
A GEOMETRIC APPROACH TO MATRIX ORDERING

B. O. FAGGINGER AUER∗ AND R. H. BISSELING†

Abstract. We present a recursive way to partition hypergraphs which creates and exploits
hypergraph geometry and is suitable for many-core parallel architectures. Such partitionings are then
used to bring sparse matrices in a recursive Bordered Block Diagonal form (for processor-oblivious
parallel LU decomposition) or recursive Separated Block Diagonal form (for cache-oblivious sparse
matrix–vector multiplication). We show that the quality of the obtained partitionings and orderings
is competitive by comparing obtained fill-in for LU decomposition with SuperLU (with better results
for 8 of the 28 test matrices) and comparing cut sizes for sparse matrix–vector multiplication with
Mondriaan (with better results for 4 of the 12 test matrices). The main advantage of the new method
is its speed: it is on average 21.6 times faster than Mondriaan.

Key words. hypergraphs, k-means, LU decomposition, nested dissection, partitioning, sparse
matrices, visualization

AMS subject classifications. 05C65, 05C70, 65F05, 65F50, 65Y05

1. Introduction. With the increased development and availability of many-core
processors (both CPUs and GPUs) it is important to have algorithms that can make
use of these architectures. To this end, we present a new recursive hypergraph par-
titioning algorithm that uses the underlying geometry of the hypergraph to generate
the partitioning (which is largely done using shared-memory parallelism). Hyper-
graph geometry may either be provided from the problem at hand or generated by
the partitioning software. This entire process is illustrated in Fig. 1.1.

1.1. Hypergraphs. We will start with a brief introduction to hypergraphs (see
[6] for more information) and the ways in which they can be related to sparse matrices.

Definition 1.1. A hypergraph is a pair G = (V,E) where V is a set, the vertices
of the hypergraph G, and E a collection of subsets of V (so for all e ∈ E, e ⊆ V),
the hyperedges or nets of G (see Fig. 1.2). We call a hypergraph G = (V,E) weighted
when it is paired with functions w : V → [0,∞[and c : E → [0,∞[which assign
weights w(v) ≥ 0 and costs c(e) ≥ 0 to vertices v ∈ V and hyperedges e ∈ E,
respectively. We call a hypergraph G = (V,E) simply a graph if all hyperedges e ∈ E
are of the form e = {v, w} with v, w ∈ V ; in this case the graph is undirected and the
hyperedges are called edges. We call a hypergraph G = (V,E) finite if V is a finite
set, in which case |E| ≤ 2|V |, so E is finite as well.

Hypergraphs possess a natural notion of duality, where the roles played by the
vertices and hyperedges are interchanged.

Definition 1.2. Let G = (V,E) be a hypergraph.
Then we define its dual hypergraph as G∗ := (V ∗, E∗) where V ∗ := E and

E∗ := {{e ∈ E | e 3 v} | v ∈ V }.

If the hypergraph is weighted, we also exchange the vertex weights and hyperedge
costs to make its dual a weighted hypergraph.

The dual of the dual of a hypergraph is isomorphic to the original hypergraph,
(G∗)∗ ∼= G.

∗Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, the Nether-
lands (B.O.FaggingerAuer@uu.nl).

†Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, the Nether-
lands (R.H.Bisseling@uu.nl).

1

Figure 1.1. The matrices twotone (top) and ford2 (bottom). For the original matrix (left), a
visual representation is created (middle), which in turn is used to permute the matrix to recursive
Bordered Block Diagonal form (right).

5

1
2

3

4

Figure 1.2. Hypergraph G = (V, E) with V = {1, 2, 3, 4, 5} and E = {{1}, {1, 2}, {2, 3, 4}, {3, 4}}.

One direct application of hypergraphs is to use them to represent sparse matrices,
see Table 1.1. We can make a number of observations about these representations.

1. The symmetric representation is only sensible if the matrix is structurally
symmetric, because only then we can recover the nonzero pattern of the
original matrix from its representation.

2. The bipartite representation is a bipartite graph with the two parts consisting
of the rows (r1, . . . , rm) and the columns (c1, . . . , cn) of the matrix.

3. The symmetric and bipartite representations are both undirected graphs in-
stead of hypergraphs and the size of the symmetric representation is about
half that of the bipartite representation.

4. The column-net and row-net representations are each other’s dual.
5. The finegrain and bipartite representations are each other’s dual. This is also

reflected in the fact that the hyperedges of the finegrain representation can
be partitioned into two disjoint sets (the row and column hyperedges).

We will make use of these observations in Section 4.
2

Name V E
Symmetric [30] {1, . . . ,m} {{i, j} | 1 ≤ i ≤ m, 1 ≤ j ≤ n, ai j 6= 0}
Bipartite [21] {r1, . . . , rm, c1, . . . , cn} {{ri, cj} | 1 ≤ i ≤ m, 1 ≤ j ≤ n, ai j 6= 0}
Column-net [7] {r1, . . . , rm} {{ri | 1 ≤ i ≤ m,ai j 6= 0} | 1 ≤ j ≤ n}
Row-net [7] {c1, . . . , cn} {{cj | 1 ≤ j ≤ n, ai j 6= 0} | 1 ≤ i ≤ m}
Finegrain [8] {vi j | ai j 6= 0} {{vi j |1 ≤ i ≤ m,ai j 6= 0} | 1 ≤ j ≤ n}︸ ︷︷ ︸

column hyperedges

∪{{vi j |1 ≤ j ≤ n, ai j 6= 0} | 1 ≤ i ≤ m}︸ ︷︷ ︸
row hyperedges

Table 1.1
Several common representations of an m× n-matrix A = (ai j) by a hypergraph G = (V, E).

1.2. Visual representations. As stated in Section 1, we would like to exploit
the underlying geometry of a hypergraph, usually representing a sparse matrix.

Definition 1.3. Let G = (V,E) be a given hypergraph. Then a visual represen-
tation of G in d ∈ N dimensions is a mapping

V → Rd

that reflects the structure of the underlying hypergraph.
This definition is not very precise and therefore we will illustrate it by looking at a

few examples. Sometimes the visual representation of a matrix is directly available, for
instance if the matrix is based on a triangulated mesh, such as the following Example
1.4. In other cases, the visual representation can be generated from the problem that
the matrix represents, see Example 1.5. If no such information is available at all, we
generate the visual representation ourselves, as discussed in Section 2.

Example 1.4. The pothen collection of matrices, available from [12], consists of
NASA structural engineering matrices collected by A. Pothen. We will take a closer
look at the square pattern1 matrices from this collection, which have a natural visual
representation. Each row/column of these matrices corresponds to a vertex (the coor-
dinates of which are supplied in a separate file) and each nonzero to an edge between
the vertices corresponding to the row and column to which the nonzero belongs. We
can take a look at the matrices and their corresponding visual representation by plot-
ting these vertices, as is done in Fig. 1.3. These vertices give a visual representation
of the symmetric hypergraph representation of the sparse matrix.

Example 1.5. Another important example of matrices with a natural visual
representation are those arising in finite-element methods. In this example, we will
consider the Laplace equation on a compact smooth d-dimensional closed submanifold
Ω ⊆ Rd with compact smooth boundary ∂Ω. Let

V := {f ∈ C∞(Ω,R) | f, ‖∇f‖ ∈ L2(Ω,R), f |∂Ω = 0}

be the collection of all smooth real-valued functions on Ω that are square-integrable,
have square-integrable derivative, and vanish on the boundary ∂Ω. Here the inner
product is given by

〈u, v〉 =
∫

Ω

u(x) v(x) dx +
∫

Ω

∇u(x) · ∇v(x) dx.

1Nonzero entries have numerical value 1.

3

Figure 1.3. From left to right: the matrices sphere3, pwt, and commanche dual with their orig-
inal meshes (top, see Example 1.4) and visual representations created using the techniques described
in Section 2 (bottom, also compare with [24]).

Let g ∈ V be given. We consider the problem of finding an f ∈ V such that

∆f(x) = −g(x), (x ∈ Ω). (1.1)

The first step in the finite-element method is to rewrite the above problem into its
weak formulation.2 Let h ∈ V and suppose f is a solution to eqn (1.1), then using
integration by parts∫

Ω

g(x) h(x) dx = −
∫

Ω

∆f(x) h(x) dx = −0 +
∫

Ω

∇f(x) · ∇h(x) dx.

Hence, every solution f necessarily satisfies the weak formulation of this problem:

a(f, h) = b(h), (h ∈ V), (1.2)

where

a(u, v) :=
∫

Ω

∇u(x) · ∇v(x) dx, b(u) :=
∫

Ω

g(x) u(x) dx.

