

end
return PATH as solution;

Algorithm 2: Constructive heuristic 2 (CH2).
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PATH = {(iS , jS), (iE , jE)};
set total cost as movecostinfeasiSjS (iE , jE);
candidates = 1;
w = 3;
while i < nR and j < nC and candidates = 1 do

candidates = 0;
best_cost =∞;
foreach two neighbour pairs (i1, j1) and (i2, j2) in PATH do

i = (i1 + i2)/2;
j = (j1 + j2)/2;
for r = -w to w do

for s = -w to w do
if 1 ≤ i+ r ≤ nR and 1 ≤ j + s ≤ nC then

if i+ r 6= i1 or i+ r 6= i2 or j + s 6= j1 or j + s 6= j2 then
ars = insertioncostinfeas(i+ r, j + s);
candidates = 1;

end
end

end
end
(r̂, ŝ) = argminr,s{ars};
if (best_cost > ar̂ŝ) then

î = i+ r̂;
ĵ = j + ŝ;

end
end
if (candidates = 0) then

STOP: no solution found;
end
update total costs;
add (̂i, ĵ) to PATH;

end
return PATH as solution;

Algorithm 3: Constructive heuristic 3 (CH3).



Power line route optimisation in a finite spatial grid 77

and insertion costs. This would force the algorithm to choose jumps that are
not the best at the moment, but which may contribute to a better global
solution (as the algorithm becomes less greedy). Another idea would be to
restrict the jumps only to randomly chosen polygons in a small neighbourhood
of the current one, instead of considering all the reachable polygons. When
included in the previous algorithms, these ideas (and many others) have the
potential to construct better routes, especially when used in a metaheuristic
context.

4.2 Path perturbation heuristics

The heuristics proposed so far have the purpose of quickly providing an initial
solution of the problem. On the other hand, the quality of the solution may
be poor and in the worst case no path is obtained. Therefore, we propose
some perturbation heuristics, also known as improvement heuristics, with the
purpose of improving the paths obtained by the constructive heuristics. These
are also simple and quick heuristics and they work by changing an existing
path by means of adding, removing or replacing one or more polygons. Hence,
we assume that an initial path of K polygons is available, which we denote
by the ordered set PATH = {(i1, j1), (i2, j2), . . . , (iK , jK)}. The heuristics are
described as follows:

1. Add polygons to path. For each k = 1, . . . ,K − 1, select the pair of
polygons h(ik,jk) and h(ik+1,jk+1), with (ik, jk) and (ik+1, jk+1) in PATH.
Then, compute the cost of inserting a reachable polygon h(i,j) between
those two such that (i, j) /∈ PATH. After computing all these insertion
costs, carry out only one insertion, namely that one with the minimum
insertion cost. This will increase the path by one polygon, which may
reduce the total cost (e.g. if a penalisation for crossing an obstacle in the
original path is removed after the insertion). Even when the total cost
of the resulting path becomes worse, this path can be stored as an alter-
native solution with the purpose of being useful e.g. in a metaheuristic
environment, as we describe later in this section.

2. Remove polygon from path. Compute the new total cost of removing
one polygon at a time from the current path. Then, the resulting path
is obtained by removing the polygon that corresponds to the best total
cost among all the others. Again, even if the total cost of the resulting
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path is worse than that of the original path, it can be useful to store the
resulting path to be later used in a metaheuristic environment.

3. Replace polygons in path. For each (i, j) ∈ PATH, compute the change
in the total cost given by replacing the corresponding polygon h(i,j) by
one of its neighbours in the grid, namely h(i+r,j+s) for −w ≤ r ≤ w,
−w ≤ s ≤ w and w > 0, such that 1 ≤ i+ r ≤ nR and 1 ≤ j + s ≤ nC .
Then, after computing all the changing costs, replace the polygons that
lead to a new path with the best total cost among all the others.

We can introduce randomness to these heuristics in a similar way as previously
proposed for the constructive heuristics. This can be useful to provide better
solutions, especially if we are able to call the heuristics several times. Indeed,
to get the best of these heuristics we can combine all them together and use
a metaheuristic algorithm to coordinate their interaction, as described in the
next section.

4.3 Metaheuristics

There are many metaheuristics proposed in the literature, such as Tabu Search,
Genetic Algorithms, Ant Colony Optimisation and Simulated Annealing [4].
These methods have been widely used in the last decades to find feasible solu-
tions for many hard combinatorial optimisation problems [1], especially when
modeling practical situations. Although having different motivations, meta-
heuristics have a common basic idea: they start with one or more initial so-
lutions and then use a set of simpler heuristics to iteratively perturb these
solutions, with the aim of obtaining better quality solutions at the end. These
perturbations are important not only to improve the quality of the initial solu-
tions, but also to get rid of local optima. This way, a metaheuristic is able to
exploit several neighbourhoods of the feasible set, which increases its chances
of finding an optimal solution of the problem (or getting closer to it) in relation
to a standard heuristic.

All the constructive and perturbation heuristics described earlier in this sec-
tion can be used to build a metaheuristic method. The constructive heuristics
proposed in Section 4.1 can provide initial solutions to the method, especially
when randomness is incorporated, so that many different solutions may be
provided. Then, at each iteration of the metaheuristic, the path perturba-
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tion heuristics proposed in Section 4.2 may be used to try to get paths that
are better than those found so far as well as to diversify the current search
space.

To exemplify the use of a metaheuristic in this context, we describe a Tabu
Search (TS) method [5] that relies on the previously defined heuristics. There
are different variants of TS and furthermore the algorithm described below may
be implemented in different ways. The most appropriate variant/implementation
depends on the type of the problem, heuristics used to construct and perturb
solutions, data structures, computer environment, and many other character-
istics. This way, to obtain a TS implementation that works well in practice,
it is important to test with different strategies and parameter choices first and
then stick to the best setting.

The main idea of TS is to keep a tabu list to indicate which changes are prohib-
ited when the perturbation heuristics are called. This tabu list is dynamically
updated through iterations, so that some prohibited changes remain in the list
for a given number of iterations. After a change is removed from the tabu list,
it becomes allowed again. This is the way that TS algorithms try to get rid of
local optima.

Let S = {PATH1, PATH2, . . . , PATHP } be an ordered set of solutions, using
the total cost of each path as its ranking value. We denote by TL the tabu
list that contains the perturbations (moves) that must be prohibited in the
current calls to the path perturbation heuristics. This can be implemented as
a simple circular list so that old entries are replaced by new ones through the
iterations (which makes this tabu list dynamic). Finaly, we define an ordered
set C that contains the paths that result from the path perturbation heuristics.
Using this notation, the TS method is presented in Algorithm 4. The stopping
criterion of the algorithm is not particularly defined, as it depends on the
implementation. The usual criteria are given by reaching a maximum running
time or a maximum number of iterations of the algorithm.

