Sequential LU Decomposition (PSC §2.1-2.2)

Solving a linear system of equations

Find x_{0}, x_{1}, x_{2} such that

$$
\begin{array}{r}
x_{0}+4 x_{1}+6 x_{2}=16 \\
2 x_{0}+10 x_{1}+17 x_{2}=44 \\
3 x_{0}+16 x_{1}+31 x_{2}=78
\end{array}
$$

In matrix language, solve

$$
A \mathbf{x}=\mathbf{b}
$$

where

$$
A=\left[\begin{array}{rrr}
1 & 4 & 6 \\
2 & 10 & 17 \\
3 & 16 & 31
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
16 \\
44 \\
78
\end{array}\right]
$$

Solving linear systems is important

Applications often have as their core a linear system solver.

- Building bridges. Finite element models in engineering give rise to linear systems involving a stiffness matrix.
- Designing aircraft. Boundary element methods lead to huge dense linear systems of equations.
- Optimising oil refineries. Linear programming by interior point methods requires solving a sparse linear system (with many zero coefficients) at every step of the computation.

Lower and upper triangular matrices

$$
A=\left[\begin{array}{rrr}
1 & 4 & 6 \\
2 & 10 & 17 \\
3 & 16 & 31
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right]=L U .
$$

- L is unit lower triangular if $l_{i i}=1$ for all i and $l_{i j}=0$ for all $i<j$.
- U is upper triangular if $u_{i j}=0$ for all $i>j$.
- LU decomposition is the factorisation of A into $A=L U$, with L unit lower triangular and U upper triangular.

Triangular systems are easier to solve

Let $A=L U$. Then

$$
\begin{gathered}
A \mathbf{x}=\mathbf{b} \Longleftrightarrow L(U \mathbf{x})=\mathbf{b} \Longleftrightarrow L \mathbf{y}=\mathbf{b} \text { and } U \mathbf{x}=\mathbf{y} . \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{r}
16 \\
44 \\
78
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{r}
16 \\
12 \\
6
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
16 \\
12 \\
6
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] .}
\end{gathered}
$$

Deriving an algorithm for LU decomposition

Some simple algebra:

$$
A=L U \Longleftrightarrow a_{i j}=\sum_{r=0}^{n-1} l_{i r} u_{r j} \quad \text { for all } i, j
$$

Assume $i \leq j$. Then:

$$
\begin{aligned}
a_{i j} & =\sum_{r=0}^{n-1} l_{i r} u_{r j}=\sum_{r=0}^{i} l_{i r} u_{r j} \quad\left(\text { because } l_{i r}=0 \text { for } r>i\right) \\
& =\sum_{r=0}^{i-1} l_{i r} u_{r j}+l_{i i} u_{i j}=\sum_{r=0}^{i-1} l_{i r} u_{r j}+u_{i j} \\
& \Longleftrightarrow \\
u_{i j} & =a_{i j}-\sum_{r=0}^{i-1} l_{i r} u_{r j} .
\end{aligned}
$$

Formulae for computing $l_{i j}$ and $u_{i j}$

Aim: rewrite the linear system to express $l_{i j}$ and $u_{i j}$ in terms of $a_{i j}$ and previously computed $l_{i j}$ and $u_{i j}$.

We have obtained

$$
u_{i j}=a_{i j}-\sum_{r=0}^{i-1} l_{i r} u_{r j} \quad \text { for } i \leq j
$$

Similarly,

$$
\iota_{i j}=\frac{1}{u_{j j}}\left(a_{i j}-\sum_{r=0}^{j-1} l_{i r} u_{r j}\right) \quad \text { for } i>j
$$

Modifying the matrix A in stages

For $0 \leq k \leq n$, define the intermediate matrix $A^{(k)}$ of stage k :

$$
a_{i j}^{(k)}=a_{i j}-\sum_{r=0}^{k-1} l_{i r} u_{r j}
$$

Note that $A^{(0)}=A$ and $A^{(n)}=0$. In this notation,

$$
\begin{aligned}
u_{i j} & =a_{i j}-\sum_{r=0}^{i-1} l_{i r} u_{r j} \Longleftrightarrow u_{i j}=a_{i j}^{(i)} \\
\iota_{i j} & =\frac{1}{u_{j j}}\left(a_{i j}-\sum_{r=0}^{j-1} l_{i r} u_{r j}\right) \Longleftrightarrow l_{i j}=\frac{a_{i j}^{(j)}}{u_{j j}}
\end{aligned}
$$

We retrieve values $u_{i j}(i \leq j)$ in stage i and $l_{i j}(i>j)$ in stage j.

