Sequential LU Decomposition
(PSC §2.1-2.2)

Solving a linear system of equations

Find xg, x1, xo such that

X + 4x1 + 6bx
2x9 + 10x1 + 17x
3 + 16x3 + 3lxo

In matrix language, solve

Ax = b,
where
1 4 6 X0
A=|2 10 17 |, x=| xg
3 16 31 X

16
44
78

16
44
78

Lecture 2.1-2.2 Sequential LU *F *

2/25

Solving linear systems is important

Applications often have as their core a linear system solver.

» Building bridges. Finite element models in engineering give
rise to linear systems involving a stiffness matrix.

» Designing aircraft. Boundary element methods lead to huge
dense linear systems of equations.

» Optimising oil refineries. Linear programming by interior point
methods requires solving a sparse linear system (with many
zero coefficients) at every step of the computation.

Lecture 2.1-2.2 Sequential LU *F *

3/25

Lower and upper triangular matrices

1 4 6 1 00 1 46
A=112 10 17 | =12 1 0 0 2 5 |=LU.
3 16 31 321 0 0 3

» L is unit lower triangular if /; =1 for all i and /;; = 0 for all
i <.
» U is upper triangular if u;; = 0 for all / > j.

» LU decomposition is the factorisation of A into A= LU, with
L unit lower triangular and U upper triangular.

Lecture 2.1-2.2 Sequential LU *F *

4/25

Triangular systems are easier to solve

Let A= LU. Then

Ax=b <= L(Ux) =b<= Ly =band Ux =Y.

10077 y [16] Yo [16
2 10 4t = 44 - b4t = 12
13 2 1] [y] | 78 | BZe | 6
[1 4 67 [x | [16] [xo | [0
0 2 5 X1 = 12 — X1 = 1
| 0 0 3| [x| | 6 | | X2 | | 2

Lecture 2.1-2.2 Sequential LU *F *

5/25

Deriving an algorithm for LU decomposition

Some simple algebra:

n—1
A=LU<«<=a;=> lpu; forallij.
r=0
Assume i < j. Then:
n—1 i
aj = Z liruy = Z liruyj (because i, = 0 for r > i)
r=0 r=0

i—1 i—1
= E lirur + lijui = E lirur + uj
r=0 r=0

i—1
ujj = ajj — E /,-,u,j.
r=0

Lecture 2.1-2.2 Sequential LU *F *

6/25

Formulae for computing /;; and uj;

Aim: rewrite the linear system to express /;; and uj; in terms of aj;
and previously computed /; and uj;.

We have obtained

i—1

uj = aj — E liruyj for i <.
r=0

Similarly,

1 ==
lj=—a;— Z/,-,urj for i > j.
Ujj r=0

Lecture 2.1-2.2 Sequential LU *F *

7/25

Modifying the matrix A in stages

For 0 < k < n, define the intermediate matrix AK) of stage k:

k—1

Sk Z

U = a,-j — /,-,u,j.
r=0

Note that A(® = A and A" = 0. In this notation,

i—1
uj = aj— Z/,,urj<:>uu—a()
r=0
1 Jj-1 (J)
[= — lyuy | <= I; = %
/ ujj errj v ujj
r=0

We retrieve values ujj (i < j) in stage i and /; (i > j) in stage j.

Lecture 2.1-2.2 Sequential LU *F *

Basic sequential LU decomposition algorithm

input: A : n x n matrix.
output: L : n X nunit lower triangular matrix,

U : n x n upper triangular matrix,
such that LU = A0,

for k:=0ton—1do
for j:=kton—1do

o (k).
Uyj = akj ;

Lecture 2.1-2.2 Sequential LU *F *

9/25

Basic sequential LU decomposition algorithm

input: A : n x n matrix.

output: L : n X nunit lower triangular matrix,
U : n x n upper triangular matrix,
such that LU = A®©),

for k:=0ton—1do
for j:=kton—1do
Ui = 3tk
kj - ki
fori:=k+1ton—1do

li = 3,(:)/Ukk?