There are several open steps in Algorithm 4. One of them is how to choose
index i in line 5. For instance, by choosing i = 0 we take the path with
the currently best total cost. This may be a good choice for getting better
solutions in the improvement heuristics, but other choices may be useful to
generate solutions that allow to exploit other neighbourhoods of the feasible
set. Hence, an implementation of the algorithm should consider different ways



80 SWI 2015 Proceedings

Initialise set S by calling the constructive heuristics;
TL = ∅;
while stopping criterion is not reached do
C = ∅;
Choose an index i such that PATHi ∈ S;
Apply the improvement heuristics to PATHi allowing only the
perturbations that are not in TL;
Add to C all the paths resulting from the perturbation heuristics;
Select K paths from C, add them to S and add the perturbation moves
that originated them to TL;

end
if (S = ∅) then

STOP: no solution found;
end
Return PATH1 as the best solution found for the problem;

Algorithm 4: Tabu search method (TS).

of carrying out this step. These comments apply to other parts of the algorithm
as well, such as the size of K and how to select the paths from C.

5 A probabilistic viewpoint for further study

A classic topic in probability theory is first passage percolation, cf. Hammers-
ley and Welsh [6]. This topic is generally concerned with the following basic
question. Given some growing sequence of graphs — think of regular struc-
tures such as the two-dimensional grid or the complete graph — whose vertices
or edges are given a random distribution of weights, what is a good asymp-
totic description of the lowest weight path (geodesic) between two specified
vertices?

As an offshoot of the SWI problem, it could be natural and novel to consider
a variant of first passage percolation that incorporates some aspects of power
line routing. Although interesting, this is beyond the scope of this project and
report. We only sketch a simplistic model problem which might be considered
along these lines. The following is a variant of first passage bond percolation.
(Note that more complex variants of first passage site percolation might model
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the original problem more faithfully.)

The underlying graph is an n × n grid, embedded in the plane, whose nodes
are given some random weights, according to a given probability distribution.
Here we define a power line route to be a sequence of mutually distinct points
of the grid, every consecutive pair of which is within distance k, according to a
given norm. The calculation of the cost of a power line route takes into account
two components, weighted separately. First, it incorporates the length of the
polygonal curve (which accounts for the cost of the power line). Second, it
includes the cumulative cost of all the nodes in the sequence (which accounts
for the cost of the tower construction). The cost of each node is calculated as
a product of the weight at that node and some given function of the lengths
and angle θ of the incident line segments. (A particularly simple example of
the last-mentioned function is, say, the product of the incident line lengths and
|π−θ|, though other simple choices could be more interesting or realistic.) The
problem is to determine the asymptotic behaviour (as n → ∞) of the lowest
cost power line routing between (1, 1) and (n, n).

As far as we are aware, this type of model, particularly with the penalty cost
for acute angles in the polygonal curve, has not been studied in the literature
before.

6 Conclusion

In this report, we have addressed a real-life problem faced by the company NM
Group, a problem called power line routing. We considered the problem at two
different scales of discretisation, namely macro and micro levels. For macro
level routing, we proposed a new algorithm that overcomes an issue faced by a
previous algorithm used by the company. We also comprehensively addressed
the more detailed micro level routing problem. We proposed several different
algorithmic solution strategies, one of which is exact, the others of which are
heuristic or approximate. In particular, we have encoded the problem in an
auxiliary weighted directed graph, the shortest path of which corresponds ex-
actly to a minimum cost solution for the micro level routing problem. This
leads to an exact algorithm for determining the optimum that, while theoreti-
cally efficient, is unlikely to be computationally practical. So we also proposed
several heuristics including path perturbation and metaheuristics, all of which
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have decent hope of producing reasonable candidate solutions in reasonable
time/space.
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Abstract

The theory of compressed sensing (CS) promises reconstruction of
sparse signals with a sampling rate below the Nyquist criterion by taking
randomized measurements under certain assumptions about the struc-
ture of the signal. Current compressed sensing techniques applied to
magnetic resonance imaging (MRI) require measurements concentrated
heavily around the center of the Fourier space in order to yield some-
what usable results. PHILIPS Healthcare is interested in the potential
time-saving benefits of compressed sensing applied to MRI, but requires
robust and accurate reconstruction results. During the 106th European
Study Group for Mathematics and Industry, PHILIPS challenged us to
improve upon existing Fourier space sampling patterns for compressed
sensing. The patterns could, for example, include patient dependent
prior information. We demonstrate (experimentally) that current CS-
MRI techniques lack a sufficient amount of the property called incoher-
ence. Incoherence is a measure of correlation between the measurement
matrix and the basis in which the signal is sparse. A compressed sensing
method without sufficient incoherence results in sub-optimal performance
in terms of scan-time and/or image quality. By introducing the necessary
incoherence, biased sampling in the Fourier space is no longer necessary.
Increasing incoherence while keeping the similar sparsity level in a prac-
tical setting is not as straightforward. In this paper, we demonstrate
an off-line approach based on prior patient information and evaluate the
results with the structural similarity index (SSIM) as a measure of im-
age reconstruction quality. The developed strategy provides an improved
signal basis such that both scan-time reduction and good image recon-
struction are attained.
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1 Introduction

Magnetic resonance imaging (MRI) is the imaging modality of choice for diag-
nosing a vast range of diseases, including multiple sclerosis and cancer. Com-
pared to X-ray based techniques, such as computerized tomography (CT), MRI
provides superior soft-tissue contrast and does not expose the patient to ion-
izing radiation. Unfortunately, a typical MRI exam can take over 30 minutes
(as compared to 5 minutes for a CT scan). One way to reduce the scan time is
to collect fewer measurements. Current image reconstruction techniques, how-
ever, require a sampling strategy which obeys the Nyquist criterion, in order
to reconstruct a usable image. Recent developments in the field of compressed
sensing (CS) promise a dramatic reduction of the number of measurements
needed to reconstruct an image, as long as the measurement process is inco-
herent and the image can be represented in terms of relatively few basis terms
(sparsity).

PHILIPS Healthcare is one of the major MRI scanner manufacturers in the
world and it is interested in optimization of the CS-MRI paradigm. During the
SWI 2015, PHILIPS would like to investigate how the CS-MRI experiment can
be optimally performed, in the sense that an accurate image is reconstructed
from data obtained within the shortest possible scan-time. Some information
about the patient is available prior to the scan thus it can be used to achieve
this goal. As PHILIPS suggests, the approach should be patient-dependent,
that is, the existing data has to be quickly processed to determine the scanner
setup for the new scan.

In this report, we discuss how we combine CS and MRI in order to develop re-
construction algorithms that exploit previously acquired patient-specific infor-
mation. The report is organized as follows. First, we review the mathematics
behind basic MRI image reconstruction and compressed sensing and identify
a possible bottleneck for the straightforward application of CS theory to MRI
imaging. Then, we delineate a strategy to solve this problem and we show
some preliminary results we have obtained during the SWI 2015.
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2 Preliminaries

2.1 Magnetic resonance imaging

The simplest mathematical model for the MRI imaging process can be stated
as follows. We are interested in reconstructing the transverse component of
the so-called spin magnetization vector, which is tissue-dependent, and thus
reveals internal structures. We represent the transverse magnetization of a 2D
slice by a function u(x, y) with x, y ∈ [0, 1]. In practice, u is a complex function
but for simplicity, we assume u ∈ R. The work presented in this report can be
easily extended to the complex case.