Basic sequential LU decomposition algorithm

input: $\quad A^{(0)}: n \times n$ matrix.
output: $\quad L: n \times n$ unit lower triangular matrix,
U : $n \times n$ upper triangular matrix, such that $L U=A^{(0)}$.
for $k:=0$ to $n-1$ do
for $j:=k$ to $n-1$ do

$$
u_{k j}:=a_{k j}^{(k)}
$$

Basic sequential LU decomposition algorithm

input: $\quad A^{(0)}: n \times n$ matrix.
output: $\quad L: n \times n$ unit lower triangular matrix,
U : $n \times n$ upper triangular matrix, such that $L U=A^{(0)}$.
for $k:=0$ to $n-1$ do

$$
\text { for } j:=k \text { to } n-1 \text { do }
$$

$$
u_{k j}:=a_{k j}^{(k)}
$$

for $i:=k+1$ to $n-1$ do

$$
\iota_{i k}:=a_{i k}^{(k)} / u_{k k} ;
$$

Basic sequential LU decomposition algorithm

input: $\quad A^{(0)}: n \times n$ matrix.
output: $\quad L: n \times n$ unit lower triangular matrix,
U : $n \times n$ upper triangular matrix, such that $L U=A^{(0)}$.
for $k:=0$ to $n-1$ do

$$
\begin{aligned}
& \text { for } j:=k \text { to } n-1 \text { do } \\
& \\
& \text { for } u_{k j}:=a_{k j}^{(k)} ; \\
& \\
& \text { for } i:=k+1 \text { to } n-1 \text { do } \\
& \quad l_{i k}:=a_{i k}^{(k)} / u_{k k} ; \\
& \\
& \quad \text { for } j:=k+1 \text { to } n-1 \text { do } n-1 \text { do } \\
& \quad a_{i j}^{(k+1)}:=a_{i j}^{(k)}-l_{i k} u_{k j} ;
\end{aligned}
$$

Loop invariant

- A loop invariant is a statement that remains true while a loop is being executed; usually it depends on a changing loop index.
- For LU decomposition, we state

$$
\operatorname{Invariant}(k): \quad a_{i j}^{(k)}=a_{i j}-\sum_{r=0}^{k-1} l_{i r} u_{r j} \text { for all } i, j \geq k
$$

- Giving an invariant at the right place in an algorithm text helps in proving the correctness of the algorithm.
- You can use the assert facility in the C-language to check invariants (and other statements).

Basic algorithm with loop invariant

input: $\quad A^{(0)}: n \times n$ matrix.
output: $\quad L: n \times n$ unit lower triangular matrix, U : $n \times n$ upper triangular matrix, such that $L U=A^{(0)}$.
for $k:=0$ to $n-1$ do
$\{\operatorname{Invariant}(k)\}$
for $j:=k$ to $n-1$ do

$$
u_{k j}:=a_{k j}^{(k)}
$$

for $i:=k+1$ to $n-1$ do

$$
I_{i k}:=a_{i k}^{(k)} / u_{k k}
$$

for $i:=k+1$ to $n-1$ do
for $j:=k+1$ to $n-1$ do
$a_{i j}^{(k+1)}:=a_{i j}^{(k)}-l_{i k} u_{k j} ;$
$\{\operatorname{Invariant}(k+1)\}$

Storing $L, U, A^{(k)}$ in the space of A

At the start of stage $k=3$: rows $0,1,2$ of U and columns $0,1,2$ of L below the diagonal have already been computed.

Memory-efficient sequential LU decomposition

input: $\quad A: n \times n$ matrix, $A=A^{(0)}$.
output: $\quad A: n \times n$ matrix, $A=L-I_{n}+U$, with
L : $n \times n$ unit lower triangular matrix,
U : $n \times n$ upper triangular matrix,
$I_{n}: n \times n$ identity matrix,
such that $L U=A^{(0)}$.
for $k:=0$ to $n-1$ do
for $i:=k+1$ to $n-1$ do
$a_{i k}:=a_{i k} / a_{k k} ;$
for $i:=k+1$ to $n-1$ do
for $j:=k+1$ to $n-1$ do
$a_{i j}:=a_{i j}-a_{i k} a_{k j} ;$