If we now choose functions h1, . . . , hm ∈ V , we can look at the approximate solu-
tion φ to eqn (1.2) in the subspace Vm := 〈h1, . . . , hm〉R ⊆ V spanned by h1, . . . , hm.
Because φ ∈ Vm, there exist coefficients φ1, . . . , φm ∈ R such that φ =

∑m
i=1 φi hi,

and therefore,

b(hj) = a(φ, hj) = a

(
m∑

i=1

φi hi, hj

)
=

m∑
i=1

φi a(hi, hj), (1 ≤ j ≤ m).

2If the weak formulation satisfies the conditions of the Lax–Milgram theorem, the solution f to
the weak formulation is unique and hence also the solution to the original problem, provided such a
solution exists [26].

4

So solving eqn (1.2) in Vm for φ amounts to solving the linear system
m∑

i=1

a(hi, hj) φi = b(hj), (1 ≤ j ≤ m),

for (φ1, . . . , φm) ∈ Rm. By choosing h1, . . . , hm such that their supports only have a
small overlap we create a sparse matrix A ∈ Rm×m with entries ai j := a(hj , hi) that
are nonzero only for the 1 ≤ i, j ≤ m where supp hi ∩ supphj 6= ∅. This can be done,
for instance, by triangulating Ω and choosing for each vertex i in the triangulation a
function hi with support contained in all triangles adjacent to the vertex i.

We can now directly create a visual representation for the various hypergraph
representations of the matrix A (Table 1.1):

1. for the symmetric, bipartite, column-net, and row-net representations, we
map each vertex i, ri, and ci to the center of supphi in Rd,

2. for the finegrain representation, we map each vertex vi j to the center of
supphi ∩ supphj in Rd.

Thus, in this case, we can generate a visual representation from our original problem
with little extra effort.

However, not all matrices have an immediate geometric origin (e.g. twotone), so
we would like to be able to create such a visual representation ourselves if it cannot be
provided directly. Hence, we will continue by discussing how to create such a visual
representation in Section 2. In Section 3, we show how to use visual representations
for hypergraph partitioning, and in Section 4 we apply this in the context of sparse
LU decomposition. We conclude by implementing these methods and comparing them
with both SuperLU and Mondriaan in Section 5.

2. Creating visual representations. To create visual representations, we em-
ploy the method described in [17, 24, 32], generalized to visualizing hypergraphs: we
let the vertices of the hypergraph repel each other by an electrostatic-like force and
let the hyperedges bind their vertices together like rubber bands. We model this as
the minimization of an energy function where we lay out the graph in at least three
dimensions (to prevent having to treat the special cases d = 1 and d = 2 where the
form we propose for the energy function is not appropriate). For brevity, we will
simply enumerate the vertices of the hypergraph we consider, thus assuming that
V = {1, . . . , k} for some k ∈ N.

Definition 2.1. Let G = ({1, . . . , k}, {e1, . . . , el}) be a finite weighted hyper-
graph with vertex weights w1, . . . , wk > 0, hyperedge costs c1, . . . , cl > 0, and let
d ≥ 3 be the dimension of the target space. Define

U := {(x1, . . . , xk) ∈ Rd×k | ∀1 ≤ i < j ≤ k : xi 6= xj}.

Then the energy function of G is defined as

f(x1, . . . , xk) :=
α

2

l∑
j=1

cj

∑
i∈ej

‖xi − zj‖γ︸ ︷︷ ︸
rubber bands

+
β

2

k∑
j=1

k∑
i=1
i 6=j

wi wj

‖xi − xj‖δ︸ ︷︷ ︸
repelling charges

, (2.1)

for (x1, . . . , xk) ∈ U , where α, β, γ, δ > 0 are constants, and for 1 ≤ j ≤ l the center
of hyperedge ej is defined as

zj :=
1
|ej |

∑
i∈ej

xi.

5

Now, we will generate a visual representation by finding

argmin {f(x1, . . . , xk) | (x1, . . . , xk) ∈ U}, (2.2)

where f is the energy function of our hypergraph G. Approximate solutions to eqn
(2.2) generated by our algorithm are shown in Fig. 1.3.

2.1. Constants. We can tinker with f by varying the constants α, β, γ, and δ.
First, we can make a number of observations about U , f , and their symmetries.

1. {(R(x1) + x, . . . , R(xk) + x) | (x1, . . . , xk) ∈ U} = U for all x ∈ Rd and all
orthogonal transformations R ∈ O(Rd).

2. U is an open subset of Rd×k and U = θ U for all θ ∈ R \ {0}.
3. f(R(x1) + x, . . . , R(xk) + x) = f(x1, . . . , xk) for all x ∈ Rd, R ∈ O(Rd).
4. f ∈ C(U, [0,∞[) is continuous; f is always bounded from below by 0; and if

k ≥ 2, f is unbounded from above.
So U and f are invariant under all translations and orthogonal transformations

in Rd, but while U is scaling-invariant, f in general is not.
Let θ > 0 and (x1, . . . , xk) ∈ U . Then

f(θ x1, . . . , θ xk) =
α θγ

2

l∑
j=1

cj

∑
i∈ej

‖xi − zj‖γ +
β

2 θδ

k∑
j=1

k∑
i=1
i 6=j

wi wj ‖xi − xj‖−δ.

So in particular, for all (x1, . . . , xk) ∈ U we have that

1
β

(
β

α

) δ
γ+δ

f

((
β

α

) 1
γ+δ

x1, . . . ,

(
β

α

) 1
γ+δ

xk

)
= f̃(x1, . . . , xk),

where f̃ is given by eqn (2.1), but with α = β = 1. Therefore, we can pick α = β = 1
without loss of generality; this just scales the minimum of f by an overall factor (a
similar scaling property is derived in [24, Theorem 1]).

The function f is continuously differentiable for γ ≥ 2. Calculating the partial
derivatives of f , we find that for 1 ≤ m ≤ d, 1 ≤ n ≤ k,

∂f(x1, . . . , xk)
∂xm n

= −α γ

2

∑
{j | n∈ej}

cj

|ej |
∑
i∈ej

‖xi − zj‖γ−2 (xm i − zm j)

+
α γ

2

∑
{j | n∈ej}

cj ‖xn − zj‖γ−2 (xm n − zm j) + β δ

k∑
i=1
i 6=n

wi wn

‖xi − xn‖δ+2
(xm i − xm n)

︸ ︷︷ ︸
repelling charges

.

(2.3)

Note that eqn (2.3) simplifies considerably if we pick γ = 2, as
∑

i∈ej
‖xi−zj‖2−2 (xm i−

zm j) = (
∑

i∈ej
xm i)−|ej | zm j = 0, which makes the first term disappear, and ensures

that f ∈ C∞(U, [0,∞[) is smooth. This motivates us to pick γ = 2.
Calculating the repelling-charges part of eqn (2.3) for n = 1, . . . , k requires O(k2)

evaluations which is too expensive for the hypergraphs we envision, with a huge
number of vertices k. Luckily, we can circumvent this problem using techniques from

6

[24] and [29]: we will build the d-dimensional equivalent of an octree to group the
repelling charges into clusters and treat far-away clusters of charges as a single, but
heavier charge. To ensure that this works properly the location of this larger charge
will be the weighted average location of the cluster and the weight of the charge will
be set equal to the sum of the charge weights in the cluster. Note that the repelling-
charges part of f in eqn (2.1) consists of applications of the map x 7→ ‖x‖−δ for
x ∈ Rd, the Laplacian of which is given by x 7→ δ (δ − (d − 2)) ‖x‖−δ−2. Hence, we
can ensure that this part of f is harmonic (i.e. with vanishing Laplacian) by choosing
δ = d − 2. This will in turn make our energy function behave well when treating
clusters of far-away charges as a single, heavier charge, because of the mean-value
property of harmonic functions (see [3, Theorem 1.6 and 1.24]).

Recapitulating the above:
1. we can pick α = β = 1 since this only scales a solution to eqn (2.2),
2. we should pick γ = 2 to be able to calculate the rubber band contribution to

eqn (2.3) efficiently,
3. we should pick δ = d − 2 to be able to approximate the repelling charge

contribution to eqn (2.3) by treating clusters of charges as a single, heavier
charge.