In MRI, we can measure the function u only in the Fourier domain, also called
k-space. The 2D Fourier series of u is denoted by

ûkl =

∫ 1

0

∫ 1

0
dx dy u(x, y)eı2π(kx+ly),

for k, l ∈ Z. In practice, only the coefficients up to some maximum bandwidth
−B < k, l < B are measured, allowing us to reconstruct an N × N discrete
representation of the transverse magnetization uij = u(i/(N − 1), j/(N − 1))
with 0 ≤ i, j < N . Given N , the Nyquist criterion determines the value of
B which makes a correct reconstruction of u from its frequency coefficients
possible.

By organizing all the coefficients in vectors, we can state the MRI measurement
process as follows

û = Fu,

where u ∈ Rn, û ∈ Cn, F ∈ Cn×n represents the 2D discrete Fourier transform
and n = N2 denotes tot total number of pixels. A schematic depiction of the
process is shown in figure 1.

Since all the Fourier samples need to be measured sequentially, the time needed
to acquire them scales quadratically with the required resolution. In the next
section we will discuss an alternative sampling paradigm that promises a more
favorable scaling assuming that u exhibits some additional structure.
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2.2 Compressed sensing

The basic idea behind compressed sensing is that we can uniquely solve an
underdetermined system Ax = b given that the solution we seek is sparse
(i.e., has only a few non-zero elements) and the matrix A satisfies the so-called
restricted isometry property (RIP).
Definition 2.1. A vector x ∈ Rn is k−sparse when it has at most k non-zero
elements.
Definition 2.2. A matrix A ∈ Rm×n satisfies the restricted isometry property
RIP(k,δk) if for every k-sparse vector x there exists a constant δk such that

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2.

When the measurement matrix A satisfies the RIP and the solution x is sparse,
or well approximated by a sparse solution, then one can solve the so-called basis
pursuit denoise (BPDN) problem

min
x
‖x‖1 s.t. ‖Ax− b‖2 ≤ σ.

Here, σ ≥ 0 is the noise level of the measurement b.

With these definitions we can now state the following theorem by Candès [3]
regarding the recoverability of a sparse signal from noisy measurements.
Theorem 2.1. Let the matrix A satisfies RIP(2k,δ2k) with δ2k <

√
2− 1, and

b = Ax + n for given signal x and ‖n‖2 ≤ ε. Then, the error between the
solution x of the BPDN problem and the true signal x is bounded as follows:

‖x− x‖2 ≤ C0‖x− xk‖1/
√
k + C1ε,

where C0 and C1 are positive constants and xk is the best k-sparse approxima-
tion to x. Thus, if the given signal x is k-sparse, we have ‖x− x‖2 ≤ C1ε

With overwhelming probability, certain types of random matrices (e.g., ma-
trices whose elements are i.i.d. Gaussian) satisfy the required RIP property
when

m ≥ Ck log(n),

where C is a problem-specific constant [3]. For our MRI problem, this would
mean that the number of measurements is no longer driven by the resolution
but by the sparsity of the signal. It is in practice not feasible to check whether a
given matrix satisfies RIP. Instead, one typically considers the coherence.
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In practical applications, the signal of interest is not sparse itself, but admits
a sparse representation in some orthonormal basis Ψ ∈ Cn×n. Modelling the
measurement process as taking inner products of the signal with m rows of an
orthonormal basis Φ ∈ Cn×n, we can express the sensing matrix as A = RΦΨ,
where R ∈ Rm×n selects m rows at random. The resulting matrix A is a
suitable RIP when the mutual coherence between Ψ and Φ is low.
Definition 2.3. The mutual coherence of two orthonormal bases Ψ and Φ is
defined as

µ(Ψ,Φ) = max
1≤i,j≤n

|(ΨTΦ)ij |,

Generally, the lower the coherence, the lower the RIP constant and the fewer
measurements we expect to need in order to recover a given sparse signal. Note
that for orthonormal bases we have 1 ≤ µ ≤ √n. In the remainder of the paper
we will use the coherence as a heuristic to gauge how well a given pair (Ψ,Φ)
is expected to perform.

2.3 Sparse recovery

There are a number of algorithms for solving the BPDN problem, most of
which are based on one of two equivalent reformulations. The first is quadratic
formulation of the problem:

min
x
‖x‖1 + λ‖Ax− x‖2,

and the second is the Lasso problem

min
x

1

2
‖Ax− x‖22 s.t. ‖x‖1 ≤ τ.

For a given σ, there exists a unique λ and τ such that the solutions of all three
problems coincide [5, 2]. The relation between these parameters is given by
the Pareto curve. This is illustrated in figure 2.

Finding these parameters λ or τ is not trivial, however, and typically relies
on some sort of continuation method. A very elegant way of finding a τ cor-
responding to a given σ is described by [5]. Essentially, they develop a root-
finding method to traverse the Pareto curve. The Lasso subproblems are solved
via a projected gradient algorithm and is suitable for large-scale problems and
complex data.
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3 Approach and results

We have seen that the two important ingredients in CS are sparsity and coher-
ence. The image needs to be as sparse as possible while the coherence needs
to be as low as possible. The goal is to leverage these results to reduce the
number of measurements needed to recover the image u from Fourier measure-
ments

b = RFu,

where R ∈ Rm×n with m < n is a restriction matrix that subsamples the full
Fourier measurements. Since we are interested in taking as few measurements
as possible, we want m to be as small as possible. Introducing the subsam-
pling ratio ρ = n/m, the potential speedup of the measurement process is
proportional to ρ.

A typical image is not sparse in the natural pixel basis. Instead, we need to
find a basis in which the image can be sparsely represented. A common choice
is wavelets, denoted here by a matrix W . The sparsity is illustrated in figure
3.

The recovery problem now is to find wavelet coefficients z = Wx such that
RFW T z ≈ b. A problem with this approach is that the mutual coherence
µ(F,W T ) is quite high, as illustrated in figure 4. A remedy to this is to
insert a random ±1 diagonal matrix in the measurement process and collect
measurements as b = RFSu. Here, S = diag(s) where the si ∈ {+1,−1} are
i.i.d. Rademacher random variables [1, 4]. The mutual coherence µ(FS,W T )
is much lower, as illustrated in figure 4.

Reconstructions with and without S for homogeneous random sampling are
presented in figure 5. We clearly see that incorporating the matrix S spreads
the information more evenly over the Fourier space so that uniform random
sampling makes more sense. Comparing the reconstruction quality in terms of
the Structural Similarity Index Measure (SSIM) [6] for different subsampling
ratios in figure 6 we see that incorporating S allows for a higher subsampling
factor.

Unfortunately, it is not feasible in practice to incorporate S in the sampling as it
would entail randomly perturbing the object prior to taking the measurement.
Therefore, we will take a slightly different view on the problem.
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3.1 Breaking the coherence

Instead of changing the measurement process, we will aim to find a basis W̃
that reduces the mutual coherence. An obvious candidate is W̃ = SW , how-
ever, typical images are much less sparse in this new basis as illustrated in
figure 7.

