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Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and
statistics” (Benjamin Disraeli, 1804–1881)

I Benchmarking is the activity of comparing performance.

I Computer benchmarking involves running computer programs
to see how certain computer systems perform. This checks
both the hardware and the system software.

I Often, the benchmark result is obtained by ruthless reduction
of a large quantity of data to one statistical figure, the flop
rate.

2 / 16



Lecture 1.5–1.7 BSP Benchmarking

Sequential benchmarking

I Already for sequential computers, benchmarking is difficult,
for instance because different programs can run at very
different speeds on the same machine.

I Reaching only 10% of the peak rate of a computer is quite
common. No one is embarrassed. Hush!

I Highest rates are obtained by algorithms that use
matrix–matrix multiplication, such as implemented in the
BLAS level 3 operation DGEMM. (BLAS = Basic Linear
Algebra Subprograms).

I Lowest rates are obtained for scalar operations, which involve
single numbers, not vectors or matrices.

I A reasonable intermediate rate is obtained for vector–vector
operations, such as the BLAS level 1 operation DAXPY,
defined by y := αx + y. We use this operation for sequential
benchmarking.
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BSP benchmarking

I We must be ruthless, but a single number will not work. Thus
we measure: r for computation, g for communication, and l
for synchronisation.

I The aim is to obtain useful values of r , g , l that help us in
predicting performance of algorithms without actually running
an implementation.

I Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking.

I A cache is a small memory close to the CPU that stores
recently accessed data. There may be a tiny primary cache, a
larger secondary cache farther away, etc.

I Computations in primary cache are much faster than others.
We may have to distinguish rates r1, r2, etc. (but we won’t).
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Communication pattern for BSP benchmark program
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P(0) sends data to P(1), P(2), P(3), P(1), P(2), P(3). The other
processors also send data in this cyclic fashion.
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Full h-relation

I We measure a full h-relation, where every processor sends and
receives exactly h data.

I Our intentions are the worst: we try to measure the slowest
possible communication. We put single data words into other
processors in a cyclic fashion.

I This reveals whether the system software indeed combines
data for the same destination and whether it can handle
all-to-all communication efficiently. This is after all the basis
of BSP!

I ‘Underpromise and overdeliver’ is the motto: actual
communication performance can only be better. We call the
resulting g obtained by our benchmarking program bspbench

pessimistic.

I The Oxford BSP toolset has another benchmarking program,
bspprobe, which measures optimistic g -values.
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Time of an h-relation on two connected PCs
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Two 400 MHz Pentium II PCs, both running Linux, connected by
Fast Ethernet (100 Mbit/s) and a Cisco Catalyst switch.
r = 122 Mflop/s, g = 1180, and l = 138324.
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Least-squares fit

I Two measurements would suffice for obtaining a straight line,
but we want to use all data available in an interval [h0, h1].

I We minimise the error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2.

I The best choice for g and l is obtained by setting

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.
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Time of an h-relation on an 8-processor SGI Origin

Measured data
Least-squares fit
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Silicon Graphics Origin 2000, r = 326 Mflop/s, g = 297, and
l = 95 686. Compiler plays tricks: measured value of r too high.
Choose h0 and h1 judiciously. Here, h0 = p.
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Time of an h-relation on a 64-processor Cray T3E
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r = 35 Mflop/s, g = 78, and l = 1825.
Sending more data takes less time (cf. h ≈ 130). Weird!
Explanation: switching to a different data packing mechanism
(from short messages to long messages).
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Time of an h-relation on an 8-processor Bullx DLC system
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r = 9457 Mflop/s, g = 301, and l = 110682.
Supercomputer Cartesius at SURFsara in Amsterdam.
Bullx DLC B710 Blades system.
Number 225 on Top500 (June 2014).

11 / 16



Lecture 1.5–1.7 BSP Benchmarking

bspbench: initialising the communication pattern

for (i=0; i<h; i++){

src[i]= (double)i;

if (p==1){

destproc[i]=0;

destindex[i]=i;

} else {

/* destination processor is one

of the p-1 others */

destproc[i]= (s+1 + i%(p-1)) %p;

/* destination index is in

my own part of dest */

destindex[i]= s + (i/(p-1))*p;

}

}
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bspbench: measuring the communication time

bsp_sync();

time0= bsp_time();

for (iter=0; iter<NITERS; iter++){

for (i=0; i<h; i++)

bsp_put(destproc[i], &src[i], dest,

destindex[i]*SZDBL, SZDBL);

bsp_sync();

}

time1= bsp_time();

Adjust NITERS to obtain an accurate measurement, without
waiting forever.
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Comparing BSP parameters (p = 8)

(flop) (µs)
Computer r (Mflop/s) g l g l

Cray T3E 35 31 1193 0.88 34
IBM RS/6000 SP 212 187 148212 0.88 698
SGI Origin 2000 326 297 95686 0.91 294

Bullx DLC B710 9457 301 110682 0.03 12

I Machines become obsolete quickly. The first three machines
have in the mean time been replaced by faster successors.
The Bullx machine is modern (2014).

I Other new machines will be benchmarked in the laboratory
class of this course.
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Advice from the trenches

I Always plot the benchmark results. This gives insight in your
machine and reveals the accuracy of your measurement.

I Be suspicious of artefacts. Negative g values may occur if g is
small and l is huge. In that case, the least-squares fit does not
give an accurate g and you have to enlarge the measurement
interval [h0, h1].

I Run the benchmark at least three times. If the best two runs
agree, you can be reasonably confident.

I Parallel computers are like the weather: they change all the
time. Always run a benchmark program before running an
application program, just to see what machine you have
today. (Think of: a new compiler, faster communication
switches, Challenge Projects that gobble up network
resources, and so on.)
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Summary

I Benchmarking is difficult.

I Machines have quirks, surprises are plenty, and measurements
are often inaccurate.

I With all these caveats, it is still useful to have a table with r ,
g , l values for many different machines.

I This table should be kept up to date to reflect new
architectures appearing. You can do it! (Similar to the
LINPACK benchmark used to determine the Supercomputer
Top 500.)

I BSP benchmarking can be done using BSPlib (bspbench,
bspprobe), but also MPI-1 (mpibench).
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