Inserting these constants we obtain the following expressions for f and its partial
derivatives:

f(x1, . . . , xk) =
1
2

l∑
j=1

cj

∑
i∈ej

‖xi − zj‖2 +
1
2

k∑
j=1

k∑
i=1
i 6=j

wi wj

‖xi − xj‖d−2
, (2.4)

∂f(x1, . . . , xk)
∂xm n

=
∑

{j | n∈ej}

cj (xm n − zm j) + (d− 2)
k∑

i=1
i 6=n

wi wn

‖xi − xn‖d
(xm i − xm n).

(2.5)

2.2. Connectedness. Before we start describing an algorithm to solve eqn (2.1),
we should take care to ensure that such a solution actually exists.

Theorem 2.2. Let G = (V,E), U , and f be given as in Definition 2.1 and
suppose G is non-empty.

Then precisely one of the following statements is true:
1. there exists a solution (x1, . . . , xk) ∈ U to eqn (2.2),
2. G is disconnected: we can write V = V1∪V2 as a disjoint union with V1, V2 6=
∅, such that for all e ∈ E we have e ⊆ V1 or e ⊆ V2.

Proof. Suppose G is disconnected. Without loss of generality, we can order the
vertices such that V1 = {1, . . . , k′} and V2 = {k′+1, . . . , k}. Suppose (x1, . . . , xk) ∈ U
has minimum energy. Then for all y ∈ Rd \ {0} we have

f(x1 + y, . . . , xk′ + y, xk′ − y, . . . , xk − y)

= f(x1, . . . , xk) + β

k′∑
i=1

k∑
j=k′+1

(
wi wj

‖2 y + xi − xj‖δ
− wi wj

‖xi − xj‖δ

)
.

This equation holds because all hyperedges ej ∈ E are either completely contained
in V1 or completely contained in V2, such that all xi with i ∈ ej are either translated
by +y or −y, respectively. This ensures that for all hyperedges ej ∈ E and vertices
i ∈ ej , the difference xi − zj remains the same, which in turn leaves the first term of

7

eqn (2.1) unchanged. For the second term of eqn (2.1), we find that the difference
xi − xj only changes if i ∈ V1 and j ∈ V2, or vice versa.

For all 1 ≤ i ≤ k′, k′ < j ≤ k, we have

lim
r→∞

wi wj

‖2 (r y) + xi − xj‖δ
= lim

r→∞

1
|r|δ

wi wj

‖2 y + (xi − xj)/r‖δ
= 0

as y 6= 0 and δ > 0. In particular there exists an r > 0 such that for all 1 ≤ i ≤ k′,
k′ < j ≤ k we have

wi wj

‖2 (r y) + xi − xj‖δ
− wi wj

‖xi − xj‖δ
< 0.

So for this r we have

f(x1 + r y, . . . , xk′ + r y, xk′+1 − r y, . . . , xk − r y) < f(x1, . . . , xk),

hence (x1, . . . , xk) does not have minimum energy; we have reached a contradiction.
Therefore, no solution to eqn (2.2) exists.

Suppose conversely that G has no disconnected components: for any disjoint union
V = V1∪V2 with V1, V2 6= ∅ there exists an e ∈ E such that e∩V1 6= ∅ and e∩V2 6= ∅.
So in particular for every v, w ∈ V there exists a path of hyperedges e1, . . . , en ∈ E
such that v ∈ e1, w ∈ en, and ej−1 ∩ ej 6= ∅ for all 1 < j ≤ n. We can see this by
writing V as the disjoint union {v} ∪ (V \ {v}) which gives us e1 and continuing by
induction to obtain ej+1 from the disjoint union V = (e1∪ . . .∪ej)∪(V \(e1∪ . . .∪ej))
until we reach w (which will happen eventually as each new hyperedge adds at least
one new vertex and our hypergraph is finite).

Suppose that for a given R > 0, (x1, . . . , xk) ∈ U satisfies

max
1≤i<j≤k

‖xi − xj‖ ≥ R. (2.6)

We will now focus on two vertices for which the relative distance in eqn (2.6) is
maximal. As described above there exists a path of hyperedges between these two
vertices. So there exist vertices i1, . . . , in+1 ∈ V and edges e1, . . . , en ∈ E such that
‖xi1 − xin+1‖ is maximal, i1 ∈ e1, in+1 ∈ en, and ij ∈ ej−1 ∩ ej for 1 < j ≤ n. Along
this path, we have

R ≤ ‖xi1 − xin+1‖ =

∥∥∥∥∥xi1 − z1 +
n∑

m=2

(zj−1 − xim + xim − zj) + zn − xin+1

∥∥∥∥∥
≤ ‖xi1 − z1‖+

n∑
m=2

(‖xim − zj−1‖+ ‖xim − zj‖) + ‖xin+1 − zn‖.

Hence, one of these 2n terms must be at least R/(2 n). So there exist a vertex
p ∈ V and a hyperedge eq ∈ E such that p ∈ eq and ‖xp − zq‖ ≥ R/(2 n) ≥ R/(2 l).
Therefore, f satisfies

f(x1, . . . , xk) ≥ α

2
cq ‖xp − zq‖γ ≥

α

2 (2 l)γ

(
min

1≤j≤l
cj

)
Rγ . (2.7)

Suppose that for a given r > 0, (x1, . . . , xk) ∈ U satisfies

min
1≤i<j≤k

‖xi − xj‖ ≤ r.

8

Fix 1 ≤ i < j ≤ k such that ‖xi − xj‖ is minimal, then

f(x1, . . . , xk) ≥ β
wi wj

‖xi − xj‖δ
≥ β wi wj

1
rδ
≥ β

(
min

1≤i≤k
w2

i

)
1
rδ

. (2.8)

Note that f is invariant under translations, so that without loss of generality we
can restrict ourselves to solutions with x1 = 0. Let

E := f((0, 0, . . . , 0), (1, 0, . . . , 0), (2, 0, . . . , 0), . . . , (k − 1, 0, . . . , 0))

be an upper bound for the minimum value of f .
By eqn (2.7) we know that there exists an R > 0 such that f(0, x2, . . . , xk) > E

whenever maxi 6=j ‖xi−xj‖ > R. On the other hand, by eqn (2.8) there exists an r > 0
such that f(0, x2, . . . , xk) > E whenever mini 6=j ‖xi−xj‖ < r. So if (0, x2, . . . , xk) ∈ U
has minimal energy, then necessarily (0, x2, . . . , xk) ∈ C where

C :=
⋂

1≤i<j≤k

{
(x1 = 0, x2, . . . , xk) ∈ Rd×k | r ≤ ‖xi − xj‖ ≤ R

}
.

As C ⊆ Rd×k is both closed and bounded (because x1 = 0), C is compact by Theorem
1.8.17 in [16]. We also have that C ⊆ U and f is continuous on U , so f is continuous
on the compact set C and therefore f |C attains its minimum at a certain point in
C by Theorem 1.8.8 of [16]. Since the minimum of f necessarily lays within C by
construction, this is a solution to eqn (2.2).

Therefore, in solving eqn (2.2), we should restrict ourselves to connected hyper-
graphs. If the provided hypergraph is not connected, we have to treat each connected
component separately, where a solution is guaranteed to exist by Theorem 2.2.

Algorithm 1 Determines the connected components of a hypergraph G = (V,E),
with V = {1, . . . , k}. Vertices v and w belong to the same connected component of G
iff pv = pw. This algorithm is adapted from [10, Section 21.3].
1: for all v ∈ V do
2: pv ← v;
3: for all e ∈ E do
4: for all v ∈ e do
5: while pv 6= ppv do
6: pv ← ppv ;
7: p← min{pv | v ∈ e};
8: for all v ∈ e do
9: ppv ← p;

10: for all v ∈ V do
11: while pv 6= ppv

do
12: pv ← ppv ;

2.3. Algorithm. We use the above observations to create a multilevel algorithm
which approximates a minimum-energy solution. Firstly, we find the connected com-
ponents via Algorithm 1. This algorithm works by creating a forest, i.e. a collection
of rooted trees, where the parent of a vertex v ∈ V is denoted by pv ∈ V , and each
root satisfies pv = v. The algorithm merges the trees of all vertices contained in a

9

Algorithm 2 Finds solutions to eqn (2.2) for a given connected hypergraph G =
(V,E), adopted from [24].
1: G0 ← G; j ← 0;
2: while Gj is too large do
3: coarsen Gj to Gj+1 with surjective πj : VGj → VGj+1 ;
4: j ← j + 1;
5: let xj be a random visual representation for Gj

6: (so pick xj(v) ∈ Rd at random for all vertices v ∈ VGj);
7: while j ≥ 0 do
8: improve xj by Algorithm 3;
9: if j > 0 then

10: for all vertices v ∈ VGj−1 parallel do
11: xj−1(v)← scale xj(πj(v))+ small random displacement;
12: j ← j − 1;

hyperedge, for all hyperedges. After this is completed, each vertex is directly attached
to its root, which represents its connected component.