This leads us to two extreme cases: for s = 1 we have a very sparse repre-
sentation and a high coherence while for uniformly random si ∈ {−1,+1} we
have a low coherence and insufficient sparsity. This is shown in figure 8. The
question is whether there exists a mask s that achieves an “optimal” trade-off
between the two extremes. To investigate this we take the si to be correlated
Rademacher variables or random checkerboard patterns and vary the scale to
obtain a natural continuation from one extreme to the other. A few exam-
ples are shown in figure 9. For these matrices, we compute the coherence and
the sparsity and plot them. Figure 10 shows that they indeed trace out a
trade-off curve as argued earlier. Figure 11 shows the reconstruction quality
for these various masks. Unfortunately, the partially coherent masks perform
only marginally better for small subsampling ratios than the other two.

3.2 Experimental design

The goal of this section is to see if we can de better when we explicitly design S
to minimize the coherence while maintaining the sparsity of a reference image
u. We could formulate this problem as

min
S
µ(F, SW T ) s.t. ‖WS−1u‖1 ≤ (1 + κ)‖Wu‖1,

with κ small. The inequality constraint ensures that the application of the
new transform WS−1 to u gives a sparse representation.

If we take S to be a diagonal matrix S = diag(s) we can formulate this problem
as

min
s
‖As‖∞ s.t. ‖U(s)‖1 ≤ (1 + κ), (1)

where A is the matrix representation of the linear operation F Tdiag(s)W T

(i.e., As = vec(F Tdiag(s)W T )) and U(s) = 1
‖Wu‖1Wv where vi ≡ 1/si.

To asses the feasibility of this approach, we solve this optimization problem
for a 16×16 reference image, shown in figure 12 and denoted by True image.



92 SWI 2015 Proceedings

We use a black-box non-linear optimization routine in Matlab (fmincon) to
solve the optimization problem. The starting value for s is the vector whose
components follow a Rademacher distribution as introduced above, that is:
si ∈ {1,−1}. This is shown in figure 12. The algorithm is manually halted
after 40 iteration, when the convergence reaches a plateau. The convergence
history is shown in figure 13.

The resulting solution is shown in figure 12 and it is denoted by Optimized S.
Interestingly, the result has a similar structure as the reference image. This can
be understood as follows. The reference image is multiplied point-wise with s.
If we take si ≈ u−1i , the resulting normalized image will be almost constant,
thus allowing for a very sparse approximation using only the coarsest scale
wavelets.

We perform CS reconstructions of the test image with N = 16 and reduc-
tion factor 2 for the sparsity transforms W (standard approach) and WS−1,
respectively. To appreciate the improvement obtained by the experimental de-
sign algorithm, we also consider the reconstruction with the starting value for
S, that is, the Rademacher distributed values.

The reconstructed images are shown in figure 12, bottom row. We consider
the relative error given by ‖u − ur‖2/‖u‖2 × 100% where the superscript r
denotes the reconstructed image and we report the error value under the cor-
responding plots. Note the drastic reduction in the error when the optimized
S is used.

4 Discussion

We have seen that the coherence between the Fourier transform and wavelets
leads to suboptimal performance of CS-type reconstructions and we have de-
lineated a strategy to modify the Wavelet transform by means of the S matrix.
The resulting transform maintains the sparsity and at the same time minimizes
the coherence with the sampling operator RF . This trade-off solution gives
excellent results in terms of CS reconstructions.

Note that the steps (experiment design and CS reconstructions) can be per-
formed off-line, that is, after the end of the MRI exam. In this way, there is
no surcharge of time for the clinical protocol, a major drawback for on-line
design methods.
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Our approach relies on the knowledge of a reference image. The question is,
of course, how this approach will perform when the reference image is not
the same as the true image. We expect minimal problems when the reference
image is a previously acquired scan, a set of reference images, or other prior
information. Alternatively, we could perform a first reconstruction by standard
CS and use the resulting image as reference for designing S. This step could
be repeated until no improvement is obtained with respect to the previously
reconstructed image.

5 Conclusions

We have analyzed the pitfalls of CS applied to MRI and we have presented
an innovative approach to improve the reconstructions. The large scale op-
timization problem can be performed off-line, making the way to the clinic
potentially short.
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(1) Object (4) Reconstruction

(2) full Fourier spectrum (3) Bandlimited measurements

Figure 1: Schematic depiction of the MRI process. The ground object (1) is
sampled in the Fourier domain (2), yielding a set of bandlimited measurements
(3) from which we can reconstruct using a discrete inverse Fourier transform
(4). Note the slight loss in resolution caused by the bandlimited nature of the
measurements.
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Figure 2: Schematic depiction of the Pareto curve, which relates the optimal
solutions to the LASSO, BPDN and QP formulations of the sparse recovery
problem. At a give (τ, σ), the derivative of the curve is proportional to λ.
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Figure 3: Sparsity in wavelets. (a) original image, (b) image using only 10%
of the largest Wavelet coefficients, (c) magnitude of the Wavelet coefficients,
the vertical line indicates the cut-off used to produce image (b).

(a) (b)

Figure 4: Coherence of (a) F and W T and (b) FS and W T . We see that
the second matrix is much less coherent and hence is better suited for CS
reconstruction.
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(a) (b) (c)

Figure 5: (a) original image, (b) reconstruction with ρ = 8 without S, (c)
reconstruction with ρ = 8 with S. The latter clearly gives a much better
reconstruction, illustrating the importance of including the matrix S.
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Figure 6: Reconstruction quality (in terms of the SSIM) for various subsam-
pling ratios.
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Figure 7: Sparsity in modified wavelets WS. (a) original image, (b) image
using 20% of the largest Wavelet coefficients, (c) magnitude of the Wavelet
coefficients. The dotted line indicates the magnitude of Wu while the solid
line indicates the magnitude of WSu. The vertical line indicates the cut-off
used to produce image (b). We see that the original image is less sparse in the
modified wavelets.
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Figure 8: Schematic depiction of the tradeoff between sparsity and coherence.

scale = 0 scale = 0.05 scale = 0.1 scale = 1

Figure 9: Examples of partiall coherent masks, ranging from completely inco-
herent (left) to completely coherent (right).
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Figure 10: Tradeoff between sparsity and coherence for various image masks,
ranging from completely incoherent (scale = 0) to completely coherent (scale
= 1).
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Figure 11: Reconstruction quality using modified wavelets with various image
masks, ranging from completely incoherent to completely coherent. We see
that the partially coherent masks with scales 0.05 and 0.1 perform slightly
better than the other two.
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Figure 12: Experimental design. Top row: The ground truth image, the start-
ing and optimized S, respectively. Bottom row: The three reconstructions,
obtained without S, with the starting S and with the optimized S. Note the
drastic improvementin the obtained image when the optimized S is employed.
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Figure 13: Experimental design. Convergence history for the design algorithm
(Eq. 1).
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A Matlab framework for rapid prototyping

To test the proposed algorithms, we used the SPOT toolbox, which allows us
to define matrix-free linear operators. This toolbox allows us to use standard
Matlab matrix-vector notation and manipulation while avoiding explicitly stor-
ing dense matrices. A 2D Fourier transform of a 2D signal u, for example, can
be defined as follows.

