
Lecture 1.3 Parallel Inner Product Computation

Parallel Inner Product Computation
(PSC §1.3)

1 / 13



Lecture 1.3 Parallel Inner Product Computation

Inner product of two vectors

The inner product of two vectors x = (x0, . . . , xn−1)T and
y = (y0, . . . , yn−1)T is defined by

α = xTy =
n−1∑
i=0

xiyi .

Here, ‘T’ denotes transposition. All vectors are column vectors.

2 / 13



Lecture 1.3 Parallel Inner Product Computation

Data distributions for vector

block

cyclic

P(0) P(1) P(2) P(3)

p = # processors = 4
n = vector length = 16

3 / 13



Lecture 1.3 Parallel Inner Product Computation

Block distribution

I The block distribution is defined by

xi 7−→ P(i div b), for 0 ≤ i < n.

Here, the div operator stands for dividing and rounding
down: i div b = bi/bc.

I The block size is b = dnp e = n
p rounded up.

I For n = 9 and p = 4, this assigns 3, 3, 3, 0 vector
components to the processors, respectively. You may blink at
an empty processor, but this distribution is just as good as 3,
2, 2, 2. Really!

4 / 13



Lecture 1.3 Parallel Inner Product Computation

Cyclic distribution

The cyclic distribution is defined by

xi 7−→ P(i mod p), for 0 ≤ i < n.

This distribution is easiest to compute. Note the advantage of
starting to count at zero: the formula becomes very simple.

Some kids have been raised to start counting at zero.

5 / 13



Lecture 1.3 Parallel Inner Product Computation

Parallel inner product computation

Design decisions:

I Assign xi and yi to the same processor, for all i . This makes
computing xi · yi a local operation. Thus distr(x) = distr(y).

I Choose a distribution with an even spread of vector
components. Both block and cyclic distributions are fine. We
choose cyclic, following the way card players deal their cards.

I The data distribution naturally leads to a work distribution
and a parallel algorithm.

6 / 13



Lecture 1.3 Parallel Inner Product Computation

Example for n = 10 and p = 4

12 -1 30 2 -24 157 11

0 1 2 3 4 5 6 7 8 9
1 9 -1 312 82 1 20

22

22 228 8 23 2322 2223 22 23 22 22 228 8

75 757575

22238

0 1 2 3 4 5 6 7 8 9

*

+

+

7 / 13



Lecture 1.3 Parallel Inner Product Computation

Parallel inner product algorithm for P(s)

input: x, y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = xTy.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi ;

(1) for t := 0 to p − 1 do
put αs in P(t);

(2) α := 0;
for t := 0 to p − 1 do

α := α + αt ;

8 / 13



Lecture 1.3 Parallel Inner Product Computation

Parallel inner product algorithm for P(s)

input: x, y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = xTy.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi ;

(1) for t := 0 to p − 1 do
put αs in P(t);

(2) α := 0;
for t := 0 to p − 1 do

α := α + αt ;

8 / 13



Lecture 1.3 Parallel Inner Product Computation

Parallel inner product algorithm for P(s)

input: x, y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = xTy.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi ;

(1) for t := 0 to p − 1 do
put αs in P(t);

(2) α := 0;
for t := 0 to p − 1 do

α := α + αt ;

8 / 13



Lecture 1.3 Parallel Inner Product Computation

Single Program, Multiple Data (SPMD)

I Only one program text needs to be written. All processors run
the same program, but on their own data.

I The program text is parametrised in the processor number s,
0 ≤ s < p, also called processor identity. The actual
execution of the program depends on s.

I Processor P(s) computes a local partial inner product

αs =
∑

0≤i<n, i mod p=s

xiyi .

I The corresponding computation superstep (0) costs

2

⌈
n

p

⌉
+ l .

(1 addition and 1 multiplication per local vector component.)

9 / 13



Lecture 1.3 Parallel Inner Product Computation

Result needed on all processors

I The partial inner products must be added. This could have
been done by P(0), i.e. processor 0.

I Sending the αs to P(0) is a (p − 1)-relation. Sending them to
P(∗), i.e., to all the processors, costs the same. The cost is
(p − 1)g + l .

I Computing α on P(0) costs the same as computing it on all
the processors redundantly, i.e. in a replicated fashion. The
cost is p + l .

I Often, the result is needed on all processors. An example is
iterative linear system solvers. The algorithm does just this.

I Sending the local result to all processors is best if each
processor contributes one value. If there are more values per
processor, a different approach might be better.

10 / 13



Lecture 1.3 Parallel Inner Product Computation

Total BSP cost of inner product

Tinprod = 2

⌈
n

p

⌉
+ p + (p − 1)g + 3l .

11 / 13



Lecture 1.3 Parallel Inner Product Computation

One-sided communication

I The ‘put’ operation involves an active sender and a passive
receiver. We assume all puts are accepted. Thus we can
define each data transfer by giving only the action of one side.

I No clutter in programs: shorter and simpler texts.

I No danger of the dreaded deadlock. What happens if both
processors want to receive first? Deadlock can easily occur in
message passing, with an active sender and an active receiver
that must shake hands, or kiss. This may cause lots of
problems.

I Another one-sided communication is the ‘get’. The name says
it all.

I One-sided communications are more efficient.

12 / 13



Lecture 1.3 Parallel Inner Product Computation

Summary

I We design algorithms in Single Program, Multiple Data style.
Each processor runs its own copy of the same program, on its
own data.

I The block and cyclic distributions are commonly used in
parallel computing. Both are suitable for an inner product
computation.

I The BSP style encourages balancing the communication
among the processors. Sending all data to one processor is
discouraged. Better: all to all.

I One-sided communications such as puts and gets are easy to
use and efficient.

13 / 13