Secondly, we apply Algorithm 2 to each connected component to generate a visual
representation. We create a hierarchy of coarsenings of the hypergraph and visual
representations for these coarser hypergraphs, to avoid getting stuck in local energy
minima. Here, we follow the graph visualization algorithm from [24]. We coarsen
hypergraphs by creating a maximal matching that is constructed greedily from heavy
(high cost) hyperedges, as heavy hyperedges have the tendency to pull the vertices
contained in them closer together when we try to find the energy minimum, and
then merging the matched vertices. To prevent star hypergraphs from forming (which
disrupt this matching procedure [12]) we also always match single-neighbor vertices to
their neighbor. Coarsening a hypergraph G to a hypergraph H in this way, we obtain
a surjective map π : VG → VH which maps each collection of matched vertices of G
to a single vertex of H. We also merge hyperedges e, e′ ∈ EG satisfying π(e) = π(e′)
(where π(e) = {π(v) | v ∈ e}) to a single hyperedge and set the cost of this new
hyperedge to the sum of the costs of e and e′. At line 10 of Algorithm 2, we introduce
the parallel do construct. We use it to denote parallel for-loops that can directly be
parallelized because their iterations are independent.

For the coarsest version of the hypergraph, we start out with a random visual
representation, which is then improved by Algorithm 3 using the steepest descent
method. After the visual representation has been improved for the coarse hypergraph
we scale it and add small random displacements, to ensure that different vertices in
the fine hypergraph do not occupy the same position. Thus, we obtain a visual repre-
sentation for the fine hypergraph. This layout is then again improved by Algorithm
3. We continue doing this until we obtain a visual representation for the original
hypergraph.

Algorithm 3 gives the details of the improvement procedure on line 8 of Algorithm
2. The part of the gradient of the energy function f belonging to xn, is denoted by
yn. We create a tree T which recursively groups the points belonging to the visual
layout; this tree consists of nodes t ∈ T which have position xt ∈ Rd (the average
position of all points contained in t) and weight wt > 0 (the sum of the weights
of all vertices contained in t). The functionality of siblings of nodes in the tree is
extended by letting the root have a dummy node as sibling (denoting the end of the

10

Algorithm 3 Improves a given approximate solution (x1, . . . , xk) ∈ U to eqn (2.2)
for a hypergraph G = ({1, . . . , k}, {e1, . . . , el}) using steepest descent.
1: while we are not satisfied with the solution do
2: build tree T recursively clustering x1, . . . , xk;
3: for n = 1 to k parallel do
4: yn ← 0;
5: for j = 1 to l parallel do
6: zj ← 1

|ej |
∑

i∈ej
xi;

7: for n = 1 to k parallel do
8: for all j such that n ∈ ej do
9: yn ← yn + cj (xn − zj); (cf. eqn (2.5))

10: for n = 1 to k parallel do
11: t← root of T ;
12: while t 6= dummy do
13: if xn is far away from t then
14: yn ← yn + (d− 2) wt wn ‖xt − xn‖−d (xt − xn); (cf. eqn (2.5))
15: t← sibling of t;
16: else if t has a child then
17: t← child of t;
18: else
19: for all i ∈ t, i 6= n do
20: yn ← yn + (d− 2) wi wn ‖xi − xn‖−d (xi − xn); (cf. eqn (2.5))
21: t← sibling of t;
22: determine appropriate stepsize α > 0;
23: for n = 1 to k parallel do
24: xn ← xn − α yn;

tree traversal), and letting nodes without siblings have the sibling of their parent
as sibling. This facilitates a fast, direct tree traversal without backtracking [29].
During steepest descent, we determine the step size by comparing the bounding box
volume to the individual gradients of the vertices to prevent blowup for the first
few steps and then decrease the found stepsize by multiplying it by 0.9 [24]. Note
that apart from the building of the tree grouping the hypergraph vertices, almost all
parts of Algorithm 3 consist of d-dimensional floating point arithmetic that is directly
parallellizable over all vertices and hyperedges. This makes Algorithm 3 suitable for
many-core architectures such as GPUs.

3. Partitioning. Suppose that x1, . . . , xk ∈ Rd is a visual representation of our
hypergraph G = ({1, . . . , k}, {e1, . . . , el}), obtained either directly or by using the
methods from Section 2. Then we will use this spatial layout to create a partitioning
of the hypergraph in a desired number of m ∈ N parts. To do so, we employ the
k-means++ method [2], given by Algorithm 4. This algorithm searches for m centers
z1, . . . , zm ∈ Rd such that

k∑
i=1

min
1≤j≤m

‖xi − zj‖2 (3.1)

is minimal, which is NP-hard for all m ≥ 2 [1]. The advantage of k-means++ is that
the algorithm finds z1, . . . , zm in O(k m log m) time, while the value of eqn (3.1) is

11

expected to be within a factor of 8 (log m + 2) from its minimum value already at the
start (line 6) of the first iteration [2]. The k-means++ algorithm therefore permits
us to isolate clusters quickly in the visual representation of our hypergraph, which
correspond to highly interconnected patches of vertices in the hypergraph. Algorithm
4 is furthermore easily parallelized in shared memory (lines 3 and 7). The sum at
line 11 can also be performed in parallel by computing partial sums for the zj and
summing these afterwards.

Algorithm 4 The k-means++ algorithm [2] finds centers z1, . . . , zm ∈ Rd for a given
set of points x1, . . . , xk ∈ Rd, trying to minimize eqn (3.1).
1: set z1 to a randomly chosen point from {x1, . . . , xk};
2: for n = 2 to m do
3: for i = 1 to k parallel do
4: di ← min1≤j<n ‖xi − zj‖2;
5: choose zn to be equal to xi with probability di/(d1 + . . . + dk);
6: for a fixed number of iterations do
7: for i = 1 to k parallel do
8: ji ← argmin 1≤j≤m‖xi − zj‖2;
9: for j = 1 to m do

10: Cj := {1 ≤ i ≤ k | ji = j};
11: zj := 1

|Cj |
∑

i∈Cj
xi;

The m disjoint subsets C1, . . . , Cm ⊆ V produced by Algorithm 4 form an m-way
partitioning of V . It should be remarked that this way of generating a partitioning
does not enforce balancing of the partitioning, but in general k-means++ does a good
job of dividing the point set into parts of approximately equal size: large groups
of points pull centers harder towards themselves, which enlarges the other, smaller,
groups. Such balancing can be observed in Fig. 1.1 and Fig. 5.1. Partitionings gener-
ated by Algorithm 4 can further be improved by subjecting them to a few iterations
of the Kernighan–Lin algorithm [27].

4. LU decomposition. We will now apply the ideas discussed in the previous
sections to performing an LU decomposition of a given matrix in parallel using nested
dissection [18, 22], see also [4, 9, 20, 25, 28].

Definition 4.1. Let A ∈ Cm×m be a given m ×m matrix. Then a (permuted)
LU decomposition of A is a decomposition of the form

P AQ = LU, (4.1)

where P,Q ∈ {0, 1}m×m are permutation matrices and L,U ∈ Cm×m with entries li j ,
ui j respectively, such that li j = 0 for i < j, ui j = 0 for i > j, and li i = 1 for all i.

We include permutations in Definition 4.1 to ensure that well-behaved matrices
like (0 1

1 0) also have an LU decomposition. Calculating an LU decomposition for a given
matrix with complete pivoting is described by Algorithm 5. While this algorithm is
fine for small dense matrices, we get into trouble with large sparse matrices for two
reasons: Algorithm 5 takes O(m3) iterations (which scales rather badly), regardless
of matrix sparsity, and as illustrated by Example 4.2, the sparsity of the original
matrix may be lost during the decomposition, requiring up to O(m2) memory. We
will remedy these problems by calculating appropriate permutation matrices P and

12

Algorithm 5 LU decomposition (algorithm 3.4.2 from [19]). Determines for a matrix
A ∈ Cm×m with entries ai j factors P , Q, L, and U such that P AQ = LU .
1: for k = 1 to m do
2: πk ← k, σk ← k;
3: for k = 1 to m do
4: find k ≤ i, j ≤ m such that |ai j | is maximal;
5: swap rows k and i and swap πk and πi;
6: swap columns k and j and swap σk and σj ;
7: if ak k 6= 0 then
8: for i = k + 1 to m do
9: ai k ← ai k/ak k;

10: for i = k + 1 to m do
11: for j = k + 1 to m do
12: ai j ← ai j − ai k ak j ;
13: set pi j to 1 if πi = j and 0 otherwise, to form P ;
14: set qi j to 1 if σj = i and 0 otherwise, to form Q;
15: set li j to ai j if i > j, 1 if i = j, and 0 otherwise, to form L;
16: set ui j to ai j if i ≤ j and 0 otherwise, to form U ;

Q, using the techniques from the previous sections.
Example 4.2. Consider the following decomposition (using Algorithm 5 without

pivoting):
2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

 =

1 0 0 0
1
2 1 0 0
1
2 − 1

3 1 0
1
2 − 1

3 − 1
2 1

2 1 1 1
0 3

2 − 1
2 − 1

2
0 0 4

3 − 2
3

0 0 0 1

 .