F = opDFT2(n,n);
ut = F*u;

Here, the Fourier operator F acts like a matrix, but upon multiplication it calls
fft2. We can construct new operators by simply multiplying them together.
The MRI measurement process, for example, is implemented as follows.

F = opDFT2(n,n);
I = randperm(n);
I = I(1:m);
R = opRestriction(n,I);
y = R*F*u;

For the sparse reconstruction we use spgl1. A complete reconstruction then,
is done as follows.

F = opDFT2(n,n);
I = randperm(n);
I = I(1:m);
R = opRestriction(n,I);
y = R*F*u;
W = opWavelet2(n,n,'Haar');
z1 = spgl1(R*F*W',y,[],sigma);
u1 = W'*z;



Statistical Modeling of
Mechanical Bearing Life Testing

Sébastien Blachère (SKF), Martin Bootsma (Utrecht University), Alessandro Di Bucchianico
(Eindhoven University of Technology), Mike Keane (Delft University of Technology), Xinru
Li (Leiden University), Andrea Roccaverde (Leiden University), Cristian Spitoni∗(Utrecht
University), Dong Yan (Leiden University)

Abstract
We investigate reliability test plans under different censoring schemes for es-
timating performance of bearings with different life characteristics. The test
plans, which are based on Weibull distributions, should deliver estimates of per-
formance characteristics with a specified precision. We present results on both
a theoretical approach based on Fisher information and a simulation approach.

Keywords: bearing, lifetime, Weibull distribution, censoring, test plan, Fisher
information

1 Introduction

1.1 About SKF

Figure 1: Bearings.

SKF is a global technology provider offering products and
services related to bearings and units, seals, mechatronics
and lubrication systems. Its headquarters are located in
Sweden. The company has around 165 production sites in
28 countries. SKF has several research centres, including
one in the Netherlands in Nieuwegein.

Mechanical bearings (see Figure 1) are an important
product of SKF. They are mechanical elements that con-
strain motions to desired motions only, and at the same time
reduce friction between moving parts. There is a wide range
of applications of bearings, including bicycles, cars, manu-
facturing machines, trains, wind turbines and airplanes (see
Figure 2). Sizes of bearings range from less than 10 mm to
14 m. Since bearings are essential for the proper and safe
functioning of machines and equipment, it is essential for SKF to give customers re-
liable information on the performance. The performance of mechanical bearings is

∗Corresponding author
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Figure 2: Examples of applications of mechanical bearings.

expressed through their life, i.e., the amount of time or number of revolutions that
a bearing is capable to reach within nominal functioning. Bearing life depends on
various parameters like the bearing type or size and the operating conditions (speed,
load, lubrication,. . . ). SKF uses an internal calculation tool based on physical models
to assess bearing life. However, there is a need for life testing on actual bearings in
order to validate these models, evaluate performance of prototypes and obtain insight
in effect of design choices. Even identical bearings running under identical operating
conditions may experience a wide dispersion in their life. The ratio of the longest to
the shortest life may exceed 100 in large samples.

Figure 3: Test rigs used in bearing life tests.

1.2 Outline of the problem

Life tests consist of running a group of bearings under identical operating conditions
until a stopping criterion is fulfilled. There exist three classical stopping criteria:
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• Type I. The test is stopped when a preset time has been reached. This is
illustrated in the left-hand side of Figure 4.

• Type II. The test is stopped when a preset number of failures has been reached.
This is illustrated in the right-hand side of Figure 4.

• Hybrid. The test is stopped when either a preset time or a preset number of
failures has been reached. This is illustrated in Figure 5 .

Life times of both failed and not yet failed bearings are recorded since both types of
data contain information. Usually most bearings have not yet failed at the end of
the life test. As usual in reliability engineering, the data is modelled using a Weibull
distribution.

Figure 4: Type I and II stopping criteria.

Figure 5: Hybrid stopping criterion.

The objective of life tests is the estimation of the Weibull parameters (see Subsec-
tion 2.1 for details). The precision of such an estimation depends strongly on the test
strategy (number of bearings tested, test duration, number of observed failures, re-
placement policy). Therefore, obtaining precise estimation of the Weibull parameters
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may require lengthy (up to several months) and thus costly tests. It is thus necessary
to understand the link between the test duration and the precision of the estimation
in order to optimize the test time while reaching the target precision. The precision
of the estimation is traditionally defined as the length of the confidence intervals for
each of the parameters (see Subsection 2.1 for details) on a logarithmic scale:

R10(L10) =
L10,95

L10,05
and R10(β) =

β95
β05

,

where (L10,05, L10,95) and (β05, β95) are the 90% two-sided confidence intervals for
L10 and β, respectively.

Problem statement Given N life tests (i.e., life tests with bearings of the same
type and conducted under identical conditions) to be run within the same fixed test
capability, what is the strategy to follow to minimize the total test duration of all N life
tests with a given confidence to obtain parameter estimates with a preset precision?

When designing a test strategy, the precision and the available bearings of a certain
type are constraints. The degrees of freedom are the sample size, the type of stopping
criterion, the replacement policy and the value associated to this stopping criterion
(preset time and/or preset number of failures). Some extra degrees of freedom can be
added like the replacement of failed bearings by new ones for instance, but they are
not treated in this article.

In addition, both the test time and the test precision are depending on the test
strategy in a stochastic way. Therefore, the specifications onto the precision and
the time need to be expressed in terms of their distributions via the mean, standard
deviation or some percentiles.

1.3 Approach

This report reflects our first attempt to tackle the general problem. We did so by
concentrating ourselves on a simpler problem where we had only 1 type of bearing.
For this case, we derived theoretical results based on Fisher information that we will
allow us in the future to compare different testing strategies. We complemented these
theoretical results by running simulations for different testing strategies based on a
fast R code that we developed ourselves.

1.4 Outline of this article

This article is organized as follows. In Section 2 we provide details on the Weibull
distribution (parametrizations, estimation for the different censoring schemes). Sec-
tion 3 contains our theoretical approach to test plans based on the Fisher information.
The results of our numerical simulations can be found in Section 4. We end our paper
with conclusions and recommendations in Section 5.
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2 Background on the model

2.1 Weibull Distribution

Figure 6: Weibull.

The Weibull distribution has been introduced in the set-
ting of material strength by Waloddi Weibull (Weibull
(1939)) and was later extended to a wide range of types
of experimental data (Weibull (1951)). The Weibull dis-
tribution is one of the extreme value distributions and ap-
pears if one considers minima of random variables (which
is very natural in material strength since material break
when the weakest link fails). Another motivation for the
use of the Weibull distribution is that the hazard rate is
flexible since it is a power function and may thus model
both increasing and decreasing failure rates (depending
on the sign of the exponent).

The Weibull distribution is extensively used in reliabil-
ity theory together with its special case, the exponential
distribution. The Weibull distribution possesses two main forms, one with 2 pa-
rameters (with domain (0,∞)) and one with 3 parameters (which has an additional
location parameter so that the domain need not start at 0).