Lecture 2.1-2.2 Sequential LU *F *

9/25

Basic sequential LU decomposition algorithm

input: A : n x n matrix.

output: L : n X nunit lower triangular matrix,
U : n x n upper triangular matrix,
such that LU = A®©),

for k:=0ton—1do
for j:=kton—1do

o (k).
Uyj = akj '

fori:=k+1ton—1do

li = 3,(:)/Ukk?
fori:=k+1ton—1do

for j:=k+1ton—1do
(k+1) . (k)

a: = aij

ij — likUgj;

Lecture 2.1-2.2 Sequential LU *F *

Loop invariant

| 2

| 2

A loop invariant is a statement that remains true while a loop
is being executed; usually it depends on a changing loop index.

For LU decomposition, we state
k—1

Invariant(k) : a,(-jk) =aj — Z liruyj for all i, j > k.
r=0

Giving an invariant at the right place in an algorithm text
helps in proving the correctness of the algorithm.

You can use the assert facility in the C-language to check
invariants (and other statements).

Lecture 2.1-2.2 Sequential LU %

10/25

Basic algorithm with loop invariant

input: A : n x n matrix.

output: L: n x n unit lower triangular matrix,
U : n X n upper triangular matrix,
such that LU = A(©),

for k:=0ton—1do
{ Invariant(k) }

for j:=kton—1do
(k).

Uy ::akj,
fori:=k+1ton—1do

i =) ue;
fori:=k+1ton—1do
forj;=k+1ton—1do
3,(jk+l) . al(jk)
{ Invariant(k + 1) }

— likUkj;

Lecture 2.1-2.2 Sequential LU *F *

11/25

Storing L, U, A% in the space of A

0 1 2 3 4 5 6

A(k)

AN N R W N = O

At the start of stage k = 3: rows 0, 1, 2 of U and columns 0, 1, 2
of L below the diagonal have already been computed.

Lecture 2.1-2.2 Sequential LU 2k %

12/25

Memory-efficient sequential LU decomposition

input: A: nx nmatrix, A= A0,

output: A: nxnmatrix, A=L—I,+ U, with
L: nx nunit lower triangular matrix,
U : n x n upper triangular matrix,
I, n X nidentity matrix,
such that LU = A(0),

for k:=0ton—1do
fori=k+1ton—1do
adjk = aik/akk;
fori=k+1ton—1do
forj.=k+1ton—1do
djj ‘= ajj — ajkdkj,

Lecture 2.1-2.2 Sequential LU *F *

13/25

Transformations of A by LU decomposition

1 4 6) 1 4 6) 1 4 6
A=1|2 10 17| —> |2 2 5 | —> |2 2 5
3 16 31 3 4 13 3 2 3
Hence,
1 00 1 4 6
L=|2 10|, U=]0 25
3 21 0 0 3

Lecture 2.1-2.2 Sequential LU *F *

14/25

Row permutations needed

LU decomposition breaks down immediately in stage O for

01
A=
1)
because we try to divide by 0.
P A solution is to permute the rows suitably.
» Thus, we compute a permuted LU decomposition,

PA=LU.

» Here, P is a permutation matrix, obtained by permuting the
rows of /.

» Output of LU decomposition of A: L, U, P.

Lecture 2.1-2.2 Sequential LU %F

15/25

Permutations and permutation matrices

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
We define the permutation matrix P, corresponding to o by
1 if i=o())

0 otherwise.

(Po)ij = {

Thus, column j of P, is 1 in row o(j), and 0 everywhere else.

Lecture 2.1-2.2 Sequential LU *F *

16 /25

Relation between o and P,

Let 0(0) =1, 0(1) =2, and 0(2) = 0. Then

Lecture 2.1-2.2 Sequential LU *F *

17/25

Property of P,

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
Let x be a vector of length n. Then

n—1

(Pox)i = Z(Pa)ijxj = Xp-1(i)5

j=0

because only the term with o(j) = i is nonzero, i.e., the term
j=a71i).

Lecture 2.1-2.2 Sequential LU *F *

18/25

Lemma 2.5 Properties of P,

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
Let x be a vector of length n and A an n x n matrix. Then

(Pox)i = x5-1(j), for 0 <i<n,
(PO'A)I_] == 3071(,-)4-, for 0 < I,_j < n,

(PJAPOT),'J' = a5-1(j),0-1(j)s for 0 <i,j < n.

