
Lecture 2.1–2.2 Sequential LU

Sequential LU Decomposition
(PSC §2.1–2.2)

1 / 25

Lecture 2.1–2.2 Sequential LU

Solving a linear system of equations

Find x0, x1, x2 such that

x0 + 4x1 + 6x2 = 16
2x0 + 10x1 + 17x2 = 44
3x0 + 16x1 + 31x2 = 78

In matrix language, solve

Ax = b,

where

A =

 1 4 6
2 10 17
3 16 31

 , x =

 x0
x1
x2

 , b =

 16
44
78



2 / 25

Lecture 2.1–2.2 Sequential LU

Solving linear systems is important

Applications often have as their core a linear system solver.

I Building bridges. Finite element models in engineering give
rise to linear systems involving a stiffness matrix.

I Designing aircraft. Boundary element methods lead to huge
dense linear systems of equations.

I Optimising oil refineries. Linear programming by interior point
methods requires solving a sparse linear system (with many
zero coefficients) at every step of the computation.

3 / 25

Lecture 2.1–2.2 Sequential LU

Lower and upper triangular matrices

A =

 1 4 6
2 10 17
3 16 31

 =

 1 0 0
2 1 0
3 2 1

 1 4 6
0 2 5
0 0 3

 = LU.

I L is unit lower triangular if lii = 1 for all i and lij = 0 for all
i < j .

I U is upper triangular if uij = 0 for all i > j .

I LU decomposition is the factorisation of A into A = LU, with
L unit lower triangular and U upper triangular.

4 / 25

Lecture 2.1–2.2 Sequential LU

Triangular systems are easier to solve

Let A = LU. Then

Ax = b⇐⇒ L(Ux) = b⇐⇒ Ly = b and Ux = y.

 1 0 0
2 1 0
3 2 1

 y0
y1
y2

 =

 16
44
78

 =⇒

 y0
y1
y2

 =

 16
12

6


 1 4 6

0 2 5
0 0 3

 x0
x1
x2

 =

 16
12

6

 =⇒

 x0
x1
x2

 =

 0
1
2

 .

5 / 25

Lecture 2.1–2.2 Sequential LU

Deriving an algorithm for LU decomposition

Some simple algebra:

A = LU ⇐⇒ aij =
n−1∑
r=0

lirurj for all i , j .

Assume i ≤ j . Then:

aij =
n−1∑
r=0

lirurj =
i∑

r=0

lirurj (because lir = 0 for r > i)

=
i−1∑
r=0

lirurj + liiuij =
i−1∑
r=0

lirurj + uij

⇐⇒

uij = aij −
i−1∑
r=0

lirurj .

6 / 25

Lecture 2.1–2.2 Sequential LU

Formulae for computing lij and uij

Aim: rewrite the linear system to express lij and uij in terms of aij
and previously computed lij and uij .

We have obtained

uij = aij −
i−1∑
r=0

lirurj for i ≤ j .

Similarly,

lij =
1

ujj

(
aij −

j−1∑
r=0

lirurj

)
for i > j .

7 / 25

Lecture 2.1–2.2 Sequential LU

Modifying the matrix A in stages

For 0 ≤ k ≤ n, define the intermediate matrix A(k) of stage k :

a
(k)
ij = aij −

k−1∑
r=0

lirurj .

Note that A(0) = A and A(n) = 0. In this notation,

uij = aij −
i−1∑
r=0

lirurj ⇐⇒ uij = a
(i)
ij

lij =
1

ujj

(
aij −

j−1∑
r=0

lirurj

)
⇐⇒ lij =

a
(j)
ij

ujj

We retrieve values uij (i ≤ j) in stage i and lij (i > j) in stage j .