Here we will describe the background on the Weibull distribution (parameteriza-
tions, parameter estimation, censoring, . . . ). For a comprehensive overview on the
Weibull distribution, we refer to the excellent monograph Rinne (2008).

The two-parameter Weibull distribution has a scale parameter and a shape pa-
rameter. The standard representation in term of the cumulative distribution function
is

F (x|α, β) = 1− e−( xα )
β

(1)

The parameter α is the scale parameter, while the parameter β is the shape parameter.
The exponential distribution is included as the special case β = 1. Note that for β > 1
the Weibull distribution has an increasing failure rate. Here we will use another
representation of the Weibull distribution which has the same shape parameter β,
but a different scale parameter, L10. In this representation, the cumulative density
function has the form:

F (x|L10, β) = 1−
(

9

10

)( x
L10

)β

. (2)

The parameter L10 has a clear interpretation; it is the 10%-quantile of the distribution,
i.e. 90% of the bearings survive at least until time L10. The parameters are linked to
each other through the relation

L10 = α (− log(9/10))
1/β

. (3)
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The Weibull distribution can also be described by the survival function

S(x|L10, β) =

(
9

10

)( x
L10

)β

. (4)

In this paper, we will consider L10 as a parameter of the Weibull distribution. How-
ever, if one wants to estimate the 10%-quantile of the distribution one could estimate
L10 also non-parametrically.

The probability density function of the Weibull distribution in this parameteriza-
tion is given by

f(x|L10, β) =
1

L10

(
9

10

)( x
L10

)β (
x

L10

)β−1
β log

(
10

9

)
. (5)

Note that in the remaining part we suppress in the notation for the cumulative dis-
tribution function and the probability density function sometimes the dependence on
L10 and β to obtain clearer expressions.

2.2 Censoring

In real-life testing of bearings, it is impossible to test until all bearings have failed.
This is also the case if one uses accelerated life testing, i.e. testing under more severe
conditions than normal in such a way that using physical degradation laws one can
connect life times under severe conditions to life times under normal conditions (see
e.g., Meeker and Escobar (1998)). The data that we obtain from life tests will thus
include data on non-failed items. Such observations are called censored observations.
This terminology is used in engineering contexts (life tests of physical objects) as well
as in medical contexts (clinical trials). Note that censored observations in the context
of life tests do contain useful information on life times (one usually has a lower bound
for the actual lifetimes). In order not to lose information, it is thus important to use
statistical techniques that make use of both the censored and uncensored observations.
This very much applies to the case of life tests for bearings, since typically the majority
of observations is censored.

In order to include censored observations in statistical analyses, it is necessary
to model the censoring mechanism at hand. In medical contexts (survival analysis)
it is common to model censoring as a random variable independent of the lifetime
distribution. In engineering context (reliability theory) it is more common to model
censoring in a different way (see e.g., (Rinne, 2008, Section 8.3.1) for a detailed
discussion about the different ways of modelling censoring mechanisms). We now
consider in more detail censoring types that are common in reliability theory (they also
appear in medical contexts under the name administrative censoring). We will restrict
ourselves to the case of a single right-censoring. For multiple censoring schemes such
as progressive censoring, we refer to the literature (see e.g., Ng et al. (2004) and
(Rinne, 2008, Sections 8.3.3 and 8.3.4)).
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Type I censoring

Suppose we run n bearings on n machines and we stop the experiment at a preset
time T . The number r of failed items at time T is then the realisation of a random
variable R. We have thus observed r failures at times {x(1), x(2), . . . , x(r)} and we
have not observed the failure of the other n− r bearings. With the notation x(i) we
denote the ith order statistic, i.e., the ith smallest observed failure time. The joint
probability density function to observe the failure times is given by:

f(x1, . . . , xn|L10, β) =
n!

(n− r)!
r∏

i=1

f(x(i)|L10, β) (1− F )n−r(T |L10, β). (6)

for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(r) (where r := max
{
i : x(i) ≤ T

}
) and equals 0

otherwise. Note that for this type of censoring (known as administrative censoring in
the context of survival analysis) the number of failures r is random and the end time
is deterministic.

Type II censoring

Suppose we run n bearings on n machines and we stop the experiment once we
have k ≤ n failures. At the stopping time we have observed k failures at times
{x(1), x(2), . . . , x(k)} and we have not observed the failure of the other n− k bearings.
The joint probability density function to observe the failure times is given by:

f(x1, . . . , xn|L10, β) =
n!

(n− k)!

k∏

i=1

f(x(i)|L10, β) (1− F )n−k(x(k)|L10, β). (7)

which is defined for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(k). Note that in this type of censoring
the number k of failed items is fixed, while the end time is random (it equals the kth

order statistic).

Hybrid censoring

An alternative censoring scheme is possible by combining the stopping criteria of Type
I and Type II censoring, i.e. we stop the experiment when either we reach the preset
time T or the preset number r of failures. In other words, we stop the experiment
at the random time min(T,X(k)). This type of hybrid censoring was introduced in
Epstein (1954). It is called type-I hybrid censoring in Balakrishnan and Kundu (2013).

Type I censoring is appealing from a practical point of view, since it fixes the duration
of the experiment. A mathematical drawback is that it is harder to analyse (one
needs to take into account the random time between T and the last failure time
before T ). Type II is appealing from a mathematical point of view since it is easy
to analyse, because the number of failures is deterministic. The practical drawback
is that one has no control on the duration of the experiment. A possible drawback
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of both Type I and hybrid censoring is that if T is chosen too small, that there are
may be too few failures and the resulting estimates are poor. In order to overcome
this drawback, Childs et al. (2003) introduced an alternative hybrid censoring scheme
based on max(T,X(k)). However, this has the same practical drawback as type II
censoring.

2.3 Parameter estimation
In this subsection we discuss estimation of the L10 and β parameters of the two-
parameter Weibull distribution under the three censoring schemes mentioned in the
previous subsection. We will assume that failed items are not replaced during a life
test. Maximum Likelihood is the preferred way of estimating parameters in reliability
theory, because it not only has well-known asymptotic optimality properties but as
exemplified by Formulas (6) and (7) it can easily deal with censored data (unlike e.g.
the method of moments). The literature mostly deals with estimation for type II
censoring, under the assumption that type I censoring can be dealt with in a similar
way by conditioning on the number of failures in the interval [0, T ] (cf. Remark 26
on page 438 of Rinne (2008)). An exception is Cohen (1965) which treats both types
of censoring.