Here, the sparsity pattern of the original matrix is lost completely in the L and
U factors, and a fill-in of six new nonzeros is created. Suppose we permute the
matrix by swapping the first and last rows and columns, then we obtain the following
decomposition:

2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2

 =

1 0 0 0
0 1 0 0
0 0 1 0
1
2

1
2

1
2 1

2 0 0 1
0 2 0 1
0 0 2 1
0 0 0 1

2

 .

Now, L and U have the same sparsity pattern as the original matrix. Furthermore,
performing Algorithm 5 on the permuted matrix also required less work because of
zeros that were preserved during decomposition: the two loops around line 12 can
skip most rows and columns because either ai k or ak j is equal to 0.

4.1. Recursive BBD form. Following Example 4.2 we will try to bring the
sparse matrix into Bordered Block Diagonal (BBD) form [25] as illustrated in Fig.
4.1 (a). The block in the lower-right corner is commonly called the Schur complement.
A row that contains a nonzero in a column that intersects the first diagonal block and
also in a column that intersects the second diagonal block is said to be cut or split
with respect to the subdivision of the matrix. Cut columns are defined similarly.
Performing Algorithm 5 on a matrix in such a form will only generate fill-in in the

13

1 2 3 4 5 6 7

2

3

4

5

6

7

1(c)

(a)

A
R

C1

A
R

S1

A2

A
R

C2
AC

A
C

S1
A

C

C1

A
C

C2
A

C

S2

A
C

CS

A
R

CS

ASA
R

S2

A1

(b)

(d)

Figure 4.1. Nested dissection for LU decomposition. (a) Bordered Block Diagonal (BBD)
matrix form; (b) recursive BBD matrix form; (c) LU decomposition contributions; (d) matrix form
for Algorithm 6.

shaded blocks and the costly inner loop can skip the empty blocks. By doing this
recursively, see Fig. 4.1 (b), the amount of fill-in will be further reduced. This
principle is called nested dissection [18].

Such a recursive matrix layout furthermore permits us to create a parallel LU
decomposition algorithm (similar to [28]). We illustrate this in Fig. 4.1 (c) where
we are busy performing Algorithm 5 along the diagonal of diagonal block 1 (for the
sake of simplicity we do not perform any pivoting). For this nonzero on the diagonal,
performing LU decomposition will only modify the darkly shaded parts of the matrix
and therefore leave the diagonal blocks 2, 4, and 5 untouched. Furthermore, the LU
decomposition contributions of all diagonal blocks to the Schur complements 3, 6, and
7 do not depend on the actual values in the Schur complements, so we can perform
LU decomposition on blocks 1, 2, 4, and 5 in parallel and add the contributions to the
Schur complements afterwards. To process the nonzero on the diagonal of block 1, we
need nonzero values not only from the cut rows and columns of Schur complement 3
(solid arrows), but also from the rows and columns of Schur complement 7 (dashed
arrows). So we need to keep track of all previous Schur complements during parallel
LU decomposition.

For the parallel LU algorithm outlined in Algorithm 6, we therefore work recur-
sively on a matrix of the form illustrated in Fig. 4.1 (d). Here, we added contribution
blocks AC , AC

C1, AC
C2, AC

CS , AR
C1, AR

C2, and AR
CS to the matrix, which are indicated

by a darker shade. At the start of Algorithm 6 (so for the original matrix A), these
are empty, but as the algorithm further recurses, the contribution blocks will contain
all the contributions of the LU decomposition to Schur complements of the previous
recursion levels (i.e. the data required for the dashed arrows in Fig. 4.1 (c)). In an
implementation of Algorithm 6 it would be efficient to store the nonzeros ai j of the

14

matrix by increasing min{i, j}. Thus, we keep all data necessary to perform the LU
decomposition at line 6 together, regardless of the level of recursion. This is better
than storing the nonzeros by increasing i (Compressed Row Storage, CRS) or j.

Algorithm 6 Parallel recursive LU decomposition of the matrix from Fig. 4.1 (d).
1: if we wish to continue subdividing then
2: apply Algorithm 6 recursively and in parallel to

and

A1 AC
S1

AC
C1

A2 AC
C2

AC
S2

AR
S2

0 0

0AR
C2

0

0

0

AR
S1

0

AR
C1

0

3: add the contributions from A1 and A2 to AS , AC , AR
CS , and AC

CS ;
4: perform LU decomposition (e.g. Algorithm 5) on

AC

AC
CS

AR
CS

AS

,

only permuting within AS and stopping after factorizing AS ;
5: else
6: perform LU decomposition on A, only permuting within the lightly shaded part

of the matrix and stopping after factorizing A1, A2, and AS ;

It is important to note that the LU decompositions performed in Algorithm 6 on
line 4 and line 6 are incomplete in the sense that they only treat part of the given
matrix. In Algorithm 5, this would amount to specifying a number 1 ≤ m′ < m and
letting k run from 1 to m′ at line 3 and choosing i and j such that k ≤ i, j ≤ m′ at
line 4. To improve performance, multifrontal [11] or supernodal [13] methods could
be used to perform these LU decompositions. The condition at line 1 in Algorithm
6 is used to stop the algorithm whenever the resulting diagonal block becomes so
small that a direct LU decomposition would outperform further recursion, or when
there is a risk of the diagonal matrices becoming singular. Note that Algorithm 6 is
processor-oblivious in the sense that we can continue recursing on the diagonal blocks
while there are still more processors available, up to the recursion depth where the
diagonal blocks are still sufficiently large.

Since with this parallel method we can only pivot within each block (not doing
so would destroy the recursive BBD form), we could encounter a singular submatrix,
as illustrated by Theorem 4.3 and Example 4.4.

Theorem 4.3. Let A ∈ Ca×a, B ∈ Cb×b, C ∈ Cc×c such that d := a−(b+c) ≥ 0
and A is of the form

A =

 B 0
0 C

D

 .

15

If det(A) 6= 0, then

b + c− d ≤ rank (B) + rank (C) ≤ b + c. (4.2)

Proof. First of all, note that if the matrix A′ ∈ Ca×a is obtained from A us-
ing Gauss–Jordan elimination with column pivoting, then det(A) = 0 if and only if
det(A′) = 0. Suppose that det(A) 6= 0, then by performing these operations on B
and C separately, we find the nonzero value

det

Irank (B) 0 0

0 0 0 0
0 0 Irank (C)

0 0 0 0
0 0 D

 = ±det

Irank (B) 0 0

0 Irank (C) 0
0 0 0 0
0 0 0 0
0 0 D

= ±det

 0 0
0 0

D

 .

The resulting smaller matrix has size a−rank (B)−rank (C) and must be of maximum
rank because its determinant is nonzero. Let e := a− rank (B) − rank (C) − d, then
e ≥ a − b − c − d = 0. If e ≤ d, a matrix with the above nonzero pattern can have
maximum rank e + d. If e > d, the rank of such a matrix can be at most 2 d < e + d.
Therefore, it is necessary that e ≤ d ⇐⇒ a − rank (B) − rank (C) − d ≤ d ⇐⇒
a − 2 d ≤ rank (B) + rank (C) ⇐⇒ (b + c + d) − 2 d ≤ rank (B) + rank (C), from
which eqn (4.2) follows.

Theorem 4.3 shows us that we cannot assume our diagonal blocks to be invertible
whenever the Schur complement is nonempty. Furthermore, it motivates us to reduce
the size of the Schur complement: this will increase the minimum rank that the
diagonal blocks are required to have and thereby increases stability. In terms of
hypergraph partitioning we therefore see that we should at all times try to make the
Schur complement as small as possible: this will increase parallelism in the sense that
more rows/columns can be treated in parallel by Algorithm 6, it will reduce fill-in,
and it will improve stability.3

To prevent the diagonal blocks from becoming singular we allow for an optional
specification of a desired (strengthened) matrix diagonal beforehand [15], which will
be preserved by the generated permutations as described in Section 4.2. As Example
4.4 shows however, this is not guaranteed to solve the problem.