8 / 25

Lecture 2.1–2.2 Sequential LU

Basic sequential LU decomposition algorithm

input: A(0) : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,

such that LU = A(0).

for k := 0 to n − 1 do
for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik := a
(k)
ik /ukk ;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

9 / 25

Lecture 2.1–2.2 Sequential LU

Basic sequential LU decomposition algorithm

input: A(0) : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,

such that LU = A(0).

for k := 0 to n − 1 do
for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik := a
(k)
ik /ukk ;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

9 / 25

Lecture 2.1–2.2 Sequential LU

Basic sequential LU decomposition algorithm

input: A(0) : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,

such that LU = A(0).

for k := 0 to n − 1 do
for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik := a
(k)
ik /ukk ;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

9 / 25

Lecture 2.1–2.2 Sequential LU

Loop invariant

I A loop invariant is a statement that remains true while a loop
is being executed; usually it depends on a changing loop index.

I For LU decomposition, we state

Invariant(k) : a
(k)
ij = aij −

k−1∑
r=0

lirurj for all i , j ≥ k.

I Giving an invariant at the right place in an algorithm text
helps in proving the correctness of the algorithm.

I You can use the assert facility in the C-language to check
invariants (and other statements).

10 / 25

Lecture 2.1–2.2 Sequential LU

Basic algorithm with loop invariant

input: A(0) : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,

such that LU = A(0).

for k := 0 to n − 1 do
{ Invariant(k) }
for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik := a
(k)
ik /ukk ;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

{ Invariant(k + 1) }

11 / 25

Lecture 2.1–2.2 Sequential LU

Storing L, U , A(k) in the space of A

0

0 1 2 3 4 5

1

2

3

4

5

6

6

L

U

(k)A

At the start of stage k = 3: rows 0, 1, 2 of U and columns 0, 1, 2
of L below the diagonal have already been computed.

12 / 25

Lecture 2.1–2.2 Sequential LU

Memory-efficient sequential LU decomposition

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
In : n × n identity matrix,

such that LU = A(0).

for k := 0 to n − 1 do
for i := k + 1 to n − 1 do

aik := aik/akk ;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;

13 / 25

Lecture 2.1–2.2 Sequential LU

Transformations of A by LU decomposition

A =

 1 4 6
2 10 17
3 16 31

 (0)−→

 1 4 6
2 2 5
3 4 13

 (1)−→

 1 4 6
2 2 5
3 2 3

 .
Hence,

L =

 1 0 0
2 1 0
3 2 1

 , U =

 1 4 6
0 2 5
0 0 3

 .

14 / 25

Lecture 2.1–2.2 Sequential LU

Row permutations needed

LU decomposition breaks down immediately in stage 0 for

A =

[
0 1
1 0

]
,

because we try to divide by 0.

I A solution is to permute the rows suitably.

I Thus, we compute a permuted LU decomposition,

PA = LU.

I Here, P is a permutation matrix, obtained by permuting the
rows of In.

I Output of LU decomposition of A: L, U, P.

15 / 25

Lecture 2.1–2.2 Sequential LU

Permutations and permutation matrices

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
We define the permutation matrix Pσ corresponding to σ by

(Pσ)ij =

{
1 if i = σ(j)
0 otherwise.

Thus, column j of Pσ is 1 in row σ(j), and 0 everywhere else.

16 / 25

Lecture 2.1–2.2 Sequential LU

Relation between σ and Pσ

Let σ(0) = 1, σ(1) = 2, and σ(2) = 0. Then

Pσ =

 · · 1
1 · ·
· 1 ·

 .

17 / 25

Lecture 2.1–2.2 Sequential LU

Property of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n. Then

(Pσx)i =
n−1∑
j=0

(Pσ)ijxj = xσ−1(i),

because only the term with σ(j) = i is nonzero, i.e., the term
j = σ−1(i).

18 / 25

Lecture 2.1–2.2 Sequential LU

Lemma 2.5 Properties of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n and A an n × n matrix. Then

(Pσx)i = xσ−1(i), for 0 ≤ i < n,

(PσA)ij = aσ−1(i),j , for 0 ≤ i , j < n,

(PσAP
T
σ)ij = aσ−1(i),σ−1(j), for 0 ≤ i , j < n.