For Type II censoring the standard approach is to take derivatives of the loglike-
lihood equation with respect to the parameters and to note that after simplification
of the equations one obtains λ̂ through the following relation (Cohen (1965)):

λ̂ =

(
n∑

i=1

xβ̂i

)β̂
. (8)

The following equation determines β̂ in case of type II censoring:

1

β̂
=

∑n
i=1 x

β̂
i log(xi) + (n− k)xβ̂(k) log(x(k))
∑n
i=1 x

β̂
i + (n− k)xβ̂(k)

− 1

k

k∑

i=1

log(x(i)) (9)

A similar relation holds in case of type I censoring. For hybrid censoring, Kundu
(2007) describes that one has basically the same procedure where the form of the
likelihood depends on which of the stopping criteria applies to the data set at hand.
Existence and uniqueness of solutions of (9) are guaranteed unless all observations are
equal (see e.g. Farnum and Booth (1997), Pike (1966)). Since the right-hand side of
(9) can be proven to be an increasing function of β (see Farnum and Booth (1997)1,
numerical procedures like Newton-Raphson quickly yield numerical solutions. There
are also exist explicit approximate ML estimators based on Taylor expansions of the
logarithm of the Weibull distribution (so transforming the Weibull distribution into
an extreme value distribution, see e.g. Kundu (2007)) for details).

1The proofs in Farnum and Booth (1997) are only written down for the uncensored case, but it
can easily be shown that a a slight adaptation make them work for the censored cases as well
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The ML estimators are biased. Corrections are possible by noting that the dis-
tribution of β̂ is a pivotal quantity for β, i.e. the distribution of β̂/β only depends
on n and depending on the type of censoring T or k (see e.g., McCool (1970) who
evaluates this distribution by Monte Carlo simulation). For a complete discussion of
pivotal quantities we refer to Bain and Engelhardt (1991)) and McCool (1970).

In view of the Invariance Principle of Maximum Likelihood estimation (Zehna
(1966)), it does not matter which parametrization of the Weibull distribution one
chooses when one is only interested in the parameter estimates. However, it does
make a difference when computing confidence intervals for the Weibull parameters.
This is because the lack of formulas for exact confidence intervals necessitates to use
asymptotic intervals for which the width directly depends on the asymptotic standard
deviation of the parameter estimator. Explicit asymptotic confidence intervals for
the Weibull parameters have been discussed in Meeker and Nelson (1976) and Kahle
(1996). Both papers used observed Fisher information, but Meeker and Nelson (1976)
do this for the logarithm of the Weibull distribution (so an extreme value distribution)
since the asymptotic sampling distribution in that case converges faster. The formulas
in both papers involve second derivatives of the incomplete gamma function, which can
be expressed in terms of other special functions (see Geddes et al. (1990)). We followed
the approach of Meeker and Nelson (1976) but used direct numerical integration to
evaluate the integrals directly since there were no convergence problems.

3 Theoretical results

If we have a single bearing, we have a continuous decision process as long as the bearing
has not failed: do we keep the experiment running or do we stop the experiment
and replace the existing bearing with a new one. Which of the two options is most
attractive depends on several factors: 1) the amount of information one is expected
to get from each choice, 2) how fast this information is obtained and 3) the cost of
replacing an existing bearing with a new one. Here we neglect the costs completely
and we focus on the first two factors.

3.1 Type I censoring

Suppose we test a single bearing and we keep running the experiment till either the
bearing fails or a fixed stopping time a has been reached. Suppose the lifetime of the
bearing is distributed according to a Weibull distribution with parameters L10 and
β. With probability S(a|L10, β) the bearing is still functioning at time a. The Fisher
information I1(a) from this experiment can therefore be calculated as:

I1(a) = −S(a|L10, β))
∂2

∂L10
2 logS(a|L10, β)−

a∫

0

(
∂2

∂L10
2 log f(x|L10, β)

)
f(x|L10, β)dx

(10)
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This can be written as:

I1(a) =
(

9
10

)( x
L10

)β ( a
L10

)β
β(1+β) log 10

9

L2
10

−
a∫
0

β−
(

x
L10

)β
β(1+β) log 10

9

L2
10

1
L10

(
9
10

)( x
L10

)β (
x
L10

)β−1
β log

(
10
9

)
dx

(11)

We do not have a closed-form expression for I1, but the numerical evaluation of this
integral is fast. If n bearings are tested with type I censoring, the Fisher information
In is

In = nI1. (12)

There are two important time measures for the duration of the experiment, 1) na, i.e.,
n times the fixed stopping time a and 2) the total time that machines are running,
denoted by T (L10, β, n, a). The first measure is relevant to the situation that the
machines on which a bearing fails before time a cannot be used for other purposes or
if one has to pay for the time use of these machines even if they are not running. The
second time measure is important if machines on which a bearing fails can be used
for other experiments.

For the first time measure, the Fisher information per time unit equals I1/a. For
the second time measure we need to calculate the expected running time of a single-
bearing experiment with type-1-censoring.

E[T (L10, β, 1, a)] =

a∫

0

xf(x|L10, β)dx+ aS(a|L10, β) (13)

and the Fisher information per time unit equals I1/E[T (L10, β, 1, a)]. For the relevant
case that β > 1, the larger a, the higher the Fisher information per time unit for the
second time measure (see Figure 7). For the first time measure, there is an optimum.
There are not many failures before time a if a is small. On the other hand, if a
is large, many machines are empty because the bearing on that machine has failed
already. The optimum as function of β is plotted in Figure 8.

3.2 Type II censoring
The Fisher information I of this experiment with respect to the parameter L10 is
given by:

I = −E
(

∂2

∂L10
2 log

(
f(n,k)(x(1), x(2), . . . , x(k)|L10, β)

))
. (14)

The second order derivative with respect to L10 of the logarithm of the probability
density function is given by:

∂2

∂L10
2 log

(
f(n,k)

)
=
k

β
+
β(1 + β)

L10
2+β

log

(
10

9

)(
(n− k)x(k)

β +
k∑

i=1

x(i)
β

)
. (15)
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Figure 7: The Fisher information per time unit for type I censoring. In Figure a) the
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Therefore, the Fisher information is given by:

I = −
∞∫

0

dx(1)

∞∫

x(1)

dx(2) . . .

∞∫

x(k−1)

dx(k)f(n,k)
∂2

∂L10
2 log

(
f(n,k)

)
, (16)

Luckily this k-dimensional integral can also be expressed as a double integral (Park
(1996)). Let fk:n be the density function of the kth order statistic in a sample of size
n. We have the following expression for fk:n (see page 224 of Rinne (2008)):

fk:n(x) =
n!

(k − 1)!(n− k)!
F (x)(k−1)S(x)(n−k)f(x) (17)

If we define g(w) := g(L10, β, w) as

g(L10, β, w) :=

∞∫

w

(
∂

∂L10
log

(
f(x|L10, β)

S(w|L10, β)

))2
f(x|L10, β)

S(w|L10, β)
dx (18)
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we can write the Fisher Information as:

I = n

(
β

L10

)2

− (n− k)

∫ ∞

0

g(w)fk:n(w)dw (19)

It can be shown, e.g., by performing the substitution y =
(
w
L10

)β
−
(

x
L10

)β
, that the

function g(w) does not depend on w. We obtain that g(w) =
(

β
L10

)2
. Therefore we

obtain as result that the Fisher information for Type II censoring has the following
form:

I = k

(
β

L10

)2

, (20)

i.e., each observed failure time provides the same amount of information, independent
of the sample size or the order of the failure.

There are again two important time measures for the duration of the experiment,
1) the time till the kth failure, which is given by the kth order statistic x(k) and 2)
the total time that machines are running, denoted by T (L10, β, n, k).