Transformations of A by LU decomposition

$$
A=\left[\begin{array}{rrr}
1 & 4 & 6 \\
2 & 10 & 17 \\
3 & 16 & 31
\end{array}\right] \xrightarrow{(0)}\left[\begin{array}{rrr}
1 & 4 & 6 \\
2 & 2 & 5 \\
3 & 4 & 13
\end{array}\right] \xrightarrow{(1)}\left[\begin{array}{lll}
1 & 4 & 6 \\
2 & 2 & 5 \\
3 & 2 & 3
\end{array}\right] .
$$

Hence,

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right], \quad U=\left[\begin{array}{lll}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right] .
$$

Row permutations needed

LU decomposition breaks down immediately in stage 0 for

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

because we try to divide by 0 .

- A solution is to permute the rows suitably.
- Thus, we compute a permuted LU decomposition,

$$
P A=L U
$$

- Here, P is a permutation matrix, obtained by permuting the rows of I_{n}.
- Output of LU decomposition of $A: L, U, P$.

Permutations and permutation matrices

Let $\sigma:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$ be a permutation. We define the permutation matrix P_{σ} corresponding to σ by

$$
\left(P_{\sigma}\right)_{i j}= \begin{cases}1 & \text { if } i=\sigma(j) \\ 0 & \text { otherwise }\end{cases}
$$

Thus, column j of P_{σ} is 1 in row $\sigma(j)$, and 0 everywhere else.

Relation between σ and P_{σ}

Let $\sigma(0)=1, \sigma(1)=2$, and $\sigma(2)=0$. Then

$$
P_{\sigma}=\left[\begin{array}{ccc}
\cdot & \cdot & 1 \\
1 & \cdot & \cdot \\
\cdot & 1 & \cdot
\end{array}\right] .
$$

Property of P_{σ}

Let $\sigma:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$ be a permutation.
Let \mathbf{x} be a vector of length n. Then

$$
\left(P_{\sigma} \mathbf{x}\right)_{i}=\sum_{j=0}^{n-1}\left(P_{\sigma}\right)_{i j} x_{j}=x_{\sigma^{-1}(i)}
$$

because only the term with $\sigma(j)=i$ is nonzero, i.e., the term $j=\sigma^{-1}(i)$.

Lemma 2.5 Properties of P_{σ}

Let $\sigma:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$ be a permutation. Let \mathbf{x} be a vector of length n and A an $n \times n$ matrix. Then

$$
\begin{gathered}
\left(P_{\sigma} \mathbf{x}\right)_{i}=x_{\sigma^{-1}(i)}, \quad \text { for } 0 \leq i<n, \\
\left(P_{\sigma} A\right)_{i j}=a_{\sigma^{-1}(i), j}, \quad \text { for } 0 \leq i, j<n, \\
\left(P_{\sigma} A P_{\sigma}^{T}\right)_{i j}=a_{\sigma^{-1}(i), \sigma^{-1}(j)}, \quad \text { for } 0 \leq i, j<n .
\end{gathered}
$$

Proofs: similar to before.

Lemma 2.6 Matrices isomorphic to permutations

Let $\sigma, \tau:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$ be permutations. Then

$$
P_{\tau} P_{\sigma}=P_{\tau \sigma} \text { and }\left(P_{\sigma}\right)^{-1}=P_{\sigma^{-1}}
$$

Here, $\tau \sigma$ denotes σ followed by τ.

Proof first part:

$$
\left(P_{\tau} P_{\sigma}\right)_{i j}=\sum_{k=0}^{n-1}\left(P_{\tau}\right)_{i k}\left(P_{\sigma}\right)_{k j}=\left(P_{\sigma}\right)_{\tau^{-1}(i), j}
$$

because only one term $k=\tau^{-1}(i)$ is nonzero. By the definition of P_{σ}, the result is 1 if $\tau^{-1}(i)=\sigma(j)$, i.e., $i=\tau(\sigma(j))=(\tau \sigma)(j)$, and 0 otherwise. This is the same as for $\left(P_{\tau \sigma}\right)_{i j}$.