Proofs: similar to before.

19 / 25

Lecture 2.1–2.2 Sequential LU

Lemma 2.6 Matrices isomorphic to permutations

Let σ, τ : {0, . . . , n − 1} → {0, . . . , n − 1} be permutations. Then

PτPσ = Pτσ and (Pσ)−1 = Pσ−1 .

Here, τσ denotes σ followed by τ .

Proof first part:

(PτPσ)ij =
n−1∑
k=0

(Pτ)ik(Pσ)kj = (Pσ)τ−1(i),j

because only one term k = τ−1(i) is nonzero. By the definition of
Pσ, the result is 1 if τ−1(i) = σ(j), i.e., i = τ(σ(j)) = (τσ)(j), and
0 otherwise. This is the same as for (Pτσ)ij . �

20 / 25

Lecture 2.1–2.2 Sequential LU

LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do πi := i ;
for k := 0 to n − 1 do

r := argmax(|aik | : k ≤ i < n);
swap(πk , πr);
for j := 0 to n − 1 do

swap(akj , arj);

for i := k + 1 to n − 1 do
aik := aik/akk ;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

aij := aij − aikakj ;

21 / 25

Lecture 2.1–2.2 Sequential LU

LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do πi := i ;
for k := 0 to n − 1 do

r := argmax(|aik | : k ≤ i < n);
swap(πk , πr);
for j := 0 to n − 1 do

swap(akj , arj);
for i := k + 1 to n − 1 do

aik := aik/akk ;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;

21 / 25

Lecture 2.1–2.2 Sequential LU

Partial row pivoting

I The pivot element in stage k is the largest element ark in
column k. Everything revolves around it. It is farthest from 0
and division by ark is most stable.

I The pivot row r is thus determined by

|ark | = max(|aik | : k ≤ i < n).

I r is the argument (or index) of the maximum.

I Full pivoting would take the largest pivot from the whole
submatrix A(k : n − 1, k : n − 1). This gives the best stability,
but is more costly. In practice, partial pivoting suffices.

22 / 25

Lecture 2.1–2.2 Sequential LU

The meaning of π

I The algorithm permutes the matrix by a permutation matrix
Pσ. We obtain the LU decomposition PσA = LU.

I The same matrix is applied to the initial vector
e = (0, 1, 2, . . . , n − 1)T . We obtain π = Pσe.

I Therefore, by Lemma 2.5,

π(i) = (Pσe)i = eσ−1(i) = σ−1(i).

I Thus, π = σ−1 and hence

Pπ−1A = LU.

23 / 25

Lecture 2.1–2.2 Sequential LU

Sequential time complexity

Lemma 2.7:

n∑
k=0

k =
n(n + 1)

2
,

n∑
k=0

k2 =
n(n + 1)(2n + 1)

6
.

Proof: By induction on n.

The number of flops of the LU decomposition algorithm is

Tseq =
n−1∑
k=0

(2(n − k − 1)2 + n − k − 1) =
n−1∑
k=0

(2k2 + k)

=
(n − 1)n(2n − 1)

3
+

(n − 1)n

2

= (n − 1)n

(
2n

3
+

1

6

)
=

2n3

3
− n2

2
− n

6
.

24 / 25

Lecture 2.1–2.2 Sequential LU

Summary

I Solving a linear system Ax = b can best be done by:
I finding an LU decomposition PA = LU;
I permuting b into Pb;
I solving the triangular systems Ly = Pb and Ux = y.

I The LU decomposition costs about 2n3/3 flops and each
triangular system solve about n2 flops.

I It is always difficult to keep permutations and their inverses
apart. In theoretical analysis, it is sometimes easier to work
with permutation matrices than with the corresponding
permutations.

I We defined the matrix Pσ; its jth column is 1 in row σ(j), and
0 everywhere else.

I An important connection between a permutation σ and the
matrix Pσ is given by (Pσx)i = xσ−1(i).

25 / 25