Example 4.4. Let

A =

2 1 0 0 1
4 2 0 0 1
0 0 2 1 1
0 0 1 2 1
1 1 1 1 2

 , B =
(

2 1
4 2

)
, C =

(
2 1
1 2

)
.

Then a = 5, b = 2, c = 2, d = 1, rank (B) = 1, rank (C) = 2, and det(A) = 3 6= 0.
Therefore, the bound in eqn (4.2) is tight: b + c− d = 3 = rank (B) + rank (C). Note
that det(B) = 0 even though the product of the diagonal elements of A is maximal.

3So hypergraph partitioners used for the purpose of bringing the matrix into recursive BBD form
should use the cut-net metric instead of the (λ− 1)-metric, reducing the number of cut hyperedges,
and not the associated communication volume.

16

During the performed benchmark with SuperLU (Table 5.1) we found that for 8 of
the 28 matrices no pivoting was required at all (not even in the Schur complements),
and in all other cases pivoting with a threshold of 10−6 was sufficient. Therefore, if we
keep the Schur complements small, strengthen the matrix diagonal, and use threshold
pivoting within diagonal blocks and Schur complements, we anticipate that submatrix
singularity will not pose any significant problems in practice.

4.2. Permutations. We will now apply the ideas from sections 1.1, 2, and 3 to
obtain the desired permutations to bring a given sparse matrix A ∈ Cm×m with nz
nonzeros into recursive BBD form. This method will be referred to as visual matrix
ordering (VMO). We assume the matrix to be square, because we want to use VMO
for LU decomposition.

Firstly, we need to determine what kind of hypergraph we will use to represent
A (from Table 1.1). Using only the symmetric representation is not appropriate,
because LU factorization is usually applied to unsymmetric matrices. The column-
net and row-net approach often do not yield optimal partitionings when compared
to the finegrain representation [8]. However, the finegrain representation results in
nz vertices, thus degrading the performance of Algorithm 3, which would scale as
O(nz log(nz) + m). Inspection of the visual layouts revealed that a good layout for
the finegrain representation could be obtained by laying out its dual (the bipartite
representation, which is a graph) and then mapping each nonzero to the average of the
points of the row and column belonging to that particular nonzero. As the bipartite
representation has only 2 m vertices instead of nz , the layout can be generated much
faster, scaling as O(m log(m)+nz). It also permits us easily to maintain a previously
selected strengthened diagonal in the generated permutations

Therefore, let G = (V,E) be the bipartite representation of our sparse matrix
A. To avoid the problem of ending up with a singular matrix during recursion, we
permit a desired strengthened diagonal to be specified with the matrix, in the form
of a perfect bipartite graph matching M ⊆ E, [15]. We will view this matching as
a map µ : V → V which maps each vertex v ∈ V to µ(v) ∈ V such that the edge
{v, µ(v)} ∈M (as M is a perfect matching, exactly one vertex µ(v) has this property).

We can also incorporate the values of the nonzeros of the matrix in the partitioning
by setting the edge costs of G to |ai j | for each edge {i, j} ∈ E (optionally rescaling
these values to a fixed interval to avoid convergence issues in Algorithm 3). This is
natural, because zeros of the matrix are not incorporated at all in eqn (2.1) (as they
are not included in E), so letting the edge cost of {i, j} go to 0 as |ai j | → 0 gradually
decreases the influence of {i, j} on the energy function of G to zero. However, as this
reduced the quality of the partitionings in terms of fill-in, we did not use this option
for the performed experiments.

Using Algorithm 2 we generate a visual representation of G. Then we apply
Algorithm 7 to obtain V = V1 ∪ V2 ∪ V3 and E = E1 ∪ E2 ∪ E3, where p(v) and
q(e) denote the part indices for vertices v and edges e. Algorithm 7 turns the edge
separator, obtained by partitioning the vertices using Algorithm 4, into a vertex
separator. To do so we exploit the geometry of the partitioning by letting the vertices
closest to the plane (described in Algorithm 7 by its normal r and distance δ on
line 7) separating the two groups of vertices be chosen to be added to the vertex
separator. We ensure that we preserve the strengthened diagonal in lines 11 and 13:
this ensures that edges from the matching M are contained completely in either V1,
V2, or V3, which prevents them from entering the darker off-diagonal blocks in Fig.
4.2. This can be skipped if no matching is available or desired (e.g. in the context of

17

Algorithm 7 Given a graph G = (V,E) with visual representation x : V → Rd

and a map µ : V → V derived from a perfect bipartite graph matching M ⊆ E,
this algorithm partitions V and E into V1, V2, V3 and E1, E2, E3 respectively, where
no {v, w} ∈ E exists with v ∈ V1 and w ∈ V2, and such that e ∈ E1 → e ⊆ V1,
e ∈ E2 → e ⊆ V2, and e ∈ E3 → e ∩ V3 6= ∅ (Fig. 4.2 (left)).

1: determine two centers z1, z2 ∈ Rd in x(V) ⊆ Rd by Algorithm 4;
2: for all v ∈ V in parallel do
3: if ‖x(v)− z1‖ ≤ ‖x(v)− z2‖ then
4: p(v)← 1;
5: else
6: p(v)← 2;
7: r ← z2 − z1; δ ← 1

2 (z2 + z1) · r;
8: for all e = {v, w} ∈ E do
9: if {p(v), p(w)} = {1, 2} then

10: if |x(v) · r − δ| ≤ |x(w) · r − δ| then
11: p(v)← 3; p(µ(v))← 3;
12: else
13: p(w)← 3; p(µ(w))← 3;
14: for all e = {v, w} ∈ E in parallel do
15: q(e)← max{p(v), p(w)};
16: sort the vertex pairs {v, µ(v)} by their p-values to obtain V1, V2, V3;
17: sort the edges by their q-values to obtain E1, E2, E3;

V1

V2

V3

V3V1

E1

E3

E3

E3

E3

V2

E2

E3

Figure 4.2. Matrix partitioning for Algorithm 7 (left) and improved partitionings obtained by
bringing either the Schur complement (middle) or the cut rows and columns (right) into BBD form.

sparse matrix–vector multiplication instead of LU decomposition), which will result
in smaller V3 and E3. However, for LU decomposition it is necessary, in particular to
maintain square blocks on the diagonal. After the first iteration of Algorithm 7, we
again apply it to G1 = (V1, E1) and G2 = (V2, E2) and continue doing this recursively
to obtain recursive BBD permutations for our matrix A as shown in the rightmost
column of Fig. 1.1.

The permutations themselves can directly be obtained from the recursive parti-
tioning of V : the rows and columns of the block E1 (see Fig. 4.2) are exactly the
vertices in V1, and similarly for the rows and columns of the blocks E2 and E3. There-
fore, a simple linear walk through the reordered vertices (line 16 of Algorithm 7) will
provide the proper permutations of the rows and columns of our matrix A.

When permuting the matrix to recursive BBD form, we have additional freedom
18

in permuting the rows and columns of V3 in Fig. 4.2 (left) (also see Fig. 5.1). A direct
way to do this is also to apply Algorithm 7 recursively to G3 = (V3, E

′
3), just like we

do for G1 and G2. Here E′
3 consists of all edges e ∈ E3 satisfying e ⊆ V3 (so E′

3 is
the lightly shaded E3 part of Fig. 4.2 (left)). This gives permutations as illustrated
in Fig. 4.2 (middle). An advantage of this method is that the strengthened diagonal
is also maintained within the Schur complement.

Another way in which the additional freedom can be used, is to bring the cut
rows and columns into recursive BBD form as illustrated in Fig. 4.2 (right). Doing
this is a little more tricky: first of all, we assign a two-bit number to each vertex in
V3, initially set to 00. We also keep track of the edges E1 3 between V1 and V3, and
edges E2 3 between V2 and V3. Now, if Vi (i = 1, 2) is split with Algorithm 7 into
Vi 1, Vi 2, and Vi 3 we can loop through all edges {v, w} in Ei 3 with w ∈ V3. Then if
v ∈ Vi 1 we set the first bit of the number associated with w and if v ∈ Vi 2 we set the
second bit. If we do this for both splits of V1 and V2, and then sort the vertices in V3

by their two-bit numbers we obtain a permutation as shown in Fig. 4.2 (right). By
expanding these numbers to b two-bit pairs and keeping track of the edges extending
to the Schur complements for up to b splits, we can bring the cut rows and columns
into recursive BBD form up to the bth level.