LU decomposition with row permutations

input: $\quad A: n \times n$ matrix, $A=A^{(0)}$.
output: $\quad A: n \times n$ matrix, $A=L-I_{n}+U$, with L : $n \times n$ unit lower triangular matrix, $U: n \times n$ upper triangular matrix, π : permutation vector of length n.
for $i:=0$ to $n-1$ do $\pi_{i}:=i$;
for $k:=0$ to $n-1$ do

$$
\begin{aligned}
& r:=\operatorname{argmax}\left(\left|a_{i k}\right|: k \leq i<n\right) ; \\
& \operatorname{swap}\left(\pi_{k}, \pi_{r}\right) ; \\
& \text { for } j:=0 \text { to } n-1 \text { do } \\
& \quad \operatorname{swap}\left(a_{k j}, a_{r j}\right) ;
\end{aligned}
$$

LU decomposition with row permutations

input: $\quad A: n \times n$ matrix, $A=A^{(0)}$.
output: $\quad A: n \times n$ matrix, $A=L-I_{n}+U$, with L : $n \times n$ unit lower triangular matrix, $U: n \times n$ upper triangular matrix, π : permutation vector of length n.
for $i:=0$ to $n-1$ do $\pi_{i}:=i$;
for $k:=0$ to $n-1$ do

$$
\begin{aligned}
& r:=\operatorname{argmax}\left(\left|a_{i k}\right|: k \leq i<n\right) ; \\
& \operatorname{swap}\left(\pi_{k}, \pi_{r}\right) ; \\
& \text { for } j:=0 \text { to } n-1 \text { do } \\
& \quad \operatorname{swap}\left(a_{k j}, a_{r j}\right) ;
\end{aligned}
$$

for $i:=k+1$ to $n-1$ do

$$
a_{i k}:=a_{i k} / a_{k k}
$$

for $i:=k+1$ to $n-1$ do for $j:=k+1$ to $n-1$ do

$$
a_{i j}:=a_{i j}-a_{i k} a_{k j} ;
$$

Partial row pivoting

- The pivot element in stage k is the largest element $a_{r k}$ in column k. Everything revolves around it. It is farthest from 0 and division by $a_{r k}$ is most stable.
- The pivot row r is thus determined by

$$
\left|a_{r k}\right|=\max \left(\left|a_{i k}\right|: k \leq i<n\right)
$$

- r is the argument (or index) of the maximum.
- Full pivoting would take the largest pivot from the whole submatrix $A(k: n-1, k: n-1)$. This gives the best stability, but is more costly. In practice, partial pivoting suffices.

The meaning of π

- The algorithm permutes the matrix by a permutation matrix P_{σ}. We obtain the LU decomposition $P_{\sigma} A=L U$.
- The same matrix is applied to the initial vector $\mathbf{e}=(0,1,2, \ldots, n-1)^{T}$. We obtain $\pi=P_{\sigma} \mathbf{e}$.
- Therefore, by Lemma 2.5,

$$
\pi(i)=\left(P_{\sigma} \mathbf{e}\right)_{i}=e_{\sigma^{-1}(i)}=\sigma^{-1}(i)
$$

- Thus, $\pi=\sigma^{-1}$ and hence

$$
P_{\pi^{-1}} A=L U .
$$

Sequential time complexity

Lemma 2.7:

$$
\sum_{k=0}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Proof: By induction on n.
The number of flops of the LU decomposition algorithm is

$$
\begin{aligned}
T_{\text {seq }} & =\sum_{k=0}^{n-1}\left(2(n-k-1)^{2}+n-k-1\right)=\sum_{k=0}^{n-1}\left(2 k^{2}+k\right) \\
& =\frac{(n-1) n(2 n-1)}{3}+\frac{(n-1) n}{2} \\
& =(n-1) n\left(\frac{2 n}{3}+\frac{1}{6}\right)=\frac{2 n^{3}}{3}-\frac{n^{2}}{2}-\frac{n}{6}
\end{aligned}
$$

Summary

- Solving a linear system $A \mathbf{x}=\mathbf{b}$ can best be done by:
- finding an LU decomposition $P A=L U$;
- permuting \mathbf{b} into $P \mathbf{b}$;
- solving the triangular systems $L \mathbf{y}=P \mathbf{b}$ and $U \mathbf{x}=\mathbf{y}$.
- The LU decomposition costs about $2 n^{3} / 3$ flops and each triangular system solve about n^{2} flops.
- It is always difficult to keep permutations and their inverses apart. In theoretical analysis, it is sometimes easier to work with permutation matrices than with the corresponding permutations.
- We defined the matrix P_{σ}; its j th column is 1 in row $\sigma(j)$, and 0 everywhere else.
- An important connection between a permutation σ and the matrix P_{σ} is given by $\left(P_{\sigma} \mathbf{x}\right)_{i}=x_{\sigma^{-1}(i)}$.