The total running time is given by:

T (L10, β, n, k) =
k∑

i=1

x(i) + (n− k)x(k) (21)

and the expected total running time can be calculated once we know the expected
time of the kth order statistic, i.e.,

E (T (L10, β, n, k)) =

k∑

i=1

E(x(i)) + (n− k)E(x(k)) (22)

The probability density function of the jth order statistic is given by:

fj:n(x) =
n!

(j − 1)!(n− j)! F (x|L10, β)(j−1)(1− F (x|L10, β))n−jf(x|L10, β) (23)

and the expectation of the jth order statistic is given by (see Formula (5.34) of Rinne
(2008)):

E(x(j)) = j

(
n

j

)
Γ(1 + 1

β )

(log 10
9 )

1
β

L10

j−1∑

i=0

(−1)i
(
j−1
i

)

(n− j + i+ 1)1+
1
β

. (24)

We propose as a measure to compare several test strategies the Fisher information
per time unit, i.e., the Fisher information divided by the expected total running time
of the machines, or the Fisher information divided by the time until the kth failure.

If the total running time is relevant, the higher k the more information is obtained
(see Figure 9(a)), simply because every failure gives the same amount of information
and failures occur more rapidly when the bearing are ageing. If the time until the kth

failure is relevant, there is an optimal value of k, as can be seen in Figure 9(b). This
optimal value of k can also be interpreted as an optimal value of the ratio k/n and
this optimal ratio depends on β (see Figure 10).
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4 Numerical results

In this section we study by simulation different test strategies in the simplified case
when there is only one type of bearing and failed items are not replaced. The test
strategies all involve hybrid censoring. In order to have practical relevance, all test
strategies should meet the condition that Rβ10;0.90 < 12. The optimality criterion is
to minimize to 80%-percentile of the TTT (Total Time on Test) statistic, i.e. the
sum of failure times for the failed items and the testing period for the items that did
not fail before the end of the test. The failure times were sampled from a Weibull
distribution with L10 = 100 and shape parameter β = 1.1. In the hybrid censoring
testing strategies we varied the number of items on test between 20 and 30, the
number of failed items between 4 and 10 and the maximum testing period between
400 and 600 (with steps of size 25). In order to obtain accurate values, we used
30, 000 replications for each setting. The irregular shapes in the contour plots are
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interpolation artifacts caused by the integer values for the number of bearings.

4.1 Results Type I Censoring
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Figure 11: Type I censoring.

bearings 20 21 22 23 24 25 26 27 28 29 30
trunc 850 725 625 550 475 425 375 325 275 275 250

Table 1: Minimum required number of failures under type I censoring.

For type I censoring we see in Figure 11 that the condition Rβ10;0.90 < 12 is met by
combinations of stopping times and number of bearings that are to the right of the
straight line that goes from 23 bearings and stopping time 475 to 25 bearings and
stopping time 425. It follows from Table 1 that the required stopping time decreases
linearly with the number of bearings (approximately 50 to 75 hours per bearing). It
follows from Figure 11 that the optimal choice is to stay exactly on the straight line
to obtain a minimal TTT value.

4.2 Results Type II Censoring
For Type II censoring we see artifacts in the plots in spite of the 30, 000 replications in
the simulation. Therefore we also present the minimum number of failures to ensure
Rβ10;0.90 < 12 in Table 2. Note the sharp drop when going from 22 to 23 bearings.
We note that the TTT value does not change much for a fixed number of failures
when we increase the number of bearings. This means that the increase in TTT for a
fixed number of bears is fairly constant in the range of bearings that we considered:
every extra failure in the stopping criterion causes an increase of 1000 in the TTT
value.
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Figure 12: Type II censoring.

bearings 20 21 22 23 24 25 26 27 28 29 30
r 11 9 8 4 4 4 3 3 3 3 3

Table 2: Minimum required number of failures under type II censoring

4.3 Results Hybrid Censoring

As discussed in Subsection 2.2, the idea of hybrid censoring is to have a beforehand
fixed maximum testing time (due to the type I censoring mechanism) which is very
important from a practical point of view (scheduling of testing facilities), but at the
same time have the option to stop the testing earlier if the test results allow sufficiently
precise estimates (due to the type II censoring mechanism). However, this is more
complicated than it looks at first sight. For example with type I censoring and 20
bearings we need a stopping time of 850. If we add any corresponding type II censoring
stopping criterion, then this means that the value of Rβ10;0.90 will increase since we
may stop too early. For example, if we perform hybrid censoring by naively combining
the type I stopping time of 850 with the type II criterion for 20 bearings (i.e., stop
after 11 failures), then Rβ10;0.90 = 12.1. In order to meet the Rβ10;0.90 < 12 condition
we need to increase either the type I or the type II criterion. For 20 bearings, this
means we could choose the stopping time to be equal to 850 and number of failures
to be equal to 12 (with TTT approximately 5900) or choose stopping time 875 and
number of failures 11 (with TTT approximately 6150). It is thus better to fix the
type I criterion and increase the type II criterion when applying hybrid censoring.
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Figure 13: Hybrid censoring - 20 bearings.

5 Discussion

In this section we first summarize the conclusions that we may draw from our results.
We then present recommendations to SKF for further lines of research.

5.1 Conclusions

In this paper we studied a simplified case of the testing problem posed by SKF. The
simplification consisted of considering only one type of bearing and no replacement of
failed items. We approached the problem through both a theoretical approach based
on Fisher information and a numerical approach based on simulation.

A key insight of the approach based on Fisher information is to continue testing
as long as there is a positive rate of contributing information. Information per test
time leads to optimal values for the stopping time (Type I censoring) or the number
of failures (Type II censoring) expressed as a function of β.

Simulations help to minimize tests time along the Pareto front of strategies. For
Type I censoring there seems to be a linear dependence of Rβ10 on the truncation
time. For Type II censoring we see drastic changes for smaller values of bearings in the
number of required failures in order to satisfy a constraint on Rβ10. The corresponding
values for the TTT, however, seem to be fairly constant as a function of the number
of bearings. For hybrid censoring one cannot simply combine the criteria of Type I
and Type II censoring. In order to get optimal TTT values, one should fix the Type
I criterion of a given number of bearings and increase the Type II criterion.
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Figure 14: Hybrid censoring - 30 bearings.

5.2 Recommendations for Future Research
Future research is needed to extend the results of the current paper to more realistic
situations with different types of bearings and more complex replacement strategies
(not only replacement of failed items individually, but also in pairs as testing devices
usually combines bearings in groups of 2 or 4 bearings).

For the simulations we recommend to use larger simulations or develop variance
reduction techniques like importance sampling in order to obtain more stable results.
Since the simulations were performed for only one set of values of the Weibull param-
eters L10 and β, it is recommended to study the influence of L10 and β.

The approach based on Fisher information should be extended to include tests
with more than one type of testing as well as hybrid testing. It is also recommended
to perform a sensitivity analysis.

A final idea is to explore the idea of approximation the Weibull distribution with
an exponential distribution when β ≈ 1.
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