5. Experiments. We implemented the VMO algorithm in C++ using the In-
tel Threading Building Blocks library for many-core parallelism where we chose to
generate visual representations in d = 4 dimensions to be able to perform all parallel
vector calculations in Algorithm 3 and Algorithm 4 efficiently on either the CPU (one
Streaming SIMD xmm* register for a point in R4) or the GPU (a float4 register for
a point in R4). This furthermore ensures that we do not need to take a square root
in eqn (2.5).

To measure the quality of the generated permutations we compared VMO to the
SuperLU [13] LU decomposition package by measuring fill-in, see Table 5.1. In this
case we made use of the additional freedom in the cut rows and columns by also
recursively subdividing the cut parts of the graph while retaining the strengthened
diagonal (Fig. 4.2 (middle) and Fig. 5.1 (left)) to ensure that few small pivots are
encountered along the diagonal. We performed four decompositions for each matrix
where we used permutations generated by VMO, as well as the built-in COLAMD(A),
MMD(AT + A), and MMD(AT A) column permutations generated by SuperLU. For
the permutations generated by SuperLU we retained the default SuperLU 4.1 options,
while for the VMO permutations we first performed a run without any pivoting and
then a run with threshold pivoting4, using a value of u = 10−6. To ensure we would
not run into numerical problems we used a strengthened diagonal obtained via a heavy
edge matching in the bipartite representation of A, augmented to a perfect matching
via the Hopcroft–Karp algorithm [23]. We furthermore validated the decomposition
by comparing calculated condition numbers for all permutation methods and letting
SuperLU calculate the backward error of the solution to A x = b obtained by solving
the system using the decomposition A = LU (section 3.1 of [19]) for b = A (1, . . . , 1)T .
Table 5.1 shows that in 8 of the 28 cases, decomposition of the matrices permuted by
VMO did not require any pivoting at all, not even in the Schur complements. From
the table we see that VMO compares favorably with SuperLU: looking at the lowest
fill-in of COLAMD(A), MMD(AT + A), and MMD(AT A) and the fill-in of VMO for

4SuperLU performs row pivoting by generating a row permutation π such that for all 1 ≤ j ≤ m,
|aπ(j) j | ≥ u max1≤i≤m |ai j | where u ∈ [0, 1] is the desired threshold, see [14, eqn (4.4.7)].

19

Matrix Size Nonzeros VMO CMD MMD+ MMD×
swang1 3169 20841 6.2 7.7 6.7 8.2
lns 3937 3937 25407 15.0 17.5 132.2 17.5
poli large 15575 33074 1.6 1.6 1.6 1.6
mark3jac020∗ 9129 56175 68.1 45.6 121.3 43.9
fd18∗ 16428 63406 21.9 24.1 302.0 25.5
lhr04∗ 4101 82682 6.0 4.1 20.6 4.3
raefsky6 3402 137845 2.7 3.4 4.5 3.1
shermanACb∗ 18510 145149 19.0 45.3 14.3 57.2
bayer04∗ 20545 159082 10.2 4.2 41.8 4.2
Zhao2∗ 33861 166453 158.1 115.1 1280.1 107.0
mult dcop 03 25187 193216 3.1 2.0 3.4 5.9
jan99jac120sc∗ 41374 260202 71.8 15.9 52.4 19.7
bayer01∗ 57735 277774 7.5 5.4 47.6 5.6
sinc12∗ 7500 294986 37.8 44.7 36.3 45.3
onetone1∗ 36057 341088 32.1 14.4 149.0 14.2
mark3jac140sc∗ 64089 399735 111.0 125.7 4435.0 152.0
af23560 23560 484256 24.8 25.0 82.7 26.9
e40r0100∗ 17281 553562 9.2 9.2 137.5 8.4
sinc15∗ 11532 568526 56.3 58.0 48.7 57.2
Zd Jac2 db∗ 22835 676439 9.6 5.1 32.1 5.7
lhr34c∗ 35152 764014 7.0 4.7 50.5 4.7
sinc18∗ 16428 973826 65.7 67.8 68.2 72.3
torso2 115967 1033473 10.2 16.8 8.2 14.5
twotone 120750 1224224 35.8 15.2 1448.1 17.0
lhr71c∗ 70304 1528092 6.7 4.8 66.4 4.7
av41092∗ 41092 1683902 64.6 26.0 177.6 23.8
bbmat∗ 38744 1771722 32.0 26.7 1000.6 26.8

Table 5.1
Comparison between VMO and SuperLU 4.1 in terms of fill-in, defined as (nz (L) + nz (U) −

nz (I))/nz (A) for A = L U . The best result for each matrix is bold, CMD = COLAMD, MMD+ =
MMD(AT +A), and MMD× = MMD(AT A) are the column pre-orderings determined by SuperLU.
Matrices marked with ∗ required threshold 10−6 pivoting for VMO.

each of the 28 test matrices, we find that on average the fill-in of VMO equals 1.52
times the lowest fill-in of the other methods, and that VMO outperforms all other
methods in 8 cases. This indicates that the permutations generated by VMO are
useful in the context of sparse LU decomposition.

We also compared VMO with Mondriaan [31] in terms of matrix partitioning.
Firstly, we did this in the context of cache-oblivious sparse matrix–vector multiplica-
tion where the matrices are permuted into recursive Separated Block Diagonal (SBD)
form [33] (with the cut rows and columns in the middle instead of at the end) to
decrease the number of cache-misses, independent of the particular cache hierarchy
of the processor performing the multiplication. Results are further improved by also
using the additional freedom in the cut rows and columns to bring these into recursive
SBD form (Fig. 5.1 (right)). We measure the matrix multiplication time with the
same program and on the same processor as [34]: a single node of the Huygens su-
percomputer equipped with a dual-core 4.7GHz IBM Power6+ processor with 64kB
L1 cache per core, a semi-shared L2 cache of 4MB, and an L3 cache of 32MB on

20

which the matrix–vector multiplication program has been compiled with the IBM XL
compiler. In Table 5.2, we compare the matrix–vector multiplication time for the
original matrix with the best result from [34] (where the matrix has been permuted
by Mondriaan), and with the result obtained by using VMO.

Matrix Rows Columns Nonzeros Orig. [34] VMO
ex37 3565 3565 67591 0.116 0.113 0.113
memplus 17758 17758 126150 0.308 0.300 0.280
rhpentium 25187 25187 258265 0.645 0.515 0.646
lhr34 35152 35152 764014 1.37 1.34 1.34
lp nug30 52260 379350 1567800 5.35 4.85 9.15
s3dkt3m2 90449 90449 1921955 7.81 7.27 7.80
tbdlinux 112757 21067 2157675 6.43 2.36 5.66
stanford 281903 281903 2312497 19.0 9.35 5.88
stanford berkeley 683446 683446 7583376 20.9 19.2 22.5
wikipedia-20051105 1634989 1634989 19753078 249 116 128
cage14 1505785 1505785 27130349 69.4 74.4 99.0
wikipedia-20060925 2983494 2983494 37269096 688 256 264

Table 5.2
Comparison with Mondriaan in the context of cache-oblivious sparse matrix–vector multiplica-

tion [34]. We compare the original matrix–vector multiplication time with the best time from [34]
(which used Mondriaan 3.01 for reordering) and the best time with VMO.

VMO performs poorly for lp nug30 and cage14. For lp nug30, this can be ex-
plained by a lack of underlying geometrical structure: the visual representation of this
matrix is a featureless blob from which little extra information can be obtained, result-
ing in quite bad permutations. The matrix cage14 already possesses a nonzero layout
that is well suited for matrix–vector multiplication: both Mondriaan and VMO fail to
improve the matrix–vector multiplication time. For tbdlinux, wikipedia-20051105,
and wikipedia-20060925 VMO shows improvements comparable to those of Mon-
driaan, while for memplus and stanford the results are even better. As generating
the permutations with VMO is much faster (see Table 5.3), this makes VMO a viable
alternative to Mondriaan in this context.

Another comparison with Mondriaan was made in terms of the cut-net metric,
which is the appropriate metric in the context of LU decomposition because of The-
orem 4.3. Hence, we look at the maximum number of cut rows and columns in all
matrix (sub)divisions. While Mondriaan divides the matrix among a given number
of processors, VMO continues subdividing the matrix until it can no longer continue.
Therefore, we ran Mondriaan with a hybrid splitting strategy for the cut-net met-
ric to divide the matrix into 256 parts with a permitted imbalance of 0.1 to obtain
permutations comparable to those of VMO.