Proofs: similar to before.

Lecture 2.1-2.2 Sequential LU *F *

19/25

Lemma 2.6 Matrices isomorphic to permutations
Let o,7:{0,...,n—1} — {0,...,n— 1} be permutations. Then
P,Py, = P,y and (P,)™! = P, ..

Here, 7o denotes o followed by 7.

Proof first part:

n—1

(P.P,); = Z(PT)ik(Po)kj = (Po)r13i)j
k=0

because only one term k = 771(i) is nonzero. By the definition of
P,, the result is 1 if 771(i) = o(j), i.e., i = 7(c(j)) = (70)(j), and
0 otherwise. This is the same as for (Pr4)j;. O ¥

Lecture 2.1-2.2 Sequential LU *F *

20/25

LU decomposition with row permutations

input: A: nx n matrix, A= A0,

output: A: nxnmatrix, A=L—I,+ U, with
L: nx nunit lower triangular matrix,
U : n x n upper triangular matrix,
7 . permutation vector of length n.

fori:=0ton—1do w; :=1;
for k:=0ton—1do
r = argmax(|aj| : kK < i< n);
swap(mk, 7,);
for j:=0ton—1do
swap(axj, ar);

Lecture 2.1-2.2 Sequential LU *F *

21/25

LU decomposition with row permutations
input: A: nx n matrix, A= A0,
output: A: nxnmatrix, A=L—I,+ U, with

L: nx nunit lower triangular matrix,

U : n x n upper triangular matrix,

m

. permutation vector of length n.

fori:=0ton—1do w; :=1;
for k:=0ton—1do
r = argmax(|aj| : kK < i< n);
swap(7my, 7,);
for j:=0ton—1do
swap(ag;, a,);
fori=k+1ton—1do
ajk = aik/akk;
fori=k+1ton—1do
forj:=k+1ton—1do
djj = ajj — ajkdkj,

Lecture 2.1-2.2 Sequential LU *F *

21/25

Partial row pivoting

P> The pivot element in stage k is the largest element a, in
column k. Everything revolves around it. It is farthest from O
and division by a,, is most stable.

» The pivot row r is thus determined by
|ar| = max(|ai| : k < i< n).

» r is the argument (or index) of the maximum.

» Full pivoting would take the largest pivot from the whole
submatrix A(k: n—1,k: n—1). This gives the best stability,
but is more costly. In practice, partial pivoting suffices.

Lecture 2.1-2.2 Sequential LU %

22/25

The meaning of 7

» The algorithm permutes the matrix by a permutation matrix
P,. We obtain the LU decomposition P,A = LU.

> The same matrix is applied to the initial vector
e=(0,1,2,...,n—1)T. We obtain 7 = P,e.
» Therefore, by Lemma 2.5,

(i) = (P,e); = Er-1(j) = a‘l(i).
» Thus, 7 = 0! and hence

P. 1A= LU.

Lecture 2.1-2.2 Sequential LU %F

23/25

Sequential time complexity

Lemma 2.7:

Zk_ n+1 Zkzzn(n+1)(2n+1)'

Proof: By induction on n.

The number of flops of the LU decomposition algorithm is

- n—1
Twoq = Z (n—k=1P+n—k-1)=> (2k* + k)
k=0 k=0
~ (n=1)n(2n—1) (n—1)n
- 3 L
2n 1 2n® n® n
= oo (Feg) =% 5%

Lecture 2.1-2.2 Sequential LU *F *

24 /25

Summary

» Solving a linear system Ax = b can best be done by:
» finding an LU decomposition PA = LU,
» permuting b into Pb;
» solving the triangular systems Ly = Pb and Ux =y.
» The LU decomposition costs about 2n3/3 flops and each
triangular system solve about n? flops.

> |t is always difficult to keep permutations and their inverses
apart. In theoretical analysis, it is sometimes easier to work
with permutation matrices than with the corresponding
permutations.

» We defined the matrix P,; its jth column is 1 in row o(j), and
0 everywhere else.

» An important connection between a permutation ¢ and the
matrix Py is given by (Pox); = X,-1(j).

Lecture 2.1-2.2 Sequential LU %

25/25