In Table 5.3, we measure the time it takes Mondriaan to perform the matrix par-
titioning and divide this by the time it takes VMO to generate a visual representation
of the matrix and to generate a partitioning from this visual representation. All tim-
ings except for those marked with ∗ were measured on a system with a quad-core
2.8GHz Intel Core i7 860 processor and 8GB RAM, in particular to illustrate the
gains of using VMO on a many-core system. The entries marked with ∗ needed to be
benchmarked on a different system, because of Mondriaan’s memory requirements:
these were performed on a dual quad-core 2.4GHz AMD Opteron 2378 system with
32GB RAM. From Table 5.3 we find that VMO is on average 21.6 times faster than

21

Figure 5.1. The matrices rhpentium (left) and wikipedia-20070206 (right), permuted by VMO
to recursive BBD and recursive SBD form, respectively. Additional permutation freedom is used for
rhpentium as in Fig. 4.2 (middle), and for wikipedia-20070206 as in Fig. 4.2 (right).

Matrix Speedup Speedup Relative
V + O O cut

ex37 13.4 53.2 0.39
memplus 2.1 11.0 2.86
rhpentium 14.5 57.0 1.08
lhr34 6.5 39.8 2.47
lp nug30 9.1 144.7 2.20
s3dkt3m2 4.7 26.7 1.02
tbdlinux 25.0 228.3 0.75
stanford 7.9 78.6 2.37
stanford berkeley 17.0 118.0 3.26
wikipedia-20051105 36.0 290.7 0.61
cage14∗ 4.3 29.1 0.62
wikipedia-20060925∗ 119.4 1104.3 1.02

Table 5.3
Comparison with Mondriaan in terms of the calculation time and the largest number of cut

rows/columns in a split. Speedup is defined as the time required by Mondriaan 3.01 to perform the
matrix partitioning, divided by the time required by VMO to generate both the visual representation
and permutations (V + O) or just the permutations (O). The last column gives the maximum of
the number of cut rows and columns in all splits of VMO, divided by the maximum obtained by
Mondriaan. Entries marked with a ∗ were benchmarked on a different system because of a lack of
memory. The test matrices are the same as those from Table 5.2.

Mondriaan, and if for all matrices a visual representation would already have been
given the average speedup would even be 181.8. We also measure the maximum of the
number of cut rows and columns in all subdivisions of the matrix for VMO and divide
this by the maximum for Mondriaan. This gives a measure for the relative maximum
cut size when comparing the two methods: the maximum cut size obtained by VMO
is on average 1.55 times that of Mondriaan and in four cases it is less. To make the
comparison as fair as possible we used Mondriaan with the cut-net metric for par-
titioning, but it should still be remarked that minimizing the maximum number of
cut rows and columns is not the primary objective of Mondriaan and the balancing
restrictions placed on Mondriaan are absent for VMO.

22

6. Conclusion. We have shown that it is possible to create and use the visual
representations of hypergraphs to generate partitionings and orderings which are of
sufficient quality for sparse LU decomposition (Table 5.1) and sparse matrix–vector
multiplication (Table 5.2). Our method generates orderings on average 21.6 times
faster than Mondriaan (Table 5.3). We generalized the 2D/3D graph visualization
method from [24] to generate hypergraph geometries in higher dimensions. Further-
more, the algorithms to generate visual representations (Algorithm 3) and matrix
orderings (Algorithm 7) are well suited to shared-memory many-core parallel archi-
tectures such as current many-core CPUs and GPUs. We have implemented these
algorithms in the software package VMO.

This also opens up opportunities for further research, such as moving from a
shared-memory parallel architecture to distributed-memory, which would require sig-
nificant modifications of Algorithm 3, Algorithm 7, and the data structures involved.
Since VMO is fast and parallel, it also has potential to remove computational par-
titioning bottlenecks in large applications such as the human bone simulations in
[5].

Acknowledgments. We thank Albert-Jan Yzelman for performing the sparse
matrix–vector multiplication experiments (Table 5.2). We thank Job Kuit, Joop Kolk,
and Paul Zegeling for helpful discussions and comments. We thank the Dutch super-
computing center SARA in Amsterdam and the Netherlands National Computing
Facilities foundation NCF for providing access to the Huygens supercomputer.

REFERENCES

[1] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, NP-hardness of Euclidean sum-of-
squares clustering, Machine Learning, 75 (2009), pp. 245–248.

[2] D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful seeding, in SODA ’07:
Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms, Philadel-
phia, PA, 2007, SIAM, pp. 1027–1035.

[3] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, vol. 137 of Graduate
Texts in Mathematics, Springer-Verlag, New York, 1992.

[4] C. Aykanat, A. Pinar, and U. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[5] C. Bekas, A. Curioni, P. Arbenz, C. Flaig, G. H. van Lenthe, R. Müller, and A. J.
Wirth, Extreme scalability challenges in micro-finite element simulations of human bone,
Concurrency Computat.: Pract. Exper., 22 (2010), pp. 2282–2296.

[6] C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, revised ed., 1976.
[7] U. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel

sparse-matrix vector multiplication, IEEE Trans. Par. Dist. Syst., 10 (1999), pp. 673–693.
[8] , A fine-grain hypergraph model for 2D decomposition of sparse matrices, in Proceedings

8th International Workshop on Solving Irregularly Structured Problems in Parallel, IEEE
Press, Los Alamitos, CA, 2001, p. 118.

[9] U. V. Çatalyürek, C. Aykanat, and E. Kayaaslan, Hypergraph partitioning-based fill-
reducing ordering, Technical Report OSUBMI-TR-2009-n02, Department of Biomedical
Informatics, Ohio State University, Columbus, OH, April 2009.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms,
MIT Press, Cambridge, MA, third ed., 2009.

[11] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU
factorization, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 140–158.

[12] T. A. Davis and Y. F. Hu, The University of Florida sparse matrix collection. ACM Trans.
Math. Software (to appear), 2010.

[13] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[14] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Monographs
on Numerical Analysis, Oxford University Press, Oxford, UK, 1986.

23

[15] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.

[16] J. J. Duistermaat and J. A. C. Kolk, Multidimensional Real Analysis I: Differentiation,
Cambridge University Press, Cambridge, UK, 2004.

[17] T. M. J. Fruchterman and E. M. Reingold, Graph drawing by force-directed placement,
Softw. Pract. Exper., 21 (1991), pp. 1129–1164.

[18] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[19] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, 3rd ed., 1996.

[20] L. Grigori, E. G. Boman, S. Donfack, and T. A. Davis, Hypergraph-based unsymmetric
nested dissection ordering for sparse LU factorization, SIAM J. Sci. Comput., 32 (2010),
pp. 3426–3446.

[21] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel
Comput., 26 (2000), pp. 1519–1534.

[22] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection
ordering, SIAM J. Sci. Comput., 20 (1998), pp. 468–489.

[23] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231.

[24] Y. F. Hu, Efficient and high quality force-directed graph drawing, The Mathematica Journal,
10 (2005), pp. 37–71.

[25] Y. F. Hu, K. C. F. Maguire, and R. J. Blake, A multilevel unsymmetric matrix ordering
algorithm for parallel process simulation, Comput. Chem. Engrg., 23 (2000), pp. 1631–
1647.

[26] C Johnson, Numerical solution of partial differential equations by the finite-element method,
Cambridge University Press, Cambridge, UK, 1987.

[27] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
System Technical Journal, 49 (1970), pp. 291–307.

[28] M. R. Mehrabi and R. A. Brown, An incomplete nested dissection algorithm for parallel direct
solution of finite element discretizations of partial differential equations, J. Sci. Comput.,
8 (1993), pp. 373–387.

[29] N. Nakasato, Oct-tree method on GPU: $42/Gflops cosmological simulation.
arXiv:0909.0541v1 [astro-ph.IM], 2009.

[30] S. Parter, The use of linear graphs in Gauss elimination, SIAM Rev., 3 (1961), pp. 119–130.
[31] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel

sparse matrix-vector multiplication, SIAM Rev., 47 (2005), pp. 67–95.
[32] C. Walshaw, A multilevel algorithm for force-directed graph-drawing, J. Graph Algorithms

Appl., 7 (2003), pp. 253–285.
[33] A. N. Yzelman and R. H. Bisseling, Cache-oblivious sparse matrix–vector multiplication by

using sparse matrix partitioning methods, SIAM J. Sci. Comput., 31 (2009), pp. 3128–3154.
[34] , Two-dimensional cache-oblivious sparse matrix–vector multiplication. Preprint, 2010.

